Skip to main content

Role of Aldosterone in Renal Fibrosis

  • Chapter
  • First Online:
Book cover Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Aldosterone is a mineralocorticoid hormone, as its main renal effect has been considered as electrolyte and water homeostasis in the distal tubule, thus maintaining blood pressure and extracellular fluid homeostasis through the activation of mineralocorticoid receptor (MR) in epithelial cells. However, over the past decade, numerous studies have documented the significant role of aldosterone in the progression of chronic kidney disease (CKD) which has become a subject of interest. It is being studied that aldosterone can affect cardiovascular and renal system, thereby contributing to tissue inflammation, injury, glomerulosclerosis, and interstitial fibrosis. Aldosterone acts on renal vessels, renal cells (glomerular mesangial cells, podocytes, vascular smooth muscle cells, tubular epithelial cells, and interstitial fibroblasts), and infiltrating inflammatory cells, inducing reactive oxygen species (ROS) production, upregulated epithelial growth factor receptor (EGFR), and type 1 angiotensin (AT1) receptor expressions, and activating nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and EGFR to further promote cell proliferation, apoptosis, and proliferation. Phenotypic transformation of epithelial cells stimulates the expression of transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), osteopontin (OPN), and plasminogen activator inhibitor-1 (PAI-1), eventually leading to renal fibrosis. MR antagonisms are related to inhibition of aldosterone-mediated pro-inflammatory and pro-fibrotic effect. In this review, we will summarize the important role of aldosterone in the pathogenesis of renal injury and fibrosis, emphasizing on its multiple underlying mechanisms and advances in aldosterone research along with the potential therapeutics for targeting MR in a renal fibrosis.

Aanchal Shrestha and Ruo-Chen Che contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud HE (2012) Mesangial cell biology. Exp Cell Res 318:979–985

    Article  CAS  PubMed  Google Scholar 

  • Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 119:1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arima S, Kohagura K, Xu H-L, Sugawara A, Abe T, Satoh F et al (2003) Nongenomic vascular action of aldosterone in the glomerular microcirculation. J Am Soc Nephrol 14:2255–2263

    Article  CAS  PubMed  Google Scholar 

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE et al (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237:268–275

    Article  CAS  PubMed  Google Scholar 

  • Azizi M, Amar L, Menard J (2012) Aldosterone synthase inhibition in humans. Nephrol Dial Transplant 28:36–43

    Article  PubMed  CAS  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-kappaB in the immune system. Annu Rev Immunol 12:141–179

    Article  CAS  PubMed  Google Scholar 

  • Bai M, Chen Y, Zhao M, Zhang Y, He JC-J, Huang S et al (2017) NLRP3 inflammasome activation contributes to aldosterone-induced podocyte injury. Am J Physiol Renal Physiol 312:F556–F564

    Article  CAS  PubMed  Google Scholar 

  • Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H et al (2015) Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314:884–894

    Article  CAS  PubMed  Google Scholar 

  • Bianchi S, Bigazzi R, Campese VM (2006) Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int 70:2116–2123

    Article  CAS  PubMed  Google Scholar 

  • Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG (2003) Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 63:1791–1800

    Article  CAS  PubMed  Google Scholar 

  • Boldyreff B, Wehling M (2003) Non-genomic actions of aldosterone: mechanisms and consequences in kidney cells. Nephrol Dial Transplant 18:1693–1695

    Article  CAS  PubMed  Google Scholar 

  • Bomback AS, Klemmer PJ (2007) The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol 3:486–492

    Article  CAS  PubMed  Google Scholar 

  • Bonvalet J, Alfaidy N, Farman N, Lombes M (1995) Aldosterone: intracellular receptors in human heart. Eur Heart J 16:92–97

    Article  CAS  PubMed  Google Scholar 

  • Brown NJ (2013) Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol 9:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown NJ, Kim KS, Chen YQ, Blevins LS, Nadeau JH, Meranze SG et al (2000a) Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab 85:336–344

    CAS  PubMed  Google Scholar 

  • Brown NJ, Nakamura S, Ma L, Nakamura I, Donnert E, Freeman M et al (2000b) Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo. Kidney Int 58:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Brunskill EW, Potter SS (2012) Changes in the gene expression programs of renal mesangial cells during diabetic nephropathy. BMC Nephrol 13:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns W, Thomas M (2011) Angiotensin II and its role in tubular epithelial to mesenchymal transition associated with chronic kidney disease. Cells Tissues Organs 193:74–84

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Liang W, Jia J, Van Goor H, Singhal PC, Ding G (2009) Aldosterone induces apoptosis in rat podocytes: role of PI3-K/Akt and p38MAPK signaling pathways. Nephron Exp Nephrol 113:e26–e34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ M, Wehling M (1999) Rapid actions of aldosterone: lymphocytes, vascular smooth muscle and endothelial cells. Steroids 64:35–41

    Article  CAS  PubMed  Google Scholar 

  • Chrysostomou A, Pedagogos E, MacGregor L, Becker GJ (2006) Double-blind, placebo-controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long-term angiotensin-converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clin J Am Soc Nephrol 1:256–262

    Article  CAS  PubMed  Google Scholar 

  • Cicoira M, Zanolla L, Rossi A, Golia G, Franceschini L, Cabrini G et al (2001) Failure of aldosterone suppression despite angiotensin-converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype. J Am Coll Cardiol 37:1808–1812

    Article  CAS  PubMed  Google Scholar 

  • Coirini H, Mari A, De Nicola AF, Rainbow TC, McEwen BS (1985) Further studies of brain aldosterone binding sites employing new mineralocorticoid and glucocorticoid receptor markers in vitro. Brain Res 361:212–216

    Article  CAS  PubMed  Google Scholar 

  • Conn JW, Knopf RF, Nesbit RM (1964) Clinical characteristics of primary aldosteronism from an analysis of 145 cases. Am J Surg 107:159–172

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Yang L, Zhang M, Gu Y (2012) Chronic inhibition of nuclear factor kappa B attenuates aldosterone/salt-induced renal injury. Life Sci 90:600–666

    Article  CAS  PubMed  Google Scholar 

  • Epstein M (2006) Aldosterone blockade: an emerging strategy for abrogating progressive renal disease. Am J Med 119:912–919

    Article  CAS  PubMed  Google Scholar 

  • Farman N, Rafestin-Oblin M-E (2001) Multiple aspects of mineralocorticoid selectivity. Am J Physiol Renal Physiol 280:F181–F192

    Article  CAS  PubMed  Google Scholar 

  • Forrester SJ, Kawai T, O’Brien S, Thomas W, Harris RC, Eguchi S (2016) Epidermal growth factor receptor transactivation: mechanisms, pathophysiology, and potential therapies in the cardiovascular system. Annu Rev Pharmacol Toxicol 56:627–653

    Article  CAS  PubMed  Google Scholar 

  • Funder J, Myles K (1996) Exclusion of corticosterone from epithelial mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies. Endocrinology 137:5264–5268

    Article  PubMed  Google Scholar 

  • Funder JW (2010) Aldosterone and mineralocorticoid receptors in the cardiovascular system. Prog Cardiovasc Dis 52:393–400

    Article  PubMed  CAS  Google Scholar 

  • Funder JW, Pearce PT, Smith R, Smith AI (1988) Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242:583–585

    Article  PubMed  Google Scholar 

  • Furumatsu Y, Nagasawa Y, Tomida K, Mikami S, Kaneko T, Okada N et al (2008) Effect of renin-angiotensin-aldosterone system triple blockade on non-diabetic renal disease: addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker. Hypertens Res 31:59–67

    Article  CAS  PubMed  Google Scholar 

  • Gauer S, Segitz V, Goppelt-Struebe M (2007) Aldosterone induces CTGF in mesangial cells by activation of the glucocorticoid receptor. Nephrol Dial Transplant 22:3154–3159

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, López B, Dı́ez J (2004) Fibrosis in hypertensive heart disease: role of the renin-angiotensin-aldosterone system. Med Clin North Am 88:83–97

    Article  CAS  PubMed  Google Scholar 

  • Greene E, Kren S, Hostetter T (1996) Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 98:1063–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J et al (2011) GPR30 expression is required for the mineralocorticoid receptor–independent rapid vascular effects of aldosterone. Hypertension 57:442–451

    Article  CAS  PubMed  Google Scholar 

  • Gros R, Ding Q, Liu B, Chorazyczewski J, Feldman RD (2013) Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation. Am J Physiol Cell Physiol 304:C532–C540

    Article  CAS  PubMed  Google Scholar 

  • Grossmann C, Krug AW, Freudinger R, Mildenberger S, Voelker K, Gekle M (2007) Aldosterone-induced EGFR expression: interaction between the human mineralocorticoid receptor and the human EGFR promoter. Am J Physiol Endocrinol Metab 292:E1790–E1800

    Article  CAS  PubMed  Google Scholar 

  • Han K, Kang Y, Han SY, Jee Y, Lee M, Han J et al (2006) Spironolactone ameliorates renal injury and connective tissue growth factor expression in type II diabetic rats. Kidney Int 70:111–120

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Choi BS, Yang CW, Kim YS (2009) Aldosterone-induced TGF-β1 expression is regulated by mitogen-activated protein kinases and activator protein-1 in mesangial cells. J Korean Med Sci 24:S195–S203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han HI, Skvarca LB, Espiritu EB, Davidson AJ, Hukriede NA (2019) The role of macrophages during acute kidney injury: destruction and repair. Pediatr Nephrol 34:1–9

    Article  Google Scholar 

  • Hao J, Ren L, Zhang L, Kong D, Hao L (2015) Aldosterone-induced inflammatory response of mesangial cells via angiotension II receptors. J Renin Angiotensin Aldosterone Syst 16:739–748

    Article  CAS  PubMed  Google Scholar 

  • Heber S, Denk L, Hu K, Minuth WW (2007) Modulating the development of renal tubules growing in serum-free culture medium at an artificial interstitium. Tissue Eng 13:281–292

    Article  CAS  PubMed  Google Scholar 

  • Hostetter TH, Ibrahim HN (2003) Aldosterone in chronic kidney and cardiac disease. J Am Soc Nephrol 14:2395–2401

    Article  PubMed  Google Scholar 

  • Huang W, Xu C, Kahng KW, Noble NA, Border WA, Huang Y (2008) Aldosterone and TGF-β1 synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells. Am J Physiol Renal Physiol 294:F1287–F1295

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Zhang A, Ding G, Chen R (2009) Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am J Physiol Renal Physiol 296:F1323–F1333

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Nikolic-Paterson D, Ma F, Tesch G (2012) Aldosterone induces kidney fibroblast proliferation via activation of growth factor receptors and PI3K/MAPK signalling. Nephron Exp Nephrol 120:e115–e122

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Tsuruya K, Toyonaga J, Masutani K, Hayashida H, Hirakata H et al (2009) Spironolactone suppresses inflammation and prevents L-NAME–induced renal injury in rats. Kidney Int 75:147–155

    Article  CAS  PubMed  Google Scholar 

  • Irita J, Okura T, Kurata M, Miyoshi K-i, Fukuoka T, Higaki J (2008) Osteopontin in rat renal fibroblasts: functional properties and transcriptional regulation by aldosterone. Hypertension 51:507–513

    Article  CAS  PubMed  Google Scholar 

  • Jaisser F, Farman N (2016) Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol Rev 68:49–75

    Article  CAS  PubMed  Google Scholar 

  • Juknevicius I, Segal Y, Kren S, Lee R, Hostetter TH (2004) Effect of aldosterone on renal transforming growth factor-β. Am J Physiol Renal Physiol 286:F1059–F1062

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyomoto H, Rafiq K, Mostofa M, Nishiyama A (2008) Possible underlying mechanisms responsible for aldosterone and mineralocorticoid receptor-dependent renal injury. J Pharmacol Sci 108:399–405

    Article  CAS  PubMed  Google Scholar 

  • Kolkhof P, Borden SA (2012) Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics. Mol Cell Endocrinol 350:310–317

    Article  CAS  PubMed  Google Scholar 

  • Kornel L (1994) Colocalization of 11β-hydroxysteroid dehydrogenase and mineralocorticoid receptors in cultured vascular smooth muscle cells. Am J Hypertens 7:100–103

    Article  CAS  PubMed  Google Scholar 

  • Lenzini L, Seccia TM, Aldighieri E, Belloni AS, Bernante P, Giuliani L et al (2007) Heterogeneity of aldosterone-producing adenomas revealed by a whole transcriptome analysis. Hypertension 50:1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ding XY, Xiang DM, Xu J, Huang XL, Hou FF et al (2015) Enhanced M1 and impaired M2 macrophage polarization and reduced mitochondrial biogenesis via inhibition of AMP kinase in chronic kidney disease. Cell Physiol Biochem 36:358–372

    Article  PubMed  CAS  Google Scholar 

  • Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Fernández B, Rubio-Navarro A, Cortegano I, Ballesteros S, Alía M, Cannata-Ortiz P et al (2016) Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats. PLoS ONE 11:e0145946

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathew JT, Patni H, Chaudhary AN, Liang W, Gupta A, Chander PN et al (2008) Aldosterone induces mesangial cell apoptosis both in vivo and in vitro. Am J Physiol Renal Physiol 295:F73–F81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihailidou AS, Funder JW (2005) Nongenomic effects of mineralocorticoid receptor activation in the cardiovascular system. Steroids 70:347–351

    Article  PubMed  CAS  Google Scholar 

  • Min LJ, Mogi M, Li JM, Iwanami J, Iwai M, Horiuchi M (2005) Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ Res 97:434–442

    Article  CAS  PubMed  Google Scholar 

  • Minuth WW, Denk L, Heber S (2005) Growth of embryonic renal parenchyme at the interphase of a polyester artificial interstitium. Biomaterials 26:6588–6598

    Article  CAS  PubMed  Google Scholar 

  • Miyata K, Rahman M, Shokoji T, Nagai Y, Zhang GX, Sun GP et al (2005) Aldosterone stimulates reactive oxygen species production through activation of NADPH oxidase in rat mesangial cells. J Am Soc Nephrol 16:2906–2912

    Article  CAS  PubMed  Google Scholar 

  • Morgado-Pascual JL, Rayego-Mateos S, Valdivielso JM, Ortiz A, Egido J, Ruiz-Ortega M (2015) Paricalcitol inhibits aldosterone-induced proinflammatory factors by modulating epidermal growth factor receptor pathway in cultured tubular epithelial cells. Biomed Res Int 2015:783538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T (2006) Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47:1084–1093

    Article  CAS  PubMed  Google Scholar 

  • Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T (2007) Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension 50:877–883

    Article  CAS  PubMed  Google Scholar 

  • Naruse M, Tanabe A, Sato A, Takagi S, Tsuchiya K, Imaki T et al (2002) Aldosterone breakthrough during angiotensin II receptor antagonist therapy in stroke-prone spontaneously hypertensive rats. Hypertension 40(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi M, Kagami S et al (2004) Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension 43:841–848

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Yao L, Fan Y, Kyaw M, Kataoka N, Hashimoto K et al (2005) Involvement of aldosterone and mineralocorticoid receptors in rat mesangial cell proliferation and deformability. Hypertension 45:710–716

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Kobori H, Konishi Y, Morikawa T, Maeda I, Okumura M et al (2010) Mineralocorticoid receptor blockade enhances the antiproteinuric effect of an angiotensin II blocker through inhibiting podocyte injury in type 2 diabetic rats. J Pharmacol Exp Ther 332:1072–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    Article  CAS  PubMed  Google Scholar 

  • Phanish MK, Winn S, Dockrell M (2010) Connective tissue growth factor-(CTGF, CCN2)–a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114:e83–e92

    Article  CAS  PubMed  Google Scholar 

  • Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341:709–717

    Article  CAS  PubMed  Google Scholar 

  • Pitt B, Bakris G, Ruilope LM, DiCarlo L, Mukherjee R (2008) Serum potassium and clinical outcomes in the eplerenone post-acute myocardial infarction heart failure efficacy and survival study (EPHESUS). Circulation 118:1643–1650

    Article  CAS  PubMed  Google Scholar 

  • Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H et al (2013) Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J 34:2453–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter GA, Edelman IS (1964) The action of aldosterone and related corticosteroids on sodium transport across the toad bladder. J Clin Invest 43:611–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter GA, Bogoroch R, Edelman IS (1964) On the mechanism of action of aldosterone on sodium transport: the role of RNA synthesis. Proc Natl Acad Sci U S A 52:1326–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogerson FM, Fuller PJ (2000) Mineralocorticoid action. Steroids 65:61–73

    Article  CAS  PubMed  Google Scholar 

  • Rüster C, Wolf G (2006) Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 17:2985–2991

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Fukuda S (2013) Effect of aldosterone breakthrough on albuminuria during treatment with a direct renin inhibitor and combined effect with a mineralocorticoid receptor antagonist. Hypertens Res 36:879–884

    Article  CAS  PubMed  Google Scholar 

  • Schjoedt K, Andersen S, Rossing P, Tarnow L, Parving H-H (2004) Aldosterone escape during blockade of the renin–angiotensin–aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia 47:1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Schjoedt K, Rossing K, Juhl T, Boomsma F, Tarnow L, Rossing P et al (2006) Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int 70:536–542

    Article  CAS  PubMed  Google Scholar 

  • Shankland S (2006) The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69:2131–2147

    Article  CAS  PubMed  Google Scholar 

  • Sheng L, Yang M, Ding W, Zhang M, Niu J, Qiao Z et al (2016) Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney. Exp Cell Res 346:99–110

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T (2007) Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49:355–364

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H et al (2008) Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med 14:1370–1376

    Article  CAS  PubMed  Google Scholar 

  • Simpson S (1953) Isolation from the adrenals of a new crystalline hormone with especially high effectiveness on mineral metabolism. Experientia 9(333–335):3

    Google Scholar 

  • Spat A, Hunyady L (2004) Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84:489–539

    Article  CAS  PubMed  Google Scholar 

  • Su M, Dhoopun A-R, Yuan Y, Huang S, Zhu C, Ding G et al (2013) Mitochondrial dysfunction is an early event in aldosterone-induced podocyte injury. Am J Physiol Renal Physiol 305:F520–F531

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhang J, Zhang JQ, Ramires FJ (2000) Local angiotensin II and transforming growth factor-β1 in renal fibrosis of rats. Hypertension 35:1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Terada Y, Ueda S, Hamada K, Shimamura Y, Ogata K, Inoue K et al (2012) Aldosterone stimulates nuclear factor-kappa B activity and transcription of intercellular adhesion molecule-1 and connective tissue growth factor in rat mesangial cells via serum-and glucocorticoid-inducible protein kinase-1. Clin Exp Nephrol 16:81–88

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  CAS  PubMed  Google Scholar 

  • Trachtman H, Weiser AC, Valderrama E, Morgado M, Palmer LS (2004) Prevention of renal fibrosis by spironolactone in mice with complete unilateral ureteral obstruction. J Urol 172:1590–1594

    Article  CAS  PubMed  Google Scholar 

  • Unger T, Paulis L, Sica DA (2011) Therapeutic perspectives in hypertension: novel means for renin–angiotensin–aldosterone system modulation and emerging device-based approaches. Eur Heart J 32:2739–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urata H, Hoffmann S, Ganten D (1994a) Tissue angiotensin II system in the human heart. Eur Heart J 15:68–78

    Article  CAS  PubMed  Google Scholar 

  • Urata H, Strobel F, Ganten D (1994b) Widespread tissue distribution of human chymase. J Hypertens Suppl 12:S17–S22

    CAS  PubMed  Google Scholar 

  • Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A et al (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1459–1544

    Article  Google Scholar 

  • Weldon SM, Cerny MA, Gueneva-Boucheva K, Cogan D, Guo X, Moss N et al (2016) Selectivity of BI 689648, a novel, highly selective aldosterone synthase inhibitor: comparison with FAD286 and LCI699 in nonhuman primates. J Pharmacol Exp Ther 359:142–150

    Article  CAS  PubMed  Google Scholar 

  • Williams GH (2005) Aldosterone biosynthesis, regulation, and classical mechanism of action. Heart Fail Rev 10:7–13

    Article  CAS  PubMed  Google Scholar 

  • Williams JS, Williams GH (2003) 50th anniversary of aldosterone. J Clin Endocrinol Metab 88:2364–2372

    Article  CAS  PubMed  Google Scholar 

  • Wolf G, Chen S, Ziyadeh FN (2005) From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54:1626–1634

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Kushibiki M, Osanai T, Tomita H, Okumura K (2008) Vasoconstrictor effect of aldosterone via angiotensin II type 1 (AT1) receptor: possible role of AT1 receptor dimerization. Cardiovasc Res 79:169–178

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Jia R, Bao Y (2007) Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells. J Biochem Mol Biol 40:180–188

    CAS  PubMed  Google Scholar 

  • Yuan Y, Huang S, Wang W, Wang Y, Zhang P, Zhu C et al (2012a) Activation of peroxisome proliferator-activated receptor-γ coactivator 1α ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int 82:771–789

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Chen Y, Zhang P, Huang S, Zhu C, Ding G et al (2012b) Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells. Free Radic Biol Med 53:30–43

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zhang A, Qi J, Wang H, Liu X, Zhao M et al (2017) P53/Drp1-dependent mitochondrial fission mediates aldosterone-induced podocyte injury and mitochondrial dysfunction. Am J Physiol Renal Physiol 314:F798–F808

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Jia Z, Guo X, Yang T (2007) Aldosterone induces epithelial-mesenchymal transition via ROS of mitochondrial origin. Am J Physiol Renal Physiol 293:F723–F731

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Jia Z, Wang N, Tidwell TJ, Yang T (2011) Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int 80:51–60

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Han Y, Wang B, Li S, Gan W (2015) Beyond gap junction channel function: the expression of Cx43 contributes to aldosterone-induced mesangial cell proliferation via the ERK1/2 and PKC pathways. Cell Physiol Biochem 36:1210–1222

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Huang S, Yuan Y, Ding G, Chen R, Liu B et al (2011) Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARγ. Am J Pathol 178:2020–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement and Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Hua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrestha, A., Che, RC., Zhang, AH. (2019). Role of Aldosterone in Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_15

Download citation

Publish with us

Policies and ethics