Skip to main content

Thoughts and Tribulations on Bioceramics and Marine Structures

  • Chapter
  • First Online:
  • 716 Accesses

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 14))

Abstract

Marine organisms are structured and constituted by materials with a vast range of properties and characteristics that may justify their potential application within the biomedical field. This is demonstrated by the biological effectiveness of marine structures such as corals and shells and sponge skeletons to house self-sustaining musculoskeletal tissues and their ability to promote bone formation though the use of extracts from sponging and nacre seashells. The design and composition of marine structures have been instrumental in the solving vital problems in regenerative medicine through the introduction of basic remedies that provides frameworks and highly accessible sources of osteopromotive analogues of bioceramic monoliths, nanofibres, micro and macrospheres. The clinical success of any future regenerative implants will be dependent on the production of highly proficient scaffolds that biologically operates at the nano-, micro- and macroscopic levels. Moreover, the implant will also need to coordinate, assemble, and organize cells into tissues as well as releasing encapsulated chemical signals in a targeted way and convey them into the body. As a result, an increasing number of different types of compounds are being isolated from aquatic organisms and transformed into products for health applications, including controlled drug delivery and tissue engineering devices. Despite the fact that they are extremely effective, the development of these materials has their drawbacks that needs be addressed. This chapter reviews the current bioceramics and natural marine structures including their structure, morphology, and applications in regenerative medicine, bone grafts, and drug delivery. In addition, the extraction of biological materials such as proteins from marine materials will also be discussed. An example of this specific biomimicry is provided by filtering the microskeleton of Foraminifera and coralline microspheres. New selected strategies based on our research as well as the works of others concerning the engineering of new bone tissues based on biomimicry will be also examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ben-Nissan B, Green DW (2013) Marine materials in drug delivery and tissue engineering: from natural role models, to bone regeneration and rep air and slow delivery of therapeutic drugs, proteins and genes. In: Kim SK (ed) Marine biomaterials. Taylor and Francis/CSR Books, Boca Raton, pp 575–602

    Chapter  Google Scholar 

  2. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  3. Ben-Nissan B, Choi AH (2006) Sol-gel production of bioactive nanocoatings for medical applications. Part 1: an introduction. Nanomedicine 1:311–319

    Article  CAS  Google Scholar 

  4. Choi AH, Ben-Nissan B (2007) Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. Nanomedicine 2:51–61

    Article  CAS  Google Scholar 

  5. Choi AH, Ben-Nissan B, Matinlinna JP et al (2013) Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. J Dent Res 92:853–859

    Article  CAS  Google Scholar 

  6. Choi AH, Ben-Nissan B (2015) Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging. Nanomedicine 10:2249–2261

    Article  CAS  Google Scholar 

  7. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147

    Article  CAS  Google Scholar 

  8. Vinogradov SV, Batrakova EV, Kabanov AV (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15:50–60

    Article  CAS  Google Scholar 

  9. Clark HA, Hoyer M, Philbert MA et al (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836

    Article  CAS  Google Scholar 

  10. Park EJ, Brasuel M, Behrend C et al (2003) Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal Chem 75:3784–3791

    Article  CAS  Google Scholar 

  11. Gavalas VG, Law SA, Christopher Ball J et al (2004) Carbon nanotube aqueous sol-gel composites: enzyme-friendly platforms for the development of stable biosensors. Anal Biochem 329:247–252

    Article  CAS  Google Scholar 

  12. Schroeder A, Turjeman K, Schroeder JE et al (2010) Using liposomes to target infection and inflammation induced by foreign body injuries or medical implants. Expert Opin Drug Deliv 7:1175–1189

    Article  CAS  Google Scholar 

  13. Rizwan SB, Boyd BJ, Rades T et al (2010) Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv 7:1133–1144

    Article  CAS  Google Scholar 

  14. Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  Google Scholar 

  15. Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124

    Article  CAS  Google Scholar 

  16. Addadi L, Weiner S (1992) Control and design principles in biological mineralization. Angew Chem Int Ed Engl 31:153–169

    Article  Google Scholar 

  17. Mann S (1995) Biomineralization and biomimetic materials chemistry. J Mater Chem 5:935–946

    Article  CAS  Google Scholar 

  18. Chou J, Shimmon R, Ben-Nissan B (2009) Bisphosphonate determination using 1H-NMR spectroscopy for biomedical applications. J Tissue Eng Regen Med 3:92–96

    Article  CAS  Google Scholar 

  19. Ben-Nissan B, Macha I, Cazalbou S et al (2016) Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis. Nanomedicine 11:531–544

    Article  CAS  Google Scholar 

  20. Palazzo B, Iafisco M, Laforgia M et al (2007) Biomimetic hydroxyapatite—drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188

    Article  CAS  Google Scholar 

  21. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    Article  CAS  Google Scholar 

  22. Oonishi H, Clarke IC, Good V et al (2003) Needs of bioceramics to longevity of total joint arthroplasty. Key Eng Mater 240–242:735–754

    Article  Google Scholar 

  23. Saiz E, Gremillard L, Menendez G et al (2007) Preparation of porous hydroxyapatite scaffolds. Mater Sci Eng C Mater Biol Appl 27:546–550

    Article  CAS  Google Scholar 

  24. Khalyfa A, Vogt S, Weisser J et al (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18:909–916

    Article  CAS  Google Scholar 

  25. Gomes de Sousa FC, Evans JRG (2005) Tubular hydroxyapatite scaffolds. Adv Appl Ceram 104:30–34

    Article  CAS  Google Scholar 

  26. Green D, Walsh D, Yang X et al (2004) Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate porous microspheres. J Mater Chem 14:2206–2212

    Article  CAS  Google Scholar 

  27. Kanczler JM, Sura HS, Magnay J et al (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 16:3241–3250

    Article  CAS  Google Scholar 

  28. Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2:347–353

    Article  CAS  Google Scholar 

  29. Townley H, Parker A, White-Cooper H (2008) Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv Funct Mater 18:369–374

    Article  CAS  Google Scholar 

  30. Green D, Leveque I, Walsh D et al (2005) Biomineralized polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors. Adv Funct Mater 15:917–923

    Article  CAS  Google Scholar 

  31. Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207

    Article  CAS  Google Scholar 

  32. Kumar MN, Muzzarelli RA, Muzzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  33. Muzzarelli RAA, Morganti P, Morganti G et al (2007) Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 70:274–284

    Article  CAS  Google Scholar 

  34. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    Article  CAS  Google Scholar 

  35. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9

    Article  CAS  Google Scholar 

  36. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  Google Scholar 

  37. Chan AW, Neufeld RJ (2010) Tuneable semi-synthetic network alginate for absorptive encapsulation and controlled release of protein therapeutics. Biomaterials 31:9040–9047

    Article  CAS  Google Scholar 

  38. Choi AH, Ben-Nissan B, Conway RC et al (2014) Advances in calcium phosphate nanocoatings and nanocomposites. In: Ben-Nissan B (ed) Advances in calcium phosphate biomaterials. Springer series in biomaterials science and engineering, vol 2. Springer, Heidelberg, pp 485–509

    Google Scholar 

  39. Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858

    Article  CAS  Google Scholar 

  40. Szarpak A, Cui D, Dubreuil F et al (2010) Designing hyaluronic acid-based layer-by-layer capsules as a carrier for intracellular drug delivery. Biomacromolecules 11:713–720

    Article  CAS  Google Scholar 

  41. Sæther HV, Holme HK, Maurstad G et al (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821

    Article  Google Scholar 

  42. Du Y, Lo E, Ali S et al (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci U S A 105:9522–9527

    Article  CAS  Google Scholar 

  43. Ingber DE (2008) From molecular cell engineering to biologically inspired engineering. Cell Mol Bioeng 1:51–57

    Article  Google Scholar 

  44. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  Google Scholar 

  45. Needleman DJ, Ojeda-Lopez MA, Raviv U et al (2004) Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces. Proc Natl Acad Sci U S A 101:16099–16103

    Article  CAS  Google Scholar 

  46. Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432

    Article  CAS  Google Scholar 

  47. Gallagher JT, Turnbull JE, Lyon M (1992) Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme. Int J Biochem 24:553–560

    Article  CAS  Google Scholar 

  48. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    Article  CAS  Google Scholar 

  49. Chollet C, Lazare S, Guillemot F et al (2010) Impact of RGD micro-patterns on cell adhesion. Colloids Surf B Biointerfaces 75:107–114

    Article  CAS  Google Scholar 

  50. Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452:76–79

    Article  CAS  Google Scholar 

  51. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575

    Article  CAS  Google Scholar 

  52. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  CAS  Google Scholar 

  53. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  54. Denuziere A, Ferrier D, Domard A (1996) Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspects. Carbohydr Polym 29:317–323

    Article  CAS  Google Scholar 

  55. Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52

    Article  CAS  Google Scholar 

  56. Ho MH, Wang DM, Hsieh HJ et al (2005) Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials 26:3197–3206

    Article  CAS  Google Scholar 

  57. Jeon O, Bouhadir KH, Mansour JM et al (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734

    Article  CAS  Google Scholar 

  58. Lévêque I, Rhodes KH, Mann S (2002) Biomineral-inspired fabrication of semi-permeable calcium phosphate–polysaccharide microcapsules. J Mater Chem 12:2178–2180

    Article  Google Scholar 

  59. Weiner S (1986) Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Crit Rev Biochem 20:365–408

    Article  CAS  Google Scholar 

  60. Collier JH (2008) Modular self-assembling biomaterials for directing cellular responses. Soft Matter 4:2310–2315

    Article  CAS  Google Scholar 

  61. Lutolf MP, Lauer-Fields JL, Schmoekel HG et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413–5418

    Article  CAS  Google Scholar 

  62. Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513–518

    Article  CAS  Google Scholar 

  63. Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ et al (2008) Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29:2757–2766

    Article  CAS  Google Scholar 

  64. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  65. Weiner S (2008) Biomineralization: a structural perspective. J Struct Biol 163:229–234

    Article  CAS  Google Scholar 

  66. Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103–1112

    Article  CAS  Google Scholar 

  67. Mooney DJ, Boontheekul T, Chen R et al (2005) Actively regulating bioengineered tissue and organ formation. Orthod Craniofac Res 8:141–144

    Article  CAS  Google Scholar 

  68. Hoffman AS, Stayton PS, Press O et al (2001) Bioinspired polymers that control intracellular drug delivery. Biotechnol Bioprocess Eng 6:205–212

    Article  CAS  Google Scholar 

  69. Bianco P, Kuznetsov SA, Riminucci M et al (2006) Postnatal skeletal stem cells. In: Klimanskaya I, Lanza R (eds) Adult stem cells. Methods in enzymology, vol 419. Elsevier Academic Press Inc., California, pp 117–148

    Chapter  Google Scholar 

  70. Green D, Partridge K, Leveque I et al (2005) Plasmid DNA encapsulation, delivery and transfection using biomineralized polysaccharide capsules. Int J Exp Pathol 86:A6

    Google Scholar 

  71. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37

    Article  CAS  Google Scholar 

  72. Tros de Ilarduya C, García L, Düzgünes N (2010) Liposomes and lipopolymeric carriers for gene delivery. J Microencapsul 27:602–608

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besim Ben-Nissan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ben-Nissan, B., Choi, A.H., Green, D.W., Karacan, I., Akyol, S., Cazalbou, S. (2019). Thoughts and Tribulations on Bioceramics and Marine Structures. In: Choi, A., Ben-Nissan, B. (eds) Marine-Derived Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-13-8855-2_1

Download citation

Publish with us

Policies and ethics