Skip to main content

Object Proposals Based on Variance Measure

  • Conference paper
  • First Online:
Book cover Computational Intelligence in Pattern Recognition

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 999))

Abstract

Object proposals have recently become an important part of the object recognition process. Current object proposals are mostly based on hierarchical grouping which generates too many proposals and consumes too much processing time. This paper presents a framework utilizing variance measure to produce object proposals. We divide complete image into small patches. Our algorithm identifies possible object patches and merged them together to form object proposals. We evaluate our algorithm on UT interaction dataset. Experimental results show that our method generates fewer but quality proposals. Our method also performs reasonably fast than the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ikonomatakis, N., Plataniotis, K., Zervakis, M., Venetsanopoulos, A.: Region Ggrowing and Region Merging Image Segmentation, vol. 08 (1997)

    Google Scholar 

  2. Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In: Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 654–661 (2005)

    Google Scholar 

  3. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2189–2202 (2012). https://doi.org/10.1109/TPAMI.2012.28

    Article  Google Scholar 

  4. Rahtu, E., Kannala, J., Blaschko, M.: Learning a category independent object detection cascade. In: 2011 International Conference on Computer Vision, pp. 1052–1059 (2011)

    Google Scholar 

  5. Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric Min-Cuts. IEEE TPAMI 34(7), 1312–1328 (2012)

    Article  Google Scholar 

  6. Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recognition. Int. J. Comput. Vis. (2013). http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

  7. Zitnick, C.L., Dollár, P.: Edge boxes: Locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 391–405. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  8. Cheng, M., Zhang, Z., Lin, W., Torr, P.: Bing: Binarized normed gradients for objectness estimation at 300fps. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293 (2014)

    Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). vol. 1, pp. 886–893 (2005)

    Google Scholar 

  10. Harzallah, H., Jurie, F., Schmid, C.: Combining efficient object localization and image classification. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 237–244 (2009)

    Google Scholar 

  11. Ryoo, M.S., Aggarwal, J.K.: UT-Interaction Dataset, ICPR contest on Semantic Description of Human Activities (SDHA). http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html (2010)

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  13. Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: 2009 IEEE 12th International Conference on Computer Vision. pp. 32–39 (2009)

    Google Scholar 

  14. Girshick, R.: Fast r-cnn. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448. ICCV ’15, IEEE Computer Society, Washington, DC, USA (2015). https://doi.org/10.1109/ICCV.2015.169

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017), https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  16. Soille, P.: Erosion and Dilation, pp. 63–103. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-662-05088-0_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, A., Meenpal, T., Acharya, B. (2020). Object Proposals Based on Variance Measure. In: Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D. (eds) Computational Intelligence in Pattern Recognition. Advances in Intelligent Systems and Computing, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-13-9042-5_26

Download citation

Publish with us

Policies and ethics