Skip to main content

Bioremediation: Key to Restore the Productivity of Coastal Areas

  • Chapter
  • First Online:
Coastal Ecosystems of the Tropics - Adaptive Management

Abstract

Human activities particularly in the coastal areas resulted in pollution of different kinds. This seriously affected the entire coastal ecosystem. Most important pollutants are sediments, nutrients, heavy metals, and hydrocarbons. Removal of these pollutants and remediation of the contaminated/polluted soil and water assume greater significance to protect the environment and improve the productivity of the land. In this context, microbial assemblages, bioproducts, and higher plants are gaining increasing prominence for their potential in the remediation of contaminated coastal and marine ecosystems. The details of different methods used for bioremediation are discussed with case examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Adams GO, Tawari-Fufeyin P, Igelenyah E (2014) Bioremediation of spent oil contaminated soils using poultry litter. Res J Eng Appl Sci 3(2):124–130

    Google Scholar 

  • Adams GO, Tawari Fufeyin P, Okoro SE, Igelenyah E (2015) Bioremediation, biostimulation and Bioaugmention: a review. Int J Environ Bioremediation Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Agarry S, Latinwo GK (2015) Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation – bioaugmentation agents. J Ecol Eng 16:82–91

    Article  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego

    Google Scholar 

  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032. https://doi.org/10.1016/j.scitotenv.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  • Atagana HI (2008) Compost bioremediation of hydrocarboncontaminated soil inoculated with organic manure. Afr J Biotechnol 7(10):1516–1525

    Google Scholar 

  • Cadee GC, Boon JP, Fischer CV, Mensink BP, Tjabbes CC (1995) Why the whelk Buccinum undatum has become extinct in the Dutch Wadden Sea. Neth J Sea Res 34:337–339

    Article  Google Scholar 

  • Catania V, Santisi S, Signa G, Vizzini S, Mazzola A, Cappello S, Yakimov MM, Quatrini P (2015) Intrinsic bioremediation potential of a chronically polluted marine coastal area. Mar Pollut Bull 99:138–149

    Article  CAS  PubMed  Google Scholar 

  • Cheevaporn V, Menasveta P (2003) Water pollution and habitat degradation in the Gulf of Thailand. Mar Pollut Bull 47(1–6):43–51

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochemist 68:300–308

    Article  CAS  Google Scholar 

  • Chikere CB (2012) Culture-independent analysis of bacterial community composition during bioremediation of crude oil-polluted soil. Br Microbiol Res J 2(3):187–211

    Article  Google Scholar 

  • Chou LM (2009) The east Asian seas state of the marine environment report. UNEP EAS/RCU, Bangkok

    Google Scholar 

  • Creel L (2003) Ripple effects: population and coastal regions, Making the Link, Population reference Bureau. https://www.prb.org/wp-ontent/uploads/2003/09/RippleEffectsEng.pdf. Accessed on 16 July 2018

  • Dadrasnia A, Agamuthu P (2013) Potential biowastes to remediate diesel contaminated soils. Global NEST J 15(4):474–484

    Article  Google Scholar 

  • Davies AG (1978) Pollution studies with marine plankton; Part II. Heavy metals. Adv Mar Biol 15:381–508

    Article  CAS  Google Scholar 

  • Dell’ Anno F, Sansone C, Ianora A, Dell Anno A (2018) Biosurfactant-induced remediation of contaminated marine sediments: current knowledge and future perspectives. Mar Environ Res 137:196–205

    Article  CAS  Google Scholar 

  • Díaz-Ramírez I, Escalante-Espinosa E, Schroeder RA, FócilMonterrubio R, Hugo Ramírez-Saad (2013) Hydrocarbon biodegradation potential of native and exogenous microbial inocula in Mexican tropical soils. Biodegradation of hazardous and special products. https://doi.org/10.5772/56233

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyre LA (1990) Forestry and watershed management, mineral development planning and production national strategy consultation workshop, 25–27 April 1990, Kingston, Jamaica

    Google Scholar 

  • Frazer L (2000) Lipid lather removes metals. Environ Health Perspect 108:320–323

    Article  Google Scholar 

  • Gallego JR, Fernandez JR, Diez-Sanz F, Ordonez S, Sastre H, Gonzalez-Rojas E, Pelaez AI, Sanchez J (2007) Bioremediation for shoreline cleanup: in situ vs. on-site treatments. Environ Eng Sci 24:493–504. https://doi.org/10.1089/ees

    Article  CAS  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Goldstein RM, Mallory LM, Alexander M (1985) Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol 50:977–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez ED (1990) State of the marine environment in the east Asian seas region. UNEP Regional Seas Reports and Studies No 126

    Google Scholar 

  • Grillo V, Parsons ECM, Shrimpton JH (2001) A review of sewage pollution and cetaceans: a Scottish perspective. Paper presented to the Scientific Committee at the 53rd Meeting of the International Whaling Commission, 3–16 July 2001, London

    Google Scholar 

  • Hamzah A, Chia-Wei P, Pek-Hoon Y, Nurul H (2014) Oil palm empty fruit bunch and sugarcane bagasse enhance the bioremediation of soil artificially polluted by crude oil. Soil Sediment Contam Int J 23(7):751–762

    Article  CAS  Google Scholar 

  • He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Exotoxicol Environ Saf 72:1343–1348

    Article  CAS  Google Scholar 

  • Islam S, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48:624–649

    Article  CAS  Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:1–7

    Article  CAS  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of polygonum pubescens and their potential in promoting growth and Cd Pb, Zn uptake by Brassica napus. Int J Phytorem 16:321–333

    Article  CAS  Google Scholar 

  • Juwarkar AA, Dubey KV, Nair A, Singh SK (2008) Bioremediation of multi-metal contaminated soil using biosurfactant a novel approach. Indian J Microbiol 48:142–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant. Sophorolipid App Biochem Biotechnol 160:780–790

    Article  CAS  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala VR, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4:241–249

    Article  Google Scholar 

  • Kim PD, Oh K, Kim SY, Kim JH (1997) Relationship between emulsifying activity and carbohydrate backbone structure of emulsan from Acinetobacter calcoaceticus RAG-1. Biotechnol Lett 19:457–459

    Article  CAS  Google Scholar 

  • Ko JY, Day JW (2004) A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi delta. Ocean Coast Manag 47:597–623

    Article  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar K, Singh N, Behlh HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093. https://goo.gl/P6Xeqc

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial-degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18:431–439

    Article  CAS  Google Scholar 

  • Lee TH, Byun IG, Kim YO, Hwang IS, Park TJ (2006) Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Sci Technol 53:263–272

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Cai LX (2008) PAH-degrading microbial consortium and its pyrenedegrading plasmids from mangrove sediment samples in Huian. Chin Mar Poll Bull 57:703–706

    Article  CAS  Google Scholar 

  • Lu J (2003) Marine oil spill detection, statistics and mapping with ERS SAR imagery in South-East Asia. Int J Remote Sens 24:3013–3032

    Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163

    Article  CAS  PubMed  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legman R, Carmeli S, Ron EZ, Rosenberg R (1995) Alasan, a new bioemulsi er fromfi Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807. https://doi.org/10.1002/jctb.2182

    Article  CAS  Google Scholar 

  • Nikolopoulou M, Pasadakis N, Norf H, Kalogerakisa N (2013) Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77:37–44

    Article  CAS  PubMed  Google Scholar 

  • Odokuma LO, Dickson AA (2003a) Bioremediation of a crude oil polluted tropical rain forest soil. Glob J Environ Sci 2(1):29–40

    CAS  Google Scholar 

  • Odokuma LO, Dickson AA (2003b) Bioremediation of a crude oil polluted tropical mangrove environment. J Appl Sci Environ Manag 7:23–29

    CAS  Google Scholar 

  • Orji FA, Abiye AI, Dike EN (2012) Laboratory scale bioremediation of petroleum hydrocarbon – polluted mangrove swamps in the Niger Delta using cow dung. Malays J Microbiol 8(4):219–228

    CAS  Google Scholar 

  • Pandey VC (2012) Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotox Environ Safe 82:8–12

    Article  CAS  Google Scholar 

  • Prince RC (1997) Bioremediation of marine oil spills. Trends Biotechnol 15:158–160

    Article  CAS  Google Scholar 

  • Radmann EM, de Morais EG, de Oliveira CF, Zanfonato K, Vieira Costa JA (2015) Microalgae cultivation for biosurfactant production. Afr J Microbiol Res 9:2283–2289

    Article  CAS  Google Scholar 

  • Raj KK, Sardar RU, Bhargavi E, Devi I, Bhunia B, Tiwari ON (2018) Advances in exopolysaccharides based bioremediation of heavy metals in soil and water. A critical review. Carbohydrate Polymers 199:353–364

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rawlins BG, Ferguson AJ, Chilton PJ, Arthurtons RS, Rees JG, Baldock JW (1998) Review of agricultural pollution in the Caribbean with particular emphasis on small island developing states. Mar Pollut Bull 36(9):658–668

    Article  Google Scholar 

  • Ritter WF, Scarborough RW (1995) A review of bioremediation of contaminated soils and groundwater. J Environ Sci Health A: Environ Sci Eng Toxicol 30(2):333–357. https://doi.org/10.1080/10934529509376204

    Article  Google Scholar 

  • Rosenberg E, Legmann R, Kushmaro A, Taube R, Adler E, Ron EZ (1992) Petroleum bioremediation—a multiphase problem. Biodegradation 3:337–350

    Article  CAS  Google Scholar 

  • Roy A, Dutta A, Pal S, Gupta A, Sarkar J, Chatterjee A, Saha A, Sarkar P, Sar P, Kazy SK (2018) Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour Technol 253:22–32

    Article  CAS  PubMed  Google Scholar 

  • Salamanca EJP, Madera-Parra CA, Avila-Williams CA, Rengifo-Gallego AL, Ríos DA (2015) Phytoremediation using terrestrial plants. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_25

    Chapter  Google Scholar 

  • Santos HF, Carmo FL, Paes JES, Rosado AS, Peixoto RS (2011) Bioremediation of mangroves impacted by petroleum. Water Air Soil Pollut 216:329–350

    Article  CAS  Google Scholar 

  • Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195. https://doi.org/10.1016/j.envpol.2004.09.025

    Article  CAS  PubMed  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    Article  CAS  PubMed  Google Scholar 

  • Sayara T, Borràs E, Caminal G, Sarrà M, Sánchez A (2011) Bioremediation of PAHs-contaminated soil through composting: influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeterior Biodegradation 65(6):859–865

    Article  CAS  Google Scholar 

  • Shekhar S, Sundaramanickam A, Balasubramania T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45:1522–1554

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Cameotra SS (2013) Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pollut Res 20:7367–7376

    Article  CAS  Google Scholar 

  • Song SS, Zhu LZ, Zhou WJ (2008) Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant. Environ Pol 156:1368–1370

    Article  CAS  Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. UNEP-WCMC and the University of California Press, Berkley

    Google Scholar 

  • Taccari M, Milanovic V, Comitini F, Casucci C, Ciani M (2012) Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int Biodeterior Biodegradation 66(1):39–46

    Article  CAS  Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915

    Article  CAS  PubMed  Google Scholar 

  • Todd AP, Ong X, Chou LM (2010) Impacts of pollution on marine life in south east Asia. Biodivers Conserv 19:1063–1082

    Article  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2010) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. https://doi.org/10.1007/s10532-010-9394-4

  • Ullah A, Heng S, Munis MFH, Yang X, Fahad S (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Expt Bot 117:28–40

    Article  CAS  Google Scholar 

  • Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FM, Vangronsveld J, Diels L, Dejonghe W (2007) Phytoremediation for heavy metal contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15:227–236

    Article  Google Scholar 

  • Ventikos NP, Sotiropoulos FS (2014) Disutility analysis of oil spills: graphs and trends. Mar Pollut Bull 81:116–123. https://doi.org/10.1016/j.marpolbul.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediatin. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Wu RSS (1995) The environmental impact of marine fish culture: towards a sustainable future. Mar Pollut Bull 31:159–166

    Article  CAS  Google Scholar 

  • Wu T, Xie WJ, Yi L, Li XB, Yang BH, Wang J (2012) Surface activity of salt-tolerant Serratia spp. and crude oil biodegradation in saline soil. Plant Soil Environ 58(9):412–416

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayyam, V., Palanivel, S., Chandrakasan, S. (2019). Bioremediation: Key to Restore the Productivity of Coastal Areas. In: Coastal Ecosystems of the Tropics - Adaptive Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-8926-9_24

Download citation

Publish with us

Policies and ethics