Skip to main content

Pathogen Immunoassay in Food

  • Chapter
  • First Online:
Food Immunoassay

Abstract

Immunoassays such as enzyme-linked immunosorbent assays (ELISA) and immunochromatographic strip assays have been widely developed for pathogen detection in various food samples. This chapter described the criteria of foodborne pathogens in food and reviewed the most effective immunoassays among the previous studies for the leading foodborne pathogens including Salmonella spp., Listeria spp. including L. monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus, Vibrio parahaemolyticus, Cronobacter spp., Campylobacter jejuni, Clostridium botulinum, and Norovirus. Antigen preparation, antibody characterization, epitopes identification, ELISA, and strip assay performances were highlighted. Finally, the gap between the current and the ideal pathogen immunoassay and the possible direction of pathogen immunoassay study were pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bi YL, Wang YJ, Qin Y, Vallverdu RG, Garcia JM, Sun W, Li SL, Cao ZJ (2016) Prevalence of bovine mastitis pathogens in bulk tank milk in China. PLoS ONE 11:e0155621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Yeni F, Yavas S, Alpas H, Soyer Y (2016) Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreaks. Crit Rev Food Sci Nutr 56:1532–1544

    Article  CAS  PubMed  Google Scholar 

  3. Yang X, Huang J, Wu Q, Zhang J, Liu S, Guo W, Cai S, Yu S (2016) Prevalence, antimicrobial resistance and genetic diversity of Salmonella isolated from retail ready-to-eat foods in China. Food Control 60:50–56

    Article  CAS  Google Scholar 

  4. Uche IV, Maclennan CA, Saul A (2017) A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966–2014). PLoS Negl Trop Dis 11:e0005118

    Article  PubMed  PubMed Central  Google Scholar 

  5. Valimaa AL, Tilsala-Timisjarvi A, Virtanen E (2015) Rapid detection and identification methods for Listeria monocytogenes in the food chain–a review. Food Control 55:103–114

    Article  CAS  Google Scholar 

  6. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, Björkman JT, Dallman T, Reimer A, Enouf V (2017) Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol 2:16185

    Article  CAS  Google Scholar 

  7. DebRoy C, Roberts E, Valadez A, Dudley E, Cutter C (2011) Detection of shiga toxin-producing Escherichia coli O26, O45, O103, O111, O113, O121, O145, and O157 serogroups by multiplex polymerase chain reaction of the wzx gene of the O-antigen gene cluster. Foodborne Pathog Dis 8:651–652

    Article  CAS  PubMed  Google Scholar 

  8. Wu S-Y, Hulme J, An SSA (2015) Recent trends in the detection of pathogenic Escherichia coli O157: H7. BioChip J 9:173–181

    Article  CAS  Google Scholar 

  9. Zhang S, Wu Q, Zhang J, Lai Z, Zhu X (2016) Prevalence, genetic diversity, and antibiotic resistance of enterotoxigenic Escherichia coli in retail ready-to-eat foods in China. Food Control 68:236–243

    Article  CAS  Google Scholar 

  10. Denayer S, Delbrassinne L, Nia Y, Botteldoorn N (2017) Food-borne outbreak investigation and molecular typing: high diversity of Staphylococcus aureus strains and importance of toxin detection. Toxins 9:407

    Article  PubMed Central  CAS  Google Scholar 

  11. Suaifan GARY, Alhogail S, Zourob M (2017) Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosensors Bioelectron 90:230–237

    Article  CAS  Google Scholar 

  12. Benkerroum N (2018) Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: an overview. Crit Rev Food Sci Nutr 58:1943–1970

    Article  CAS  PubMed  Google Scholar 

  13. Wakabayashi Y, Umeda K, Yonogi S, Nakamura H, Yamamoto K, Kumeda Y, Kawatsu K (2018) Staphylococcal food poisoning caused by Staphylococcus argenteus harboring staphylococcal enterotoxin genes. Int J Food Microbiol 265:23–29

    Article  CAS  PubMed  Google Scholar 

  14. Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, Nakazawa H, Kozaki S (2003) An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect 130:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bisha B, Simonson J, Janes M, Bauman K, Goodridge LD (2012) A review of the current status of cultural and rapid detection of Vibrio parahaemolyticus. Int J Food Sci Tech 47:885–899

    Article  CAS  Google Scholar 

  16. Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grard T, Midelet-Bourdin G (2017) Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): review of microbiological versus recent molecular detection methods in seafood products. Crit Rev Food Sci Nutr 28:1–14

    Google Scholar 

  17. Yan Q, Fanning S (2015) Strategies for the Identification and Tracking of Cronobacter species: an opportunistic pathogen of concern to neonatal health. Front Pediatr 3:38

    Article  PubMed  PubMed Central  Google Scholar 

  18. Song X, Shukla S, Lee G, Park S, Kim M (2016) Detection of Cronobacter genus in powdered infant formula by enzyme-linked immunosorbent assay using anti-Cronobacter antibody. Front Microbiol 7:1124

    PubMed  PubMed Central  Google Scholar 

  19. Fernando U, Biswas D, Allan B, Attah-Poku S, Willson P, Valdivieso-Garcia A, Potter AA (2008) Serological assessment of synthetic peptides of Campylobacter jejuni NCTC11168 FlaA protein using antibodies against multiple serotypes. Med Microbiol Immunol 197:45–53

    Article  CAS  PubMed  Google Scholar 

  20. Yeh H-Y, Hiett KL, Line JE, Seal BS (2014) Characterization and antigenicity of recombinant Campylobacter jejuni flagellar capping protein FliD. J Med Microbiol 63:602–609

    Article  CAS  PubMed  Google Scholar 

  21. Wu S, Pacheco ND, Oprandy JJ, Rollwagen FM (1991) Identification of Campylobacter jejuni and Campylobacter coli antigens with mucosal and systemic antibodies. Infect Immun 59:2555–2559

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Saravanan P, Rajaseger G, Eric YP-H, Moochhala S (2015) Botulinum toxin: present knowledge and threats. In: Gopalakrishnakone P, Balali-Mood M, Llewellyn L, Singh BR (eds) Biological toxins and bioterrorism. Springer, Netherlands, Dordrecht, pp 29–42

    Chapter  Google Scholar 

  23. Cheng LW, Land KM, Tam C, Brandon DL, Stanker LH (2016) Technologies for detecting botulinum neurotoxins in biological and environmental matrices significance, prevention and control of food related diseases. IntechOpen 126–144

    Google Scholar 

  24. Dorner MB, Schulz KM, Kull S, Dorner BG (2013) Complexity of botulinum neurotoxins: challenges for detection technology. Curr Top Microbiol Immunol 364:219–255

    PubMed  Google Scholar 

  25. Singh AK, Stanker LH, Sharma SK (2013) Botulinum neurotoxin: where are we with detection technologies? Crit Rev Microbiol 39:43–56

    Article  CAS  PubMed  Google Scholar 

  26. Teunis PFM, Moe CL, Liu P, Miller ES, Lindesmith L, Baric RS, Le Pendu J, Calderon RL (2008) Norwalk virus: how infectious is it? J Med Virol 80(8):1468–1476

    Article  PubMed  Google Scholar 

  27. Patel MM, Hall AJ, Vinjé J, Parashar UD (2009) Noroviruses: a comprehensive review. J Clin Virol 44:1–8

    Article  CAS  PubMed  Google Scholar 

  28. Robilotti E, Deresinski S, Pinsky BA (2015) Norovirus. Clin Microbiol Rev 28:134–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirby A, Iturriza-Gómara M (2012) Norovirus diagnostics: options, applications and interpretations. Expert Rev Anti Infect Ther 10:423–433

    Article  PubMed  Google Scholar 

  30. Moreira AN, Conceicao FR, Conceiao RDS, Goularte FL, Carvalhal JB, Dellagostin OA, Aleixo JAG (2008) Monoclonal antibodies against serogroup B salmonellae: production, characterisation and use in a sandwich ELISA. Food Agric Immunol 19:1–10

    Article  CAS  Google Scholar 

  31. Wang WB, Liu LQ, Song SS, Tang LJ, Kuang H, Xu CL (2015) A highly sensitive ELISA and immunochromatographic strip for the detection of Salmonella typhimurium in milk samples. Sensors 15:5281–5292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hearty S, Leonard P, Quinn J, O’Kennedy R (2006) Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J Microbiol Methods 66:294–312

    Article  CAS  PubMed  Google Scholar 

  33. Shim WB, Choi JG, Kim JY, Yang ZY, Lee KH, Kim MG, Ha SD, Kim KS, Kim KY, Kim CH, Ha KS, Eremin SA, Chung DH (2007) Production of monoclonal antibody against Listeria monocytogenes and its application to immunochromatography strip test. J Microbiol Biotechnol 17:1152–1161

    CAS  PubMed  Google Scholar 

  34. Schauer K, Kleinsteuber I, Weiner K, Dietrich R, Martlbauer E (2012) Development and characterisation of monoclonal antibodies to detect Cronobacter sakazakii and Cronobacter turicensis. Int J Med Microbiol 302:80–81

    Google Scholar 

  35. Kong DZ, Liu LQ, Xing CR, Kuang H, Xu CL (2015) Sensitive and highly specific detection of Cronobacter sakazakii based on monoclonal sandwich ELISA. Food Agric Immunol 26:566–576

    Article  CAS  Google Scholar 

  36. Zhao ZJ, Liu XM (2005) Preparation of monoclonal antibody and development of enzyme-linked immunosorbent assay specific for Escherichia coli O157 in foods. Biomed Environ Sci 18:254–259

    CAS  PubMed  Google Scholar 

  37. Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect 4:325–331

    Article  CAS  PubMed  Google Scholar 

  38. Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317

    Article  CAS  PubMed  Google Scholar 

  39. Kumar G, Rathore G, Sengupta U, Singh V, Kapoor D, Lakra WS (2007) Isolation and characterization of outer membrane proteins of Edwardsiella tarda and its application in immunoassays. Aquaculture 272:98–104

    Article  CAS  Google Scholar 

  40. Asakura H, Kawamoto K, Haishima Y, Igimi S, Yamamoto S, Makino S-i (2008) Differential expression of the outer membrane protein W (OmpW) stress response in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Res Microbiol 159:709–717

    Article  CAS  PubMed  Google Scholar 

  41. Krishnan S, Prasadarao NV (2012) Outer membrane protein A and OprF: versatile roles in gram-negative bacterial infections. FEBS J 279:919–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho YJ, Sun JS, Han JH, Jang JH, Kang ZW, Hahn TW (2014) An immunoproteomic approach for characterization of the outer membrane proteins of Salmonella Gallinarum. Electrophoresis 35:888–894

    Article  CAS  PubMed  Google Scholar 

  43. Kim S-H, Park M-K, Kim J-Y, Chuong PD, Lee Y-S, Yoon B-S, Hwang K-K, Lim Y-K (2005) Development of a sandwich ELISA for the detection of Listeria spp. using specific flagella antibodies. J Vet Sci 6:41–46

    Article  PubMed  Google Scholar 

  44. Datta S, Janes ME, Simonson JG (2008) Immunomagnetic separation and coagglutination of Vibrio parahaemolyticus with anti-flagellar protein monoclonal antibody. Clin Vacc Immunol Cvi 15:1541–1546

    Article  CAS  Google Scholar 

  45. Karoonuthaisiri N, Charlermroj R, Teerapornpuntakit J, Kumpoosiri M, Himananto O, Grant IR, Gajanandana O, Elliott CT (2015) Bead array for Listeria monocytogenes detection using specific monoclonal antibodies. Food Control 47:462–471

    Article  CAS  Google Scholar 

  46. Jadeja R, Janes ME, Simonson JG (2010) Immunomagnetic separation of Vibrio vulnificus with antiflagellar monoclonal antibody. J Food Prot 73:1288–1293

    Article  CAS  PubMed  Google Scholar 

  47. Jadeja R, Janes ME, Simonson JG (2015) Development of rapid and sensitive antiflagellar monoclonal antibody based lateral flow device for the detection of Vibrio vulnificus from oyster homogenate. Food Control 56:110–113

    Article  CAS  Google Scholar 

  48. Sharma D, Patel S, Padh H, Desai P (2016) Immunoinformatic identification of potential epitopes against shigellosis. Int J Pept Res Ther 22:481–495

    Article  CAS  Google Scholar 

  49. Sheikh QM, Gatherer D, Reche PA, Flower DR (2016) Towards the knowledge-based design of universal influenza epitope ensemble vaccines. Bioinformatics 32:3233–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ali MT, Islam MO (2015) A highly conserved GEQYQQLR epitope has been identified in the nucleoprotein of ebola virus by using an in silico approach. Adv Bioinform 2015:278197

    Article  CAS  Google Scholar 

  51. El-Manzalawy Y, Dobbs D, Honavar VG (2017) In silico prediction of linear B-cell epitopes on proteins. Methods Mol Biol 1484:255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang WB, Liu LQ, Song SS, Xu LG, Kuang H, Zhu JP, Xu CL (2017) Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim Acta 184:715–724

    Article  CAS  Google Scholar 

  53. Tsang RS, Chan KH, Chau PY, Wan KC, Ng MH, Schlecht S (1987) A murine monoclonal antibody specific for the outer core oligosaccharide of Salmonella lipopolysaccharide. Infect Immun 55:211–216

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Choi D, Tsang RSW, Ng MH (1992) Sandwich capture ELISA by a murine monoclonal-antibody against a genus-specific LPS epitope for the detection of different common serotypes of Salmonellas. J Appl Bacteriol 72:134–138

    Article  CAS  PubMed  Google Scholar 

  55. Dipadova FE, Brade H, Barclay GR, Poxton IR, Liehl E, Schuetze E, Kocher HP, Ramsay G, Schreier MH, McClelland DBL, Rietschel ET (1993) A broadly cross-protective monoclonal-antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect Immun 61:3863–3872

    CAS  Google Scholar 

  56. Micoli F, Rondini S, Gavini M, Lanzilao L, Medaglini D, Saul A, Martin LB (2012) O:2-CRM197 conjugates against Salmonella paratyphi A. PLoS ONE 7:e47039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Erridge C, Bennett-Guerrero E, Poxton IR (2002) Structure and function of lipopolysaccharides. Microb Infect 4:837–851

    Article  CAS  Google Scholar 

  58. Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338:2431–2447

    Article  CAS  PubMed  Google Scholar 

  59. Wu XL, Wang WB, Liu LQ, Kuang H, Xu CL (2015) Monoclonal antibody-based cross-reactive sandwich ELISA for the detection of Salmonella spp. in milk samples. Anal Methods 7:9047–9053

    Article  CAS  Google Scholar 

  60. Frasch CE (2009) Preparation of bacterial polysaccharide–protein conjugates: Analytical and manufacturing challenges. Vaccine 27:6468–6470

    Article  CAS  PubMed  Google Scholar 

  61. Rana R, Dalal J, Singh D, Kumar N, Hanif S, Joshi N, Chhikara MK (2015) Development and characterization of Haemophilus influenzae type B conjugate vaccine prepared using different polysaccharide chain lengths. Vaccine 33:2646–2654

    Article  CAS  PubMed  Google Scholar 

  62. Hsu CH, Hung SC, Wu CY, Wong CH (2011) Toward automated oligosaccharide synthesis. Angew Chem Int Ed 50:11872–11923

    Article  CAS  Google Scholar 

  63. Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG (2018) Toward automated enzymatic synthesis of oligosaccharides. Chem Rev 118:8151–8187

    Article  CAS  PubMed  Google Scholar 

  64. Wang WB, Liu LQ, Song SS, Xu LG, Kuang H, Zhu JP, Xu CL (2016) Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody. Sci China Mater 59:665–674

    Article  CAS  Google Scholar 

  65. Ruhland GJ, Hellwig M, Wanner G, Fiedler F (1993) Cell-surface location of Listeria-specific protein p60–detection of Listeria cells by indirect immunofluorescence. J Gen Microbiol 139:609–616

    Article  CAS  PubMed  Google Scholar 

  66. Bubert A, Schubert P, Köhler S, Frank R, Goebel W (1994) Synthetic peptides derived from the Listeria monocytogenes p60 protein as antigens for the generation of polyclonal antibodies specific for secreted cell-free L. monocytogenes p60 proteins. Appl Environ Microbiol 60:3120–3127

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang Y, Kim H, Singh AK, Aroonnual A, Bae E, Rajwa B, Fratamico PM, Bhunia AK (2014) Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157. PLoS ONE 9:e105272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Padhye NV, Doyle MP (1991) Production and characterization of a monoclonal antibody specific for enterohemorrhagic Escherichia coli of serotypes O157:H7 and O26:H11. J Clin Microbiol 29:99–103

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Clark CG, Johnson S, Johnson RP (1995) Further characterisation of a monoclonal antibody reactive with Escherichia coli O157:H7. J Med Microbiol 43:262–269

    Article  CAS  PubMed  Google Scholar 

  70. Westerman RB, He Y, Keen JE, Littledike ET, Kwang J (1997) Production and characterization of monoclonal antibodies specific for the lipopolysaccharide of Escherichia coli O157. J Clin Microbiol 35:679–684

    CAS  PubMed  PubMed Central  Google Scholar 

  71. He Y, Keen JE, Westerman RB, Littledike ET, Kwang J (1996) Monoclonal antibodies for detection of the H7 antigen of Escherichia coli. Appl Environ Microbiol 62:3325–3332

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rong-Hwa S, Shiao-Shek T, Der-Jiang C, Yao-Wen H (2010) Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem 118:462–466

    Article  CAS  Google Scholar 

  73. Ostyn A, Guillier F, Prufer AL, Papinaud I, Messio S, Krys S, Lombard B, Hennekinne JA (2011) Intra-laboratory validation of the Ridascreen (R) SET Total kit for detecting staphylococcal enterotoxins SEA to SEE in cheese. Lett Appl Microbiol 52:468–474

    Article  CAS  PubMed  Google Scholar 

  74. Kuang H, Wang WB, Xu LG, Ma W, Liu LQ, Wang L, Xu CL (2013) Monoclonal antibody-based sandwich ELISA for the detection of staphylococcal enterotoxin A. Int J Env Res Public Health 10:1598–1608

    Article  CAS  Google Scholar 

  75. Chen CH, Chang TC (1995) An enzyme-linked immunosorbent assay for the rapid detection of Vibrio parahaemolyticus. J Food Prot 58:873–878

    Article  CAS  PubMed  Google Scholar 

  76. Sakata J, Kawatsu K, Kawahara R, Kanki M, Iwasaki T, Kumeda Y, Kodama H (2012) Production and characterization of a monoclonal antibody against recombinant thermolabile hemolysin and its application to screen for Vibrio parahaemolyticus contamination in raw seafood. Food Control 23:171–176

    Article  CAS  Google Scholar 

  77. Kumar BK, Raghunath P, Devegowda D, Deekshit VK, Venugopal MN, Karunasagar I, Karunasagar I (2011) Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. Int J Food Microbiol 145:244–249

    Article  CAS  PubMed  Google Scholar 

  78. Kawatsu K, Ishibashi M, Tsukamoto T (2006) Development and evaluation of a rapid, simple, and sensitive immunochromatographic assay to detect thermostable direct hemolysin produced by Vibrio parahaemolyticus in enrichment cultures of stool specimens. J Clin Microbiol 44:1821–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sakata J, Kawatsu K, Iwasaki T, Tanaka K, Takenaka S, Kumeda Y, Kodama H (2012) Production and characterization of a novel monoclonal antibody against Vibrio parahaemolyticus F0F1 ATP synthase’s delta subunit and its application for rapid identification of the pathogen. J Microbiol Methods 88:77–82

    Article  CAS  PubMed  Google Scholar 

  80. Iversen C, Lehner AN, Marugg J, Fanning S, Stephan R, Joosten H (2007) Identification of Cronobacter spp. (Enterobacter sakazakii). J Clin Microbiol 45:3814–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scharinger EJ, Dietrich R, Kleinsteuber I, Märtlbauer E, Schauer K (2016) Simultaneous rapid detection and serotyping of Cronobacter sakazakii serotypes O1, O2, and O3 by using specific monoclonal antibodies. Appl Environ Microbiol 82:2300–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jaradat ZW, Rashdan AM, Ababneh QO, Jaradat SA, Bhunia AK (2011) Characterization of surface proteins of Cronobacter muytjensii using monoclonal antibodies and MALDI-TOF mass spectrometry. BMC Microbiol 11:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qiming C, Tingting T, Xiaomei B, Fengxia L, Yuanhong L, Zhaoxin L (2016) Characterization of a single-chain variable fragment specific to Cronobacter spp. from hybridoma based on outer membrane protein A. J Microbiol Methods 129:136–143

    Article  CAS  Google Scholar 

  84. Wang J, Du XJ, Lu XN, Wang S (2013) Immunoproteomic identification of immunogenic proteins in Cronobacter sakazakii strain BAA-894. Appl Microbiol Biotechnol 97:2077–2091

    Article  CAS  PubMed  Google Scholar 

  85. Kothary MH, Gopinath GR, Gangiredla J, Rallabhandi PV, Harrison LM, Yan QQ, Chase HR, Lee B, Park E, Yoo YJ (2017) Analysis and characterization of proteins associated with outer membrane vesicles secreted by Cronobacter spp. Front Microbiol 8:134

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pei Z, Ellison RT, Blaser MJ (1991) Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni. J Biol Chem 266:16363–16369

    CAS  PubMed  Google Scholar 

  87. Pei Z, Blaser MJ (1993) PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J Biol Chem 268:18717–18725

    CAS  PubMed  Google Scholar 

  88. Du LF, Li ZJ, Tang XY, Huang JQ, Sun WB (2008) Immunogenicity and immunoprotection of recombinant PEB1 in Campylobacter jejuni infected mice. World J Gastroenterol 14:6244–6248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu D, Wu XL, Li B, Li P, Ming X, Chen TT, Wei H, Xu F (2013) Rapid detection of Campylobacter jejuni using fluorescent microspheres as label for immunochromatographic strip test. Food Sci Biotechnol 22:585–591

    Article  CAS  Google Scholar 

  90. Cordwell SJ, Len AC, Touma RG, Scott NE, Falconer L, Jones D, Connolly A, Crossett B, Djordjevic SP (2008) Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies. Proteomics 8:122–139

    Article  CAS  PubMed  Google Scholar 

  91. Shoaf-Sweeney KD, Larson CL, Tang XT, Konkel ME (2008) Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl Environ Microbiol 74:6867–6875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xu F, Xu D, Ming X, Xu HY, Li B, Li P, Aguilar ZP, Cheng TT, Wu XL, Wei H (2013) Quantum dot-based immunochromatography test strip for rapid detection of Campylobacter jejuni. J Nanosci Nanotechnol 13:4552–4559

    Article  CAS  PubMed  Google Scholar 

  93. Brooks B, Robertson R, Henning D, Garcia M (1995) Production and western blot characterization of monoclonal antibodies specific for Campylobacter jejuni and Campylobacter coli. J Rapid Methods Autom Microbiol 4:155–164

    Article  Google Scholar 

  94. Monfort JD, Bechniesen JD, Stills HF (1994) Detection of flagellar antigen of Campylobacter jejuni and Campylobacter coli in canine feces with an enzyme-linked-immunosorbent-assay (ELISA)—new prospects for diagnosis. Vet Res Commun 18:85–92

    Article  CAS  PubMed  Google Scholar 

  95. Heo SA, Nannapaneni R, Johnson MG, Park JS, Seo KH (2009) Production and characterization of a monoclonal antibody to Campylobacter jejuni. J Food Prot 72:870–875

    Article  CAS  PubMed  Google Scholar 

  96. Brooks BW, Mihowich JG, Blais BW, Yamazaki H (1998) Specificity of monoclonal antibodies to Campylobacter jejuni lipopolysaccharide antigens. Immunol Invest 27:257–265

    Article  CAS  PubMed  Google Scholar 

  97. Grate JW Jr, Ozanich RMO, Warner MG, Bruckner-Lea CJ, Marks JD (2010) Advances in assays and analytical approaches for botulinum-toxin detection. TrAC Trends Anal Chem 29:1137–1156

    Article  CAS  Google Scholar 

  98. Brin MF (1997) Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl 6:S146

    Article  CAS  PubMed  Google Scholar 

  99. Hambleton P, Capel B, Bailey N, Heron N, Crooks A, Melling J, Tse C-K, Dolly JO (1981) Production, purification and toxoiding of Clostridium botulinum type a toxin. In: Lewis GE (ed) Biomedical aspects of botulism. Academic Press, pp 247–260

    Google Scholar 

  100. Shone C, Wilton-Smith P, Appleton N, Hambleton P, Modi N, Gatley S, Melling J (1985) Monoclonal antibody-based immunoassay for type A Clostridium botulinum toxin is comparable to the mouse bioassay. Appl Environ Microbiol 50:63–67

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Stanker LH, Merrill P, Scotcher MC, Cheng LW (2008) Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J Immunol Methods 336:1–8

    Article  CAS  PubMed  Google Scholar 

  102. Tavallaie M, Chenal A, Gillet D, Pereira Y, Manich M, Gibert M, Raffestin S, Popoff MR, Marvaud JC (2004) Interaction between the two subdomains of the C-terminal part of the botulinum neurotoxin A is essential for the generation of protective antibodies. FEBS Lett 572:299–306

    Article  CAS  PubMed  Google Scholar 

  103. Volland H, Lamourette P, Nevers M-C, Mazuet C, Ezan E, Neuburger L-M, Popoff M, Créminon C (2008) A sensitive sandwich enzyme immunoassay for free or complexed Clostridium botulinum neurotoxin type A. J Immunol Methods 330:120–129

    Article  CAS  PubMed  Google Scholar 

  104. Parra GI, Azure J, Fischer R, Bok K, Sandoval-Jaime C, Sosnovtsev SV, Sander P, Green KY (2013) Identification of a broadly cross-reactive epitope in the inner shell of the norovirus capsid. PLoS ONE 8:e67592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen L, Wu D, Ji L, Wu X, Xu D, Cao Z, Han J (2013) Bioinformatics analysis of the epitope regions for norovirus capsid protein. BMC Bioinform 14:S5

    Article  CAS  Google Scholar 

  106. Crawford SE, Ajami N, Parker TD, Kitamoto N, Natori K, Takeda N, Tanaka T, Kou B, Atmar RL, Estes MK (2014) Mapping broadly reactive norovirus genogroup I and II monoclonal antibodies. CVI, Clin Vaccine Immunol, pp 00514–00520

    Google Scholar 

  107. Koromyslova AD, Hansman GS (2014) Nanobody binding to a conserved epitope promoted human norovirus particle disassembly. J Virol: J 6:03114–03176

    Google Scholar 

  108. Shiota T, Okame M, Takanashi S, Khamrin P, Takagi M, Satou K, Masuoka Y, Yagyu F, Shimizu Y, Kohno H (2007) Characterization of a broadly reactive monoclonal antibody against norovirus genogroups I and II: recognition of a novel conformational epitope. J Virol 81:12298–12306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoda T, Suzuki Y, Terano Y, Yamazaki K, Sakon N, Kuzuguchi T, Oda H, Tsukamoto T (2003) Precise characterization of norovirus (norwalk-like virus)-specific monoclonal antibodies with broad reactivity. J Clin Microbiol 41:2367–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li X, Zhou R, Wang Y, Sheng H, Tian X, Li H, Qiu H (2009) Identification and characterization of a native epitope common to norovirus strains GII/4, GII/7 and GII/8. Virus Res 140:188–193

    Article  CAS  PubMed  Google Scholar 

  111. Li X, Zhou R, Tian X, Li H, Zhou Z (2010) Characterization of a cross-reactive monoclonal antibody against Norovirus genogroups I, II, III and V. Virus Res 151:142–147

    Article  CAS  PubMed  Google Scholar 

  112. Kerr S, Ball HJ, Mackie DP, Pollock DA, Finlay DA (1992) Diagnostic application of monoclonal antibodies to outer membrane protein for rapid detection of Salmonella. J Appl Bacteriol 72:302–308

    Article  CAS  PubMed  Google Scholar 

  113. Yu K-Y, Noh Y, Chung M, Park H-J, Lee N, Youn M, Jung BY, Youn B-S (2004) Use of monoclonal antibodies that recognize p60 for identification of Listeria monocytogenes. Clin Diagn Lab Immunol 11:446–451

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Beauchamp S, D’Auria S, Pennacchio A, Lacroix M (2012) A new competitive fluorescence immunoassay for detection of Listeria monocytogenes. Anal Methods 4:4187–4192

    Article  CAS  Google Scholar 

  115. Wang W, Liu L, Song S, Xu L, Zhu J, Kuang H (2017) Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. Food Agric Immunol 28(2):274–287

    Article  CAS  Google Scholar 

  116. Padhye NV, Doyle MP (1991) Rapid procedure for detecting enterohemorrhagic Escherichia coli O157:H7 in food. Appl Environ Microbiol 57:2693–2698

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kerr P, Chart H, Finlay D, Pollock DA, Mackie DP, Ball HJ (2001) Development of a monoclonal sandwich ELISA for the detection of animal and human Escherichia coli O157 strains. J Appl Microbiol 90:543–549

    Article  CAS  PubMed  Google Scholar 

  118. Wang W, Liu L, Xu L, Kuang H, Zhu J, Xu C (2016) Gold-nanoparticle-based multiplexed immunochromatographic strip for simultaneous detection of staphylococcal enterotoxin A, B, C, D, and E. Part Syst Charact 33:388–395

    Article  CAS  Google Scholar 

  119. Park S, Shukla S, Kim Y, Oh S, Kim SH, Kim M (2012) Development of sandwich enzyme-linked immunosorbent assay for the detection of Cronobacter muytjensii (formerly called Enterobacter sakazakii). Microbiol Immunol 56:472–479

    Article  CAS  PubMed  Google Scholar 

  120. Xu X, Zhang Y, Shi M, Sheng W, Du X, Yuan M, Wang S (2014) Two novel analytical methods based on polyclonal and monoclonal antibodies for the rapid detection of Cronobacter spp.: development and application in powdered infant formula. LWT–Food Sci Technol 56:335–340

    Article  CAS  Google Scholar 

  121. Hoorfar J, Nielsen EM, Stryhn H, Andersen S (1999) Evaluation of two automated enzyme-immunoassays for detection of thermophilic campylobacters in faecal samples from cattle and swine. J Microbiol Methods 38:101–106

    Article  CAS  PubMed  Google Scholar 

  122. Endtz HP, Ang CW, van den Braak N, Luijendijk A, Jacobs BC, de Man P, van Duin JM, van Belkum A, Verbrugh HA (2000) Evaluation of a new commercial immunoassay for rapid detection of Campylobacter jejuni in stool samples. Eur J Clin Microbiol Infect Dis 19:794–797

    Article  CAS  PubMed  Google Scholar 

  123. Granato PA, Chen L, Holiday I, Rawling RA, Novak-Weekley SM, Quinlan T, Musser KA (2010) Comparison of premier CAMPY enzyme immunoassay (EIA), ProSpecT Campylobacter EIA, and ImmunoCard STAT! CAMPY tests with culture for laboratory diagnosis of Campylobacter enteric infections. J Clin Microbiol 48:4022–4027

    Article  PubMed  PubMed Central  Google Scholar 

  124. Schnee AE, Haque R, Taniuchi M, Uddin MJ, Petri WA (2018) Evaluation of two new membrane-based and microtiter plate enzyme-linked immunosorbent assays for the detection of Campylobacter jejuni in stool of Bangladeshi children. J Clin Microbiol JCM 59:00702–00718

    Google Scholar 

  125. Szı́lagyi M, Rivera VR, Neal D, Merrill GA, Poli MA (2000) Development of sensitive colorimetric capture elisas for Clostridium botulinum neurotoxin serotypes A and B. Toxicon 38:381–389

    Article  PubMed  Google Scholar 

  126. Poli MA, Rivera VR, Neal D (2002) Development of sensitive colorimetric capture ELISAs for Clostridium botulinum neurotoxin serotypes E and F. Toxicon 40:797–802

    Article  CAS  PubMed  Google Scholar 

  127. Liu Z, Song C, Li Y, Liu F, Zhang K, Sun Y, Li H, Wei Y, Xu Z, Zhang C, Yang A, Xu Z, Yang K, Jin B (2012) Development of highly sensitive chemiluminescence enzyme immunoassay based on the anti-recombinant HC subunit of botulinum neurotoxin type A monoclonal antibodies. Anal Chim Acta 735:23–30

    Article  CAS  PubMed  Google Scholar 

  128. Sakamaki N, Ohiro Y, Ito M, Makinodan M, Ohta T, Suzuki W, Takayasu S, Tsuge H (2012) Bioluminescent enzyme immunoassay for norovirus capsid antigen. CVI, Clin Vaccine Immunol, pp 00412–00427

    Google Scholar 

  129. Kim HS, Cho IH, Seo SM, Jeon JW, Paek SH (2012) In situ immuno-magnetic concentration-based biosensor systems for the rapid detection of Listeria monocytogenes. Mater Sci Eng C-Mater Biol Appl 32:160–166

    Article  CAS  Google Scholar 

  130. Jung BY, Jung SC, Kweon CH (2005) Development of a rapid immunochromatographic strip for detection of Escherichia coli O157. J Food Prot 68:2140–2143

    Article  CAS  PubMed  Google Scholar 

  131. Qi H, Zhong Z, Zhou H-X, Deng C-Y, Zhu H, Li J-F, Wang X-L, Li F-R (2011) A rapid and highly sensitive protocol for the detection of Escherichia coli O157: H7 based on immunochromatography assay combined with the enrichment technique of immunomagnetic nanoparticles. Int J Nanomed 6:3033–3039

    CAS  Google Scholar 

  132. Zhang L, Huang Y, Wang J, Rong Y, Lai W, Zhang J, Chen T (2015) Hierarchical flower-like gold nanoparticles labeled immunochromatography test strip for highly sensitive detection of Escherichia coli O157: H7. Langmuir 31:5537–5544

    Article  CAS  PubMed  Google Scholar 

  133. Sakata J, Kawatsu K, Iwasaki T, Kumeda Y (2015) Development of a rapid and simple immunochromatographic assay to identify Vibrio parahaemolyticus. J Microbiol Methods 116:23–29

    Article  CAS  PubMed  Google Scholar 

  134. Guo A, Sheng H, Zhang M, Wu R, Xie J (2012) Development and evaluation of a colloidal gold immunochromatography strip for rapid detection of Vibrio parahaemolyticus in food. J Food Qual 35:366–371

    Article  CAS  Google Scholar 

  135. Liu X, Guan Y, Cheng S, Huang Y, Yan Q, Zhang J, Huang G, Zheng J, Liu T (2016) Development of a highly sensitive lateral immunochromatographic assay for rapid detection of Vibrio parahaemolyticus. J Microbiol Methods 131:78–84

    Article  CAS  PubMed  Google Scholar 

  136. Chen D, Hanna PJ, Altmann K, Smith A, Moon P, Hammond LS (1992) Development of monoclonal antibodies that identify Vibrio species commonly isolated from infections of humans, fish, and shellfish. Appl Environ Microbiol 58:3694–3700

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Scharinger EJ, Dietrich R, Wittwer T, Märtlbauer E, Schauer K (2017) Multiplexed lateral flow test for detection and differentiation of Cronobacter sakazakii Serotypes O1 and O2. Front Microbiol 8:1826

    Article  PubMed  PubMed Central  Google Scholar 

  138. Song X, Shukla S, Lee G, Kim M (2016) Immunochromatographic strip assay for detection of Cronobacter sakazakii in pure culture. J Microbiol Biotechnol 26:1855–1862

    Article  CAS  PubMed  Google Scholar 

  139. Kentaro K, Yuko K, Masumi T, Wataru YM, Masashi K, Kiyoshi I (2008) Development and evaluation of immunochromatographic assay for simple and rapid detection of Campylobacter jejuni and Campylobacter coli in human stool specimens. J Clin Microbiol 46:1226–1231

    Article  CAS  Google Scholar 

  140. Ching KH, Lin A, McGarvey JA, Stanker LH, Hnasko R (2012) Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. J Immunol Methods 380:23–29

    Article  CAS  PubMed  Google Scholar 

  141. Attrée O, Guglielmo-Viret V, Gros V, Thullier P (2007) Development and comparison of two immunoassay formats for rapid detection of botulinum neurotoxin type A. J Immunol Methods 325:78–87

    Article  PubMed  CAS  Google Scholar 

  142. Orlov AV, Znoyko SL, Cherkasov VR, Nikitin MP, Nikitin PI (2016) Multiplex biosensing based on highly sensitive magnetic nanolabel quantification: rapid detection of botulinum neurotoxins A, B, and E in liquids. Anal Chem 88:10419–10426

    Article  CAS  PubMed  Google Scholar 

  143. Gharaat M, Sajedi RH, Shanehsaz M, Jalilian N, Mirshahi M, Gholamzad M (2017) A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Microchim Acta 184:4817–4825

    Article  CAS  Google Scholar 

  144. Grate JW, Warner MG Jr, Ozanich RM, Miller KD, Colburn HA, Dockendorff B, Antolick KC, Lind NCA, Lou MA (2009) Renewable surface fluorescence sandwich immunoassay biosensor for rapid sensitive botulinum toxin detection in an automated fluidic format. Analyst 134:987–996

    Article  CAS  PubMed  Google Scholar 

  145. Brunt J, Webb MD, Peck MW (2010) Rapid affinity immunochromatography column-based tests for sensitive detection of Clostridium botulinum neurotoxins and Escherichia coli O157. Appl Environ Microbiol 76:4143–4150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Doerflinger SY, Tabatabai J, Schnitzler P, Farah C, Rameil S, Sander P, Koromyslova A, Hansman GS (2016) Development of a nanobody-based lateral flow immunoassay for detection of human norovirus. mSphere 1:00216–00219

    Article  CAS  Google Scholar 

  147. Hagström AE, Garvey G, Paterson AS, Dhamane S, Adhikari M, Estes MK, Strych U, Kourentzi K, Atmar RL, Willson RC (2015) Sensitive detection of norovirus using phage nanoparticle reporters in lateral-flow assay. PLoS ONE 10:e0126571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Khamrin P, Nguyen TA, Phan TG, Satou K, Masuoka Y, Okitsu S, Maneekarn N, Nishio O, Ushijima H (2008) Evaluation of immunochromatography and commercial enzyme-linked immunosorbent assay for rapid detection of norovirus antigen in stool samples. J Virol Methods 147:360–363

    Article  CAS  PubMed  Google Scholar 

  149. Scott NE, Cordwell SJ (2009) Campylobacter proteomics: guidelines, challenges and future perspectives. Expert Rev Proteom 6:61–74

    Article  CAS  Google Scholar 

  150. Quesada-Gonzalez D, Merkoci A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63

    Article  CAS  PubMed  Google Scholar 

  151. Granger JH, Schlotter NE, Crawford AC, Porter MD (2016) Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem Soc Rev 45:3865–3882

    Article  CAS  PubMed  Google Scholar 

  152. Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM (2017) Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev 46:1272–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorgan Chem Front 3:41–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanlai Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, C., Kuang, H., Xu, L. (2019). Pathogen Immunoassay in Food. In: Food Immunoassay. Springer, Singapore. https://doi.org/10.1007/978-981-13-9034-0_8

Download citation

Publish with us

Policies and ethics