Perspectives for Future Development of Thermal Ice-Drilling Technology

  • Pavel G. TalalayEmail author
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


Future development of thermal drilling systems is recommended to focus on reliable growth, safety, and environmental improvements, as well as increases in performance. Specific challenges related to improving thermal drilling technology include developing unconventional thermal ice-drilling methods; searching for new heating technologies; developing directional thermal-drilling methods; and designing automated drilling systems. The certain steps have been taken to test unconventional thermal ice-drilling methods like dissolution drilling, flame-jet drilling, and laser drilling.


Dissolution drilling Flame-jet drilling Laser drilling Automated drilling systems Radiothermal generator 


  1. 10 kW Gas Turbine Generator (n.d.) RIPEnergy AG: the power conversion company. Retrieved 26 May 2018 from
  2. Allison P and 48 others (2012) Design and initial performance of the Askaryan Radio Array prototype EeV neutrino detector at the South Pole. Astropart Phys 35(7):457–477Google Scholar
  3. Beverly CN, Westneat AS (1982) Autonomous computer controlled ice drill. Marine Systems Engineering Laboratory, University of New Hampshire, Durhan, USA, September 1982. Report on Project NR-294–063Google Scholar
  4. Brichkin AV, Mikheev SV, Boev AV (1967) Ognevoye bureniye lednikov v visokogornikh usloviakh [Flame-jet drilling of glaciers in high-mountain regions]. Izvestiya VGO [Proceedings of All-Union Geographical Society] 99(2):147–148. (in Russian)Google Scholar
  5. Browning JA (1978) Flame drilling through the Ross Ice Shelf. The Northern Engineer 10(1):4–8Google Scholar
  6. Browning JA, Somerville DA (1978) Access hole drilling through the Ross Ice Shelf. Antarct J U.S. 13(4):55Google Scholar
  7. Clauer CR, Kim H, Deshpande K et al (2014) An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection. Geosci Instrum Method Data Syst 3:211–227CrossRefGoogle Scholar
  8. Dachwald B, Mikucki J, Tulaczyk S et al (2014) IceMole: a maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems. Ann Glaciol 55(65):14–22CrossRefGoogle Scholar
  9. Dudeney JR, Kressman RI, Rodger AS (1998) Automated observatories for geospace research in polar regions. Antarct Sci 10(2):192–203CrossRefGoogle Scholar
  10. Elliott JO, Carsey FD (2004) Deep subsurface exploration of planetary ice enabled by nuclear power. In: Proceeding of 2004 IEEE Aerospace Conference, 6–13 March 2004, vol 5. Big Sky, Montana, USA, pp. 2978–2987Google Scholar
  11. Green MA, Emery K, Hishikawa Y et al (2012) Solar cell efficiency tables (version 39). Prog Photovolt: Res Appl 20(1):12–20CrossRefGoogle Scholar
  12. Hengst S, Allen GR, Ashley MCB et al (2008) PLATO power: a robust low environmental impact power generation system for the Antarctic plateau. In: Stepp LM, Gilmozzi R (eds) Proceeding of the SPIE conference on ground-based and airborne telescopes II, 27 August, 2008, vol 7012. Society of Photographic Instrumentation Engineers, Bellingham, Washington, USA, SPIEGoogle Scholar
  13. Hubert A (2012) New solar panels and another trip to the coast. Int Polar Assoc. Posted on 2 Feb 2012. Retrieved 26 May 2018 from
  14. Iagupov AV (1972) Teplovoe razrushenie gornykh porod i ognevoe burenie [Thermal destignation of rocks and jet piercing drilling]. Moscow, Nedra, 160 p. (in Russian)Google Scholar
  15. Itmi M, Cardon A (2016) New autonomous systems. WileyGoogle Scholar
  16. Jerby J, Dikhtyar V, Aktushev O et al (2002) The microwave drill. Science 298(5593):587–589CrossRefGoogle Scholar
  17. Kelty JR (1995) An in situ sampling thermal probe for studying global ice sheets. Dissertation presented to the Faculty of the Graduate College in the University of Nebraska in partial fulfillment of requirements for the degree of Doctor of Philosophy. Major: Interdepartmental area of engineering (Electrical engineering) under the supervision of Prof. DP Billesbach, Nebraska, Lincoln, May 1995Google Scholar
  18. Lawrence JS and 36 others (2008) The PLATO Antarctic site testing observatory. In: Stepp LM, Gilmozzi R (eds) Proceeding of the SPIE conference on ground-based and airborne telescopes II, 27 August, 2008, vol 7012. Society of Photographic Instrumentation Engineers, Bellingham, Washington, USA, SPIEGoogle Scholar
  19. Lorenz RD (2012) Thermal drilling in planetary ices: an analytic solution with application to planetary protection problems of radioisotope power sources. Astrobiology 12:799–802CrossRefGoogle Scholar
  20. Makarevich RG, Vilesov EN, Golovkova RG et al (1984) Ledniki Tuiuksu [Tuiuksu Glaciers]. Gidrometeoizdat, Leningrad (in Russian)Google Scholar
  21. Maurer WC (1980) Advanced drilling techniques. Petroleum Publishing Co., Tulsa, OklahomaGoogle Scholar
  22. Michaelides L (2012) Inventions: thermoblast flame-jet drill. Dartmouth Engineer Magazine, Winter 2012. Available on-line at:
  23. Mikheev SV (1971) O burenii l’da ognevym sposobom [About ice drilling by flame-jet drilling]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 18, pp 160–163. (in Russian)Google Scholar
  24. Pierce KG, Livesay BJ, Finger JT (1996) Advanced drilling systems study. Report SAND95-0331, Sandia National Laboratories, Albuquerque, USA, 163 pGoogle Scholar
  25. Sakurai T, Chosrowjan H, Somekawa T et al (2016) Studies of melting ice using CO2 laser for drilling. Cold Reg Sci Tech 121(2016):11–15CrossRefGoogle Scholar
  26. Schwander J, Walther R, Moret H (2012) Downhole bedrock sonar. In: First open science conference international partnerships in ice core sciences, 1–5 October, 2012. Presqu’île de Giens, Côte d’Azur, France. Booklet of Abstracts, p 185Google Scholar
  27. Specialty Heaters (2009) MarComm sensor and controller catalog, pp 457–474Google Scholar
  28. Stone WC, Hogan B, Siegel V et al (2014) Progress towards an optically powered cryobot. Ann Glaciol 55(65):1–13CrossRefGoogle Scholar
  29. Stone W, Hogan B, Siegel V et al (2018) Project VALKYRIE: laser-powered cryobots and other methods for penetrating deep ice on ocean worlds. In: Badescu V, Zacny K (eds) Outer solar system. Springer, Cham, pp 47–165CrossRefGoogle Scholar
  30. Talalay PG (2014) Perspectives for development of ice drilling technology: a discussion. Ann Glaciol 55(68):339–350CrossRefGoogle Scholar
  31. Talalay PG, Zagorodnov VS, Markov AN et al (2014) Recoverable autonomous sonde (RECAS) for environmental exploration of Antarctic subglacial lakes: general concept. Ann Glaciol 55(65):23–30CrossRefGoogle Scholar
  32. Talalay P, Yang C, Cao P et al (2015) Ice-core drilling problems and solutions. Cold Reg Sci Tech 120:1–20CrossRefGoogle Scholar
  33. Thorsteinsson T, Elefsen SÓ, Gaidos E et al (2008) A hot water drill with built-in sterilization: design, testing and performance. Jökull 57:71–82Google Scholar
  34. Zagorodnov VS, Kelley JJ, Nagornov OV (1994) Drilling of glacier boreholes with a hydrophilic liquid. Mem Natl Inst Polar Res Spec Issue 49:153–164Google Scholar
  35. Zeller E, Dreschhoff G, Laird CM (1989) Development of laser ice-cutting apparatus. Antarct J U.S. 26(5):89–91Google Scholar
  36. Zimmerman W, Bonitz R, Feldman J (2001) Cryobot: an ice penetrating robotic vehicle for Mars and Europa. In: IEEE aerospace conference, vol 1, 10–17 March 2001. Big Sky, Montana, USA, pp 311–323Google Scholar

Copyright information

© Geological Publishing House and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.College of Construction EngineeringJilin UniversityChangchunChina

Personalised recommendations