Skip to main content

Orientational Distribution of Free O–H Groups of Interfacial Water

  • Chapter
  • First Online:
Structures and Dynamics of Interfacial Water

Part of the book series: Springer Theses ((Springer Theses))

  • 550 Accesses

Abstract

In this chapter, I will discuss the work about the orientational distribution of the free O–H groups of interfacial water by using combined molecular dynamics (MD) simulations and sum-frequency generation (SFG) experiments. The average angle of the free O–H groups, relative to the surface normal, is found to be ~63°, substantially larger than previous estimates of 30°–40°. This discrepancy can be traced to erroneously assumed Gaussian/stepwise orientational distributions of free O–H groups. Instead, MD simulation and SFG measurement reveal a broad and exponentially decaying orientational distribution. The broad orientational distribution indicates the presence of the free O–H group pointing down to the bulk. I ascribe the origin of such free O–H groups to the presence of capillary waves on the water surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung Y, Marcus RA (2007) On the theory of organic catalysis “on water”. J Am Chem Soc 129:5492–5502

    Article  Google Scholar 

  2. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  ADS  Google Scholar 

  3. Narayan S, Muldoon J, Finn MG et al (2005) “On water”: unique reactivity of organic compounds in aqueous suspension. Angew Chem Int Ed 44:3275–3279

    Article  Google Scholar 

  4. Braunschweig B, Eissner S, Daum W (2008) Molecular structure of a mineral/water interface: effects of surface nanoroughness of α-Al2O3 (0001). J Phys Chem C 112:1751–1754

    Article  Google Scholar 

  5. Julin J, Shiraiwa M, Miles REH et al (2013) Mass accommodation of water: bridging the gap between molecular dynamics simulations and kinetic condensation models. J Phys Chem A 117:410–420

    Article  Google Scholar 

  6. Davies JF, Miles REH, Haddrell AE, Reid JP (2013) Influence of organic films on the evaporation and condensation of water in aerosol. Proc Natl Acad Sci USA 110:8807–8812

    Article  ADS  Google Scholar 

  7. McGuire JA, Shen YR (2006) Ultrafast vibrational dynamics at water interfaces. Science 313:1945–1948

    Article  ADS  Google Scholar 

  8. Stiopkin IV, Weeraman C, Pieniazek PA et al (2011) Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474:192–195

    Article  ADS  Google Scholar 

  9. Jubb AM, Hua W, Allen HC (2012) Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annu Rev Phys Chem 63:107–130

    Article  ADS  Google Scholar 

  10. Tian C-S, Shen YR (2009) Isotopic dilution study of the water/vapor interface by phase-sensitive sum-frequency vibrational spectroscopy. J Am Chem Soc 131:2790–2791

    Article  Google Scholar 

  11. Nihonyanagi S, Yamaguchi S, Tahara T (2009) Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J Chem Phys 130:204704

    Article  ADS  Google Scholar 

  12. Yamaguchi S (2015) Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. J Chem Phys 143:034202

    Article  ADS  Google Scholar 

  13. Scatena LF, Brown MG, Richmond GL (2001) Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292:908–912

    Article  ADS  Google Scholar 

  14. Moore FG, Richmond GL (2008) Integration or segregation: how do molecules behave at oil/water interfaces? Acc Chem Res 41:739–748

    Article  Google Scholar 

  15. Tian CS, Shen YR (2009) Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy. Proc Natl Acad Sci USA 106:15148–15153

    Article  ADS  Google Scholar 

  16. Vaécha R, Rick SW, Jungwirth P et al (2011) The orientation and charge of water at the hydrophobic oil droplet-water interface. J Am Chem Soc 133:10204–10210

    Article  Google Scholar 

  17. Feng R-R, Guo Y, Wang H-F (2014) Reorientation of the “free OH” group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy. J Chem Phys 141:18C507

    Article  Google Scholar 

  18. Wei X, Shen YR (2001) Motional effect in surface sum-frequency vibrational spectroscopy. Phys Rev Lett 86:4799–4802

    Article  ADS  Google Scholar 

  19. Gan W, Wu D, Zhang Z et al (2006) Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. J Chem Phys 124:114705

    Article  ADS  Google Scholar 

  20. Wei X, Miranda PB, Shen YR (2001) Surface vibrational spectroscopic study of surface melting of ice. Phys Rev Lett 86:1554–1557

    Article  ADS  Google Scholar 

  21. Wei X, Miranda P, Zhang C, Shen Y (2002) Sum-frequency spectroscopic studies of ice interfaces. Phys Rev B 66:085401

    Article  ADS  Google Scholar 

  22. Tang F, Ohto T, Hasegawa T et al (2018) Definition of free O–H groups of water at the air-water interface. J Chem Theory Comput 14:357–364

    Article  Google Scholar 

  23. Hasegawa T, Tanimura Y (2011) A polarizable water model for intramolecular and intermolecular vibrational spectroscopies. J Phys Chem B 115:5545–5553

    Article  Google Scholar 

  24. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  ADS  Google Scholar 

  25. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505

    Article  ADS  Google Scholar 

  26. Horn HW, Swope WC, Pitera JW et al (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678

    Article  ADS  Google Scholar 

  27. Abascal JLF, Sanz E, García Fernández R, Vega C (2005) A potential model for the study of ices and amorphous water: TIP4P/Ice. J Chem Phys 122:234511

    Article  ADS  Google Scholar 

  28. Berendsen HJC, JPM Postma, WF van Gunsteren, J Hermans (1981) Intermolecular forces. In: Pullman B (ed) Proceedings of the fourteenth Jerusalem symposium on quantum chemistry and biochemistry held in Jerusalem, Israel, 13–16 Apr 1981

    Google Scholar 

  29. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  30. Wu Y, Tepper HL, Voth GA (2006) Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys 124:024503

    Article  ADS  Google Scholar 

  31. Babin V, Leforestier C, Paesani F (2013) Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J Chem Theory Comput 9:5395–5403

    Article  Google Scholar 

  32. Babin V, Medders GR, Paesani F (2014) Development of a “first principles” water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters. J Chem Theory Comput 10:1599–1607

    Article  Google Scholar 

  33. Medders GR, Babin V, Paesani F (2014) Development of a “first-principles” water potential with flexible monomers. III. Liquid phase properties. J Chem Theory Comput 10:2906–2910

    Article  Google Scholar 

  34. Schaefer J, Backus EHG, Nagata Y, Bonn M (2016) Both inter- and intramolecular coupling of O–H groups determine the vibrational response of the water/air interface. J Phys Chem Lett 7:4591–4595

    Article  Google Scholar 

  35. The CP2K developer groups http://www.cp2k.org. In: http://www.cp2k.org

  36. Dünweg B, Kremer K (1993) Molecular dynamics simulation of a polymer chain in solution. J Chem Phys 99:6983–6997

    Article  ADS  Google Scholar 

  37. Sedlmeier F, Horinek D, Netz RR (2009) Nanoroughness, intrinsic density profile, and rigidity of the air-water interface. Phys Rev Lett 103:136102

    Article  ADS  Google Scholar 

  38. Schmitz F, Virnau P, Binder K (2013) Determination of the origin and magnitude of logarithmic finite-size effects on interfacial tension: role of interfacial fluctuations and domain breathing. Phys Rev Lett 112:125701

    Article  ADS  Google Scholar 

  39. Sun S, Tang F, Imoto S et al (2018) Orientational distribution of free O–H groups of interfacial water is exponential. Phys Rev Lett 121:246101

    Article  ADS  Google Scholar 

  40. Du Q, Freysz E, Shen YR (1994) Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264:826–828

    Article  ADS  Google Scholar 

  41. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  ADS  Google Scholar 

  42. Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483

    Article  ADS  Google Scholar 

  43. Neese F (2012) The ORCA program system. Wiley Interdisc Rev: Comput Mol Sci 2:73–78

    Google Scholar 

  44. Hickey AL, Rowley CN (2014) Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities. J Phys Chem A 118:3678–3687

    Article  Google Scholar 

  45. Li H, Jensen JH (2002) Partial Hessian vibrational analysis: the localization of the molecular vibrational energy and entropy. Theoret Chem Acc 107:211–219

    Article  Google Scholar 

  46. Wei X, Hong S-C, Zhuang X et al (2000) Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface. Phys Rev E 62:5160–5172

    Article  ADS  Google Scholar 

  47. Du Q, Superfine R, Freysz E, Shen YR (1993) Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett 70:2313–2316

    Article  ADS  Google Scholar 

  48. Murphy WF (1978) The rovibrational Raman spectrum of water vapour v1 and v3. Mol Phys 36:727–732

    Article  ADS  Google Scholar 

  49. Avila G, Fernández JM, Tejeda G, Montero S (2004) The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions. J Mol Spectrosc 228:38–65

    Article  ADS  Google Scholar 

  50. Ahmed M, Namboodiri V, Mathi P et al (2016) How osmolyte and denaturant affect water at the air-water interface and in bulk: a Heterodyne-Detected Vibrational Sum Frequency Generation (HD-VSFG) and hydration shell spectroscopic study. J Phys Chem C 120:10252–10260

    Article  Google Scholar 

  51. Mondal JA (2016) Effect of trimethylamine N-oxide on interfacial electrostatics at phospholipid monolayer–water interfaces and its relevance to cardiovascular disease. J Phys Chem Lett 7:1704–1708

    Article  Google Scholar 

  52. Fiore A, Venkateshwaran V, Garde S (2013) Trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) at hydrophobic interfaces: insights from molecular dynamics simulations. Langmuir 29:8017–8024

    Article  Google Scholar 

  53. Ohto T, Hunger J, Backus EHG et al (2017) Trimethylamin-N-oxide: hydration structure, surface activity, and biological function viewed by vibrational spectroscopies and molecular dynamics simulations. Phys Chem Chem Phys 19:6909–6920

    Article  Google Scholar 

  54. Ohto T, Backus EHG, Mizukami W et al (2016) Unveiling the amphiphilic nature of TMAO by vibrational sum frequency generation spectroscopy. J Phys Chem C 120:17435

    Article  Google Scholar 

  55. Paul S, Patey GN (2007) Structure and interaction in aqueous urea—trimethylamine-N-oxide solutions. J Am Chem Soc 129:4476–4482

    Article  Google Scholar 

  56. Xie WJ, Cha S, Ohto T et al (2018) Large hydrogen-bond mismatch between TMAO and Urea Promotes Their Hydrophobic Association. Chem 4:1–13

    Article  Google Scholar 

  57. Wang J, Lee SH, Chen Z (2008) Quantifying the ordering of adsorbed proteins in situ. J Phys Chem B 112:2281–2290

    Article  Google Scholar 

  58. Ham S, Kim JH, Lee H, Cho M (2003) Correlation between electronic and molecular structure distortions and vibrational properties. II. Amide I modes of NMA-nD2O complexes. J Chem Phys 118:3491–3498

    Article  ADS  Google Scholar 

  59. Simonelli D, Shultz MJ (2000) Sum frequency generation orientation analysis of molecular ammonia on the surface of concentrated solutions. J Chem Phys 112:6804–6816

    Article  ADS  Google Scholar 

  60. Takeshita N, Okuno M, Ishibashi TA (2017) Molecular conformation of DPPC phospholipid Langmuir and Langmuir-Blodgett monolayers studied by heterodyne-detected vibrational sum frequency generation spectroscopy. Phys Chem Chem Phys 19:2060–2066

    Article  Google Scholar 

  61. Ma G, Allen HC (2006) DPPC Langmuir monolayer at the air–water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy. Langmuir 22:5341–5349

    Article  Google Scholar 

  62. Peñalber-Johnstone C, Adamová G, Plechkova NV et al (2018) Sum frequency generation spectroscopy of tetraalkylphosphonium ionic liquids at the air–liquid interface. J Chem Phys 148:193841

    Article  ADS  Google Scholar 

  63. Aliaga C, Baldelli S (2007) Sum frequency generation spectroscopy of dicyanamide based room-temperature ionic liquids. Orientation of the cation and the anion at the gas–liquid interface. J Phys Chem B 111:9733–9740

    Article  Google Scholar 

  64. Iwahashi T, Miyamae T, Kanai K et al (2008) Anion configuration at the air/liquid interface of ionic liquid [bmim] OTf studied by sum-frequency generation spectroscopy. J Phys Chem B 112:11936–11941

    Article  Google Scholar 

  65. Jeon Y, Sung J, Bu W et al (2008) Interfacial restructuring of ionic liquids determined by sum-frequency generation spectroscopy and X-ray reflectivity. J Phys Chem C 112:19649–19654

    Article  Google Scholar 

  66. Israelachvili JN (2011) Intermolecular and surface forces. Academic Press

    Google Scholar 

  67. Willard AP, Chandler D (2010) Instantaneous liquid interfaces. J Phys Chem B 114:1954–1958

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujie Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, F. (2019). Orientational Distribution of Free O–H Groups of Interfacial Water. In: Structures and Dynamics of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8965-8_4

Download citation

Publish with us

Policies and ethics