Skip to main content

The Clinical Utility of Epigenetics: A Case Study

  • Chapter
  • First Online:
Clinical Epigenetics

Abstract

In a clinical pathology setting, epigenetic testing is rare and underutilised. In this chapter, we describe a patient with early-onset colorectal cancer caused by a constitutional epimutation. This case study emphasises the importance of epigenetic testing when standard genetic testing has failed to identify a cause for disease predisposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Refer to eviQ guidelines (https://www.eviq.org.au).

  2. 2.

    Refer to eviQ guidelines for a flow chart describing IHC-guided genetic testing (https://www.eviq.org.au/additional-clinical-information-cancer-genetics/3185-ihc-guided-genetic-testing).

  3. 3.

    Constitutional epimutations of MLH1, but not PMS2, have been described in Lynch syndrome. Constitutional epimutations of PMS2 are theoretically possible but may not occur or may not have been detected due to the presence of multiple PMS2 pseudogenes that make methylation analysis of this gene technically challenging.

References

  • Biancalana V et al (2015) EMQN best practice guidelines for the molecular genetic testing and reporting of fragile X syndrome and other fragile X-associated disorders. Eur J Hum Genet 23(4):417–425

    Article  CAS  Google Scholar 

  • Calandra P et al (2016) Allele-specific DNA hypomethylation characterises FSHD1 and FSHD2. J Med Genet 53(5):348–355

    Article  CAS  Google Scholar 

  • Evans DGR et al (2018) A dominantly inherited 5’ UTR variant causing methylation-associated silencing of BRCA1 as a cause of breast and ovarian cancer. Am J Hum Genet 103(2):213–220

    Article  CAS  Google Scholar 

  • Goel A et al (2011) De novo constitutional MLH1 epimutations confer early-onset colorectal cancer in two new sporadic Lynch syndrome cases, with derivation of the epimutation on the paternal allele in one. Int J Cancer 128(4):869–878

    Article  CAS  Google Scholar 

  • Gordon CT et al (2017) De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat Genet 49(2):249–255

    Article  CAS  Google Scholar 

  • Hansmann T et al (2012) Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Hum Mol Genet 21(21):4669–4679

    Article  CAS  Google Scholar 

  • Hesson LB et al (2010) Epimutations and cancer predisposition: importance and mechanisms. Curr Opin Genet Dev 20(3):290–298

    Article  CAS  Google Scholar 

  • Hesson LB et al (2015) Lynch syndrome associated with two MLH1 promoter variants and allelic imbalance of MLH1 expression. Hum Mutat 36(6):622–630

    Article  CAS  Google Scholar 

  • Hitchins MP (2015) Constitutional epimutation as a mechanism for cancer causality and heritability? Nat Rev Cancer 15(10):625–634

    Article  CAS  Google Scholar 

  • Hitchins MP, Lynch HT (2014) Dawning of the epigenetic era in hereditary cancer. Clin Genet 85(5):413–416

    Article  CAS  Google Scholar 

  • Hitchins MP et al (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356(7):697–705

    Article  CAS  Google Scholar 

  • Hitchins MP et al (2011) Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5’UTR. Cancer Cell 20(2):200–213

    Article  CAS  Google Scholar 

  • Holliday R (1985) The Genetical Society abstracts of papers presented at the Two Hundred and Second Meeting of the Society on the 1st, 2nd and 3rd April 1985 at the University of Edinburgh. Heredity 55:277–287

    Article  Google Scholar 

  • Hyland PL et al (2014) Constitutional promoter methylation and risk of familial melanoma. Epigenetics 9(5):685–692

    Article  CAS  Google Scholar 

  • Jeggo PA, Holliday R (1986) Azacytidine-induced reactivation of a DNA repair gene in Chinese hamster ovary cells. Mol Cell Biol 6(8):2944–2949

    Article  CAS  Google Scholar 

  • Kwok CT, Hitchins MP (2015) Allele quantification pyrosequencing(R) at designated SNP sites to detect allelic expression imbalance and loss-of-heterozygosity. Methods Mol Biol 1315:153–171

    Article  Google Scholar 

  • Kwok CT et al (2014) The MLH1 c.-27C>A and c.85G>T variants are linked to dominantly inherited MLH1 epimutation and are borne on a European ancestral haplotype. Eur J Hum Genet 22(5):617–624

    Article  CAS  Google Scholar 

  • Ligtenberg MJ et al (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3’ exons of TACSTD1. Nat Genet 41(1):112–117

    Article  CAS  Google Scholar 

  • Liu Q et al (2016) Understanding the pathogenicity of noncoding mismatch repair gene promoter variants in Lynch syndrome. Hum Mutat 37(5):417–426

    Article  Google Scholar 

  • Morak M et al (2011) Biallelic MLH1 SNP cDNA expression or constitutional promoter methylation can hide genomic rearrangements causing Lynch syndrome. J Med Genet 48(8):513–519

    Article  CAS  Google Scholar 

  • Oberle I et al (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252(5009):1097–1102

    Article  CAS  Google Scholar 

  • Pineda M et al (2012) MLH1 methylation screening is effective in identifying epimutation carriers. Eur J Hum Genet 20(12):1256–1264

    Article  CAS  Google Scholar 

  • Plenge RM et al (1997) A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet 17(3):353–356

    Article  CAS  Google Scholar 

  • Pugacheva EM et al (2005) Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation. Hum Mol Genet 14(7):953–965

    Article  CAS  Google Scholar 

  • Raval A et al (2007) Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129(5):879–890

    Article  CAS  Google Scholar 

  • Schofield L et al (2014) Population-based screening for Lynch syndrome in Western Australia. Int J Cancer 135(5):1085–1091

    Article  CAS  Google Scholar 

  • Shaw ND et al (2017) SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nat Genet 49(2):238–248

    Article  CAS  Google Scholar 

  • Sloane MA et al (2015) Mosaic epigenetic inheritance as a cause of early-onset colorectal cancer. JAMA Oncol 1(7):953–957

    Article  Google Scholar 

  • Sloane MA et al (2016) Defining the criteria for identifying constitutional epimutations. Clin Epigenetics 8:39

    Article  Google Scholar 

  • Steinke V et al (2014) Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: a comprehensive analysis of 3,671 families. Int J Cancer 135(1):69–77

    Article  CAS  Google Scholar 

  • Suter CM et al (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36(5):497–501

    Article  CAS  Google Scholar 

  • Thompson BA et al (2014) Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 46(2):107–115

    Article  CAS  Google Scholar 

  • Tomkins DJ et al (2002) Lack of expression of XIST from a small ring X chromosome containing the XIST locus in a girl with short stature, facial dysmorphism and developmental delay. Eur J Hum Genet 10(1):44–51

    Article  CAS  Google Scholar 

  • Tufarelli C et al (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34(2):157–165

    Article  CAS  Google Scholar 

  • Tutlewska K et al (2013) Germline deletions in the EPCAM gene as a cause of Lynch syndrome – literature review. Hered Cancer Clin Pract 11(1):9

    Article  Google Scholar 

  • van den Boogaard ML et al (2016) Mutations in DNMT3B modify epigenetic repression of the D4Z4 repeat and the penetrance of facioscapulohumeral dystrophy. Am J Hum Genet 98(5):1020–1029

    Article  Google Scholar 

  • Venkatachalam R et al (2010) Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology 139(6):2221–2224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luke B. Hesson or Antonia L. Pritchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hesson, L.B., Sloane, M.A., Pritchard, A.L. (2019). The Clinical Utility of Epigenetics: A Case Study. In: Hesson, L., Pritchard, A. (eds) Clinical Epigenetics. Springer, Singapore. https://doi.org/10.1007/978-981-13-8958-0_11

Download citation

Publish with us

Policies and ethics