An Exercise Mimetic That Targets Nitroso-Redox Balance as a Therapeutic for Heart Disease

  • Vikram Shettigar
  • Mark T. ZioloEmail author


Numerous investigations performed over the last few decades clearly indicate that exercise leads to adaptations of the heart resulting in improved function and protection against various cardiovascular diseases (CVD) and is a powerful rehabilitation tool for cardiovascular patients. However, attaining the required intensity of exercise for these cardiac adaptations may not be possible due to numerous constraints such as physical inability, mental unwillingness, stress, etc. Thus, an exercise mimetic drug (i.e., a drug that can mimic the effects of exercise at the cellular level) can be a novel therapeutic approach for cardiovascular patients. An increase in reactive oxygen species (ROS), known as oxidative stress, in the cardiomyocyte and vasculature initiates adverse signaling mechanisms causing numerous detrimental effects. This oxidative stress is a key contributor to the development of CVD. Unfortunately, antioxidant therapy has shown little clinical benefit. In addition to the increased ROS, there is also a concurrent reduction in nitric oxide (NO) levels in CVD. Studies have shown that NO signaling has a protective effect in the cardiomyocyte and vasculature. Contrary to CVD, exercise decreases ROS levels (i.e., antioxidant effect) and increases NO production. Recent studies have shown that ROS and NO do not function independently but work in tandem, known as the nitroso-redox balance, and help clarify the failure of antioxidant therapies. The nitroso-redox balance is critical to maintain a healthy cardiac state. In CVD, there is a detrimental shift in the nitroso-redox balance, while exercise results in a positive shift of this balance. A possible exercise mimetic may be a drug that restores this nitroso-redox balance. We have developed such a drug (EMEPO) that can simultaneously decrease ROS levels and increase NO levels. Studies at the cellular level and pre-clinical models of CVD have demonstrated that EMEPO, by restoring the nitroso-redox balance, improved cardiomyocyte and heart function. Thus, mimicking exercise effects on the heart via EMEPO may be a paradigm-shifting therapeutic strategy.


Exercise Nitric oxide Reactive oxygen species Excitation-contraction coupling 


  1. 1.
    Inamdar AA, Inamdar AC (2016) Heart failure: diagnosis, management and utilization. J Clin Med 5(7):62. Scholar
  2. 2.
    Benjamin EJ et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Udelson JE, Stevenson LW (2016) The future of heart failure diagnosis, therapy, and management. Circulation 133:2671–2686PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Traynham CJ et al (2012) Diesterified nitrone rescues nitroso-redox levels and increases myocyte contraction via increased SR Ca(2+) handling. PLoS One 7:e52005PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Li S, Laher I (2015) Exercise pills: at the starting line. Trends Pharmacol Sci 36:906–917PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Morris CK, Froelicher VF (1993) Cardiovascular benefits of improved exercise capacity. Sports Med 16:225–236PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Guerrieri D, Moon HY, van Praag H (2017) Exercise in a pill: the latest on exercise-mimetics. Brain Plast 2:153–169PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Choi HE, Kim C, Sohn Y (2017) Cardiac rehabilitation exercise training for high-risk cardiac patients. Ann Rehabil Med 41:650–658PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: the evidence. CMAJ 174:801–809PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 2:1143–1211PubMedPubMedCentralGoogle Scholar
  11. 11.
    Booth FW, Laye MJ, Roberts MD (2011) Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol (1985) 111:1497–1504CrossRefGoogle Scholar
  12. 12.
    Agarwal SK (2012) Cardiovascular benefits of exercise. Int J Gen Med 5:541–545PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Schuler G, Adams V, Goto Y (2013) Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J 34:1790–1799PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Evans DL (1985) Cardiovascular adaptations to exercise and training. Vet Clin North Am Equine Pract 1:513–531PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hellsten Y, Nyberg M (2015) Cardiovascular adaptations to exercise training. Compr Physiol 6:1–32PubMedPubMedCentralGoogle Scholar
  16. 16.
    Roof SR et al (2015) Obligatory role of neuronal nitric oxide synthase in the heart’s antioxidant adaptation with exercise. J Mol Cell Cardiol 81:54–61PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kemi OJ et al (2005) Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 67:161–172PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Le TT et al (2017) Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance. J Cardiovasc Magn Reson 19:7PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bassett DR, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8:143–164PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Norman HS et al (2011) Decreased cardiac functional reserve in heart failure with preserved systolic function. J Card Fail 17:301–308PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    La Gerche A, Heidbuchel H (2014) Can intensive exercise harm the heart? You can get too much of a good thing. Circulation 130:992–1002PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Heidbüchel H et al (2003) High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J 24:1473–1480PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    La Gerche A et al (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33:998–1006PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Benito B et al (2011) Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Myers J (2003) Cardiology patient pages. Exercise and cardiovascular health. Circulation 107:e2–e5PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wisløff U et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ergen N et al (2005) The effects of aerobic exercise on skeletal muscle metabolism, morphology and in situ endurance in diabetic rats. J Sports Sci Med 4:472–481PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kojda G, Hambrecht R (2005) Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc Res 67:187–197PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ritland S (1988) Exercise and liver disease. Sports Med 6:121–126PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Booth FW (1989) Application of molecular biology in exercise physiology. Exerc Sport Sci Rev 17:1–27PubMedPubMedCentralGoogle Scholar
  32. 32.
    Golbidi S, Laher I (2012) Exercise and the cardiovascular system. Cardiol Res Pract 2012:210852PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation 122:1221–1238PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Booher MA, Smith BW (2003) Physiological effects of exercise on the cardiopulmonary system. Clin Sports Med 22:1–21PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Stults-Kolehmainen MA, Sinha R (2014) The effects of stress on physical activity and exercise. Sports Med 44:81–121PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Padilla J et al (2011) Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology (Bethesda) 26:132–145Google Scholar
  37. 37.
    Niebauer J, Cooke JP (1996) Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 28:1652–1660PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Huber-Abel FA, Gerber M, Hoppeler H, Baum O (2012) Exercise-induced angiogenesis correlates with the up-regulated expression of neuronal nitric oxide synthase (nNOS) in human skeletal muscle. Eur J Appl Physiol 112:155–162PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Gustafsson T, Kraus WE (2001) Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle, and their modification in muscle pathology. Front Biosci 6:D75–D89PubMedPubMedCentralGoogle Scholar
  40. 40.
    Bellafiore M et al (2013) The involvement of MMP-2 and MMP-9 in heart exercise-related angiogenesis. J Transl Med 11:283PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nagy JA, Dvorak AM, Dvorak HF (2003) VEGF-A(164/165) and PlGF: roles in angiogenesis and arteriogenesis. Trends Cardiovasc Med 13:169–175PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Schirmer SH et al (2015) Exercise promotes collateral artery growth mediated by monocytic nitric oxide. Arterioscler Thromb Vasc Biol 35:1862–1871PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Cai WJ et al (2009) Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol Cell Biochem 322:161–169PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ramírez-Vélez R, Bustamante J, Czerniczyniec A, Aguilar de Plata AC, Lores-Arnaiz S (2013) Effect of exercise training on eNOS expression, NO production and oxygen metabolism in human placenta. PLoS One 8:e80225PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837, 837a–837dPubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Fleissner F, Thum T (2011) Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal 15:933–948PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Maiorana A, O'Driscoll G, Taylor R, Green D (2003) Exercise and the nitric oxide vasodilator system. Sports Med 33:1013–1035PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wang J, Wolin MS, Hintze TH (1993) Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 73:829–838PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Seidel M, Billert H, Kurpisz M (2006) Regulation of eNOS expression in HCAEC cell line treated with opioids and proinflammatory cytokines. Kardiol Pol 64:153–158; discussion 159–160Google Scholar
  50. 50.
    Chen CA et al (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Qian J, Fulton D (2013) Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 4:347PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Suvorava T, Lauer N, Kojda G (2004) Physical inactivity causes endothelial dysfunction in healthy young mice. J Am Coll Cardiol 44:1320–1327PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Li H, Horke S, Förstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237:208–219CrossRefGoogle Scholar
  54. 54.
    Fan LM et al (2014) Endothelial cell-specific reactive oxygen species production increases susceptibility to aortic dissection. Circulation 129:2661–2672PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Higashi Y, Noma K, Yoshizumi M, Kihara Y (2009) Endothelial function and oxidative stress in cardiovascular diseases. Circ J 73:411–418PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278:22546–22554PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Menazza S et al (2015) Molecular signature of nitroso-redox balance in idiopathic dilated cardiomyopathies. J Am Heart Assoc 4:e002251PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hare JM (2004) Nitroso-redox balance in the cardiovascular system. N Engl J Med 351:2112–2114PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sipinková I, Hahn G, Meyer M, Tadlánek M, Hájek J (1997) Effect of respiration and posture on heart rate variability. Physiol Res 46:173–179PubMedPubMedCentralGoogle Scholar
  60. 60.
    Lavie CJ, Messerli FH (1986) Cardiovascular adaptation to obesity and hypertension. Chest 90:275–279PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kemi OJ, Ellingsen O, Smith GL, Wisloff U (2008) Exercise-induced changes in calcium handling in left ventricular cardiomyocytes. Front Biosci 13:356–368PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Boström P et al (2010) C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143:1072–1083PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Powers SK, Sollanek KJ, Wiggs MP, Demirel HA, Smuder AJ (2014) Exercise-induced improvements in myocardial antioxidant capacity: the antioxidant players and cardioprotection. Free Radic Res 48:43–51PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rissoli RZ, Vasconcelos EDS, Rantin FT, Kalinin AL (2017) Effects of exercise training on excitation-contraction coupling, calcium dynamics and protein expression in the heart of the Neotropical fish Brycon amazonicus. Comp Biochem Physiol A Mol Integr Physiol 214:85–93PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bouchard RA, Clark RB, Giles WR (1995) Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes. Action potential voltage-clamp measurements. Circ Res 76:790–801PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Koivumäki JT, Korhonen T, Takalo J, Weckström M, Tavi P (2009) Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling. BMC Physiol 9:16PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lipskaia L et al (2014) Expression of sarco (endo) plasmic reticulum calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis. Biochim Biophys Acta 1843:2705–2718PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mattiazzi A, Mundiña-Weilenmann C, Vittone L, Said M, Kranias EG (2006) The importance of the Thr17 residue of phospholamban as a phosphorylation site under physiological and pathological conditions. Braz J Med Biol Res 39:563–572PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gustavsson M et al (2013) Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. Proc Natl Acad Sci U S A 110:17338–17343PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ottolia M, Torres N, Bridge JH, Philipson KD, Goldhaber JI (2013) Na/Ca exchange and contraction of the heart. J Mol Cell Cardiol 61:28–33PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gordan R, Gwathmey JK, Xie LH (2015) Autonomic and endocrine control of cardiovascular function. World J Cardiol 7:204–214PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Madamanchi A (2007) Beta-adrenergic receptor signaling in cardiac function and heart failure. Mcgill J Med 10:99–104PubMedPubMedCentralGoogle Scholar
  74. 74.
    White DW, Raven PB (2014) Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol 592:2491–2500PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Bers DM, Ziolo MT (2001) When is cAMP not cAMP? Effects of compartmentalization. Circ Res 89:373–375PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Rao V et al (2014) PKA phosphorylation of cardiac troponin I modulates activation and relaxation kinetics of ventricular myofibrils. Biophys J 107:1196–1204PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yang Q et al (2001) PKA-dependent phosphorylation of cardiac myosin binding protein C in transgenic mice. Cardiovasc Res 51:80–88PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Salhi HE et al (2016) Myofilament calcium sensitivity: mechanistic insight into TnI Ser-23/24 and Ser-150 phosphorylation integration. Front Physiol 7:567PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    de Lucia C, Eguchi A, Koch WJ (2018) New insights in cardiac β-Adrenergic signaling during heart failure and aging. Front Pharmacol 9:904PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Leosco D et al (2013) Effects of exercise training on cardiovascular adrenergic system. Front Physiol 4:348PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35:719–729PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45:625–632PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zhang YH, Jin CZ, Jang JH, Wang Y (2014) Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J Physiol 592:3189–3200PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wang H et al (2010) Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation. J Physiol 588:2905–2917PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang H et al (2008) Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban. Am J Physiol Cell Physiol 294:C1566–C1575PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Khan SA et al (2003) Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases. Circ Res 92:1322–1329PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Roof SR, Biesiadecki BJ, Davis JP, Janssen PM, Ziolo MT (2012) Effects of increased systolic Ca(2+) and β-adrenergic stimulation on Ca(2+) transient decline in NOS1 knockout cardiac myocytes. Nitric Oxide 27:242–247PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wang H, Kohr MJ, Traynham CJ, Ziolo MT (2009) Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes. J Mol Cell Cardiol 47:304–314PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wang H, Kohr MJ, Wheeler DG, Ziolo MT (2008) Endothelial nitric oxide synthase decreases beta-adrenergic responsiveness via inhibition of the L-type Ca2+ current. Am J Physiol Heart Circ Physiol 294:H1473–H1480PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Rakhit A et al (2001) In vivo electrophysiologic studies in endothelial nitric oxide synthase (eNOS)-deficient mice. J Cardiovasc Electrophysiol 12:1295–1301PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Zima AV et al (2014) Ca handling during excitation-contraction coupling in heart failure. Pflugers Arch 466:1129–1137PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ (2010) Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther 10:29–41PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Shareef MA, Anwer LA, Poizat C (2014) Cardiac SERCA2A/B: therapeutic targets for heart failure. Eur J Pharmacol 724:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Hayward C, Banner NR, Morley-Smith A, Lyon AR, Harding SE (2015) The current and future landscape of SERCA gene therapy for heart failure: a clinical perspective. Hum Gene Ther 26:293–304PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Hulot JS, Ishikawa K, Hajjar RJ (2016) Gene therapy for the treatment of heart failure: promise postponed. Eur Heart J 37:1651–1658PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ziolo MT, Martin JL, Bossuyt J, Bers DM, Pogwizd SM (2005) Adenoviral gene transfer of mutant phospholamban rescues contractile dysfunction in failing rabbit myocytes with relatively preserved SERCA function. Circ Res 96:815–817PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Lee A, Oh JG, Gorski PA, Hajjar RJ, Kho C (2016) Post-translational modifications in heart failure: small changes, big impact. Heart Lung Circ 25:319–324PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na(+)/Ca(2+) exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009–1019PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Triposkiadis F et al (2009) The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–1762PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Koch WJ, Lefkowitz RJ, Rockman HA (2000) Functional consequences of altering myocardial adrenergic receptor signaling. Annu Rev Physiol 62:237–260PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Costa VM et al (2011) Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. Curr Med Chem 18:2272–2314PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Moris D et al (2017) The role of reactive oxygen species in myocardial redox signaling and regulation. Ann Transl Med 5:324PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:H2181–H2190PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ziolo MT, Houser SR (2014) Abnormal Ca(2+) cycling in failing ventricular myocytes: role of NOS1-mediated nitroso-redox balance. Antioxid Redox Signal 21:2044–2059PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Pellegrino D (2016) Antioxidants and cardiovascular risk factors. Diseases 4(1):11. Scholar
  107. 107.
    Panth N, Paudel KR, Parajuli K (2016) Reactive oxygen species: a key hallmark of cardiovascular disease. Adv Med 2016:9152732PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Mangge H, Becker K, Fuchs D, Gostner JM (2014) Antioxidants, inflammation and cardiovascular disease. World J Cardiol 6:462–477PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hafstad AD, Nabeebaccus AA, Shah AM (2013) Novel aspects of ROS signalling in heart failure. Basic Res Cardiol 108:359PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Hamid T et al (2011) Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res 89:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941CrossRefGoogle Scholar
  112. 112.
    Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71:549–574PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Takano H et al (2003) Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 5:789–794PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Damy T et al (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363:1365–1367PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Damy T et al (2003) Up-regulation of cardiac nitric oxide synthase 1-derived nitric oxide after myocardial infarction in senescent rats. FASEB J 17:1934–1936PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Pshennikova MG, Khaspekov GL, Tatarenko AO, Malyshev IIu, Bibilashvili RSh (1999) [Adaptation to physical exertion increases expression of Ca-ATPase genes in heart muscle sarcoplasmatic reticulum]. Biull Eksp Biol Med 128:24–28Google Scholar
  117. 117.
    Kemi OJ, Ceci M, Condorelli G, Smith GL, Wisloff U (2008) Myocardial sarcoplasmic reticulum Ca2+ ATPase function is increased by aerobic interval training. Eur J Cardiovasc Prev Rehabil 15:145–148PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Ericsson M et al (2010) Exercise training before cardiac-specific Serca2 disruption attenuates the decline in cardiac function in mice. J Appl Physiol (1985) 109:1749–1755CrossRefGoogle Scholar
  119. 119.
    Roof SR et al (2013) Neuronal nitric oxide synthase is indispensable for the cardiac adaptive effects of exercise. Basic Res Cardiol 108:332PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kohr MJ, Traynham CJ, Roof SR, Davis JP, Ziolo MT (2010) cAMP-independent activation of protein kinase A by the peroxynitrite generator SIN-1 elicits positive inotropic effects in cardiomyocytes. J Mol Cell Cardiol 48:645–648PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Howden EJ et al (2018) Reversing the cardiac effects of sedentary aging in middle age-A randomized controlled trial: implications for heart failure prevention. Circulation 137:1549–1560PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (2000) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 101:336–344PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Hart G (2003) Exercise-induced cardiac hypertrophy: a substrate for sudden death in athletes? Exp Physiol 88:639–644PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Lee BA, Oh DJ (2016) The effects of long-term aerobic exercise on cardiac structure, stroke volume of the left ventricle, and cardiac output. J Exerc Rehabil 12:37–41PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Vinereanu D et al (2002) Left ventricular long-axis diastolic function is augmented in the hearts of endurance-trained compared with strength-trained athletes. Clin Sci (Lond) 103:249–257CrossRefGoogle Scholar
  126. 126.
    Baggish AL et al (2010) Differences in cardiac parameters among elite rowers and subelite rowers. Med Sci Sports Exerc 42:1215–1220PubMedPubMedCentralGoogle Scholar
  127. 127.
    Roof SR et al (2016) Insulin-like growth factor 1 prevents diastolic and systolic dysfunction associated with cardiomyopathy and preserves adrenergic sensitivity. Acta Physiol (Oxf) 216:421–434CrossRefGoogle Scholar
  128. 128.
    Weeks KL, Bernardo BC, Ooi JYY, Patterson NL, McMullen JR (2017) The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Adv Exp Med Biol 1000:187–210PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Samak M et al (2016) Cardiac hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res 22:75–79PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Diwan A, Dorn GW (2007) Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 22:56–64Google Scholar
  133. 133.
    Tang L, Wang H, Ziolo MT (2014) Targeting NOS as a therapeutic approach for heart failure. Pharmacol Ther 142:306–315PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    He F et al (2016) Redox mechanism of reactive oxygen species in exercise. Front Physiol 7:486PubMedPubMedCentralGoogle Scholar
  135. 135.
    Sallam N, Laher I (2016) Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxidative Med Cell Longev 2016:7239639CrossRefGoogle Scholar
  136. 136.
    Powers SK et al (1993) Rigorous exercise training increases superoxide dismutase activity in ventricular myocardium. Am J Phys 265:H2094–H2098Google Scholar
  137. 137.
    Khaper N, Kaur K, Li T, Farahmand F, Singal PK (2003) Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem 251:9–15PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Ziolo MT (2008) The fork in the nitric oxide road: cyclic GMP or nitrosylation? Nitric Oxide 18:153–156PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Sugamura K, Keaney JF (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51:978–992PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F (2001) Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids 36(Suppl):S53–S63PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Locigno EJ, Zweier JL, Villamena FA (2005) Nitric oxide release from the unimolecular decomposition of the superoxide radical anion adduct of cyclic nitrones in aqueous medium. Org Biomol Chem 3:3220–3227PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Tosaki A, Braquet P (1990) DMPO and reperfusion injury: arrhythmia, heart function, electron spin resonance, and nuclear magnetic resonance studies in isolated working guinea pig hearts. Am Heart J 120:819–830PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Dogan S, Ozlem Elpek G, Kirimlioglu Konuk E, Demir N, Aslan M (2012) Measurement of intracellular biomolecular oxidation in liver ischemia-reperfusion injury via immuno-spin trapping. Free Radic Biol Med 53:406–414PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Zuo L et al (2009) The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia-reperfusion injury through preservation of mitochondrial electron transport. J Pharmacol Exp Ther 329:515–523PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Taylor AL et al (2004) Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med 351:2049–2057PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physiology and Cell Biology, Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA

Personalised recommendations