Skip to main content

Toward an Automatic Classification of SEM Images of Nanomaterials via a Deep Learning Approach

  • Chapter
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 151))

Abstract

Nanofibrous materials produced by electrospinning process may exhibit characteristic localized defects and anomalies (i.e., beads, speck of dust) that make the nanostructure a network of nonhomogeneous nanofibers, unsuitable for industrial production at large scale of the nanoproducts.  Therefore, monitoring and controlling the quality of nanomaterials production has become increasingly important and intelligent anomalies detection systems have been emerging. In this study, we propose an innovative framework based on machine (deep) learning for automatic anomaly detection.  Specifically, a deep convolutional neural network (CNN) is proposed to automatically classify scanning electron microscope (SEM) images of homogeneous (HNF) and nonhomogeneous nanofibers (NHNF), interpreted as two different categories.  The proposed approach has been validated on experimental SEM images acquired through SEM images analyzer on polyvinylacetate (PVAc) nanofibers produced by electrospinning process. Experimental results showed that the designed deep CNN achieved an accuracy rate up to 80% and average precision, recall, F_score of, 78.5, 79, and 78.5%, respectively. These promising results encourage the use of this effective technique in industrial production.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Article  Google Scholar 

  2. Agarwal, S., Wendorff, J.H., Greiner, A.: Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)

    Article  Google Scholar 

  3. Miao, J., Miyauchi, M., Simmons, T.J., Dordick, J.S., Linhardt, R.J.: Electrospinning of nanomaterials and applications in electronic components and devices. J. Nanosci. Nanotechnol. 10(9), 5507–5519 (2010)

    Article  Google Scholar 

  4. Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)

    Article  Google Scholar 

  5. Deitzel, J.M., Kleinmeyer, J., Harris, D., Tan, N.B.: The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1), 261–272 (2001)

    Article  Google Scholar 

  6. Carrera, D., Manganini, F., Boracchi, G., Lanzarone, E.: Defect detection in sem images of nanofibrous materials. IEEE Trans. Ind. Inform. 13(2), 551–561 (2017)

    Article  Google Scholar 

  7. Boracchi, G., Carrera, D., Wohlberg, B.: Novelty detection in images by sparse representations. In: 2014 IEEE Symposium on Intelligent Embedded Systems (IES), pp. 47–54. IEEE (2014)

    Google Scholar 

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  9. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  10. Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A., Morabito, F.C.: A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of eeg recordings. Neurocomputing 323, 96–107 (2019)

    Article  Google Scholar 

  11. Gasparini, S., Campolo, M., Ieracitano, C., Mammone, N., Ferlazzo, E., Sueri, C., Tripodi, G.G., Aguglia, U., Morabito, F.C.: Information theoretic-based interpretation of a deep neural network approach in diagnosing psychogenic non-epileptic seizures. Entropy 20(2), 43 (2018)

    Article  Google Scholar 

  12. Ieracitano, C., Adeel, A., Gogate, M., Dashtipour, K., Morabito, F.C., Larijani, H., Raza, A., Hussain, A.: Statistical analysis driven optimized deep learning system for intrusion detection. In: International Conference on Brain Inspired Cognitive Systems. pp. 759–769. Springer (2018)

    Google Scholar 

  13. Morabito, C.F.: Independent component analysis and feature extraction techniques for ndt data. Mater. Eval. 58(1), 85–92 (2000)

    Google Scholar 

  14. Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by cnn-based self-similarity. Sensors 18(1), 209 (2018)

    Article  Google Scholar 

  15. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)

    Article  Google Scholar 

  16. Lasprilla-Botero, J., Álvarez-Láinez, M., Lagaron, J.: The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers. Mater. Today Commun. 14, 1–9 (2018)

    Article  Google Scholar 

  17. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10). pp. 807–814 (2010)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  19. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  20. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Neural networks: Tricks of the trade, pp. 437–478. Springer (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Ieracitano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ieracitano, C., Pantó, F., Mammone, N., Paviglianiti, A., Frontera, P., Morabito, F.C. (2020). Toward an Automatic Classification of SEM Images of Nanomaterials via a Deep Learning Approach. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_7

Download citation

Publish with us

Policies and ethics