Hot-Water Ice Drills

  • Pavel G. TalalayEmail author
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


Hot-water drills provide fastest penetration in glaciers and, nowadays, are actively used for the observation of ocean cavities under ice shelves, the retrieval of sub-ice seabed samples, the study of internal ice structures, video imaging, temperature logging, measurements of deformation within ice, the determination of basal sliding velocity, clean accessing to subglacial lakes. During drilling, hot water is pumped at high pressure through a drill hose to a nozzle that jets hot water to melt the ice. The water from the nozzle uses the melted hole as the return conduit and then, at the surface, it usually reuses by the hot-water drill.


Thermomechanical jetting action High-temperature water Nozzle High-pressure hose High-pressure pump 


  1. Ágústsdóttir AM, Brantley SL (1994) Volatile fluxes integrated over four centuries at Grímsvötn volcano, Iceland. J Geophys Res 99:9505–9522CrossRefGoogle Scholar
  2. AMANDA (2000) University of Wisconsin-Madison News. Retrieved 8 Oct 2018 from
  3. Andres E et al (2000) The AMANDA neutrino telescope: Principle of operation and first results. Astroparticle Phys 13:1–20CrossRefGoogle Scholar
  4. Anonymous author (2012) Hot water drilling in Antarctic ice. World Pumps 2012(6):32–35Google Scholar
  5. Antarctic Album (2013) Drilling into Subglacial Lake Whillans. Posted Live Science staff on 27 Jan 2013. Retrieved 8 Oct 2018 from
  6. Antarctic Glaciology (n.d.) Antarctic Research Center, Victoria University of Wellington. Retrieved 20 Feb 2018 from
  7. Antarctic Photo Library (n.d.) US National Science Foundation. Retrieved 8 Oct 2018 from and
  8. Antarctica New Zealand Pictorial Collection (n.d.) Retrieved 25 Feb 2018 from and
  9. ARA Collaboration (2012) Design and initial performance of the Askaryan Radio Array prototype EeV neutrino detector at the South Pole. Astropart Phys 35(7):457–477Google Scholar
  10. Ashmore DW, Hubbard B, Luckman A et al (2017) Ice and firn heterogeneity within Larsen C Ice Shelf from borehole optical televiewing. J Geophys Res Earth Surf 122:1139–1153Google Scholar
  11. Astaf’ev VN, Surkov GA, Truskov PA (1997) Torosy i stamukhi Okhotskogo morya [Ice ridges and stamukhas of Sea of Okhotsk]. St.-Petersburg, Progress-Pogoda (in Russian)Google Scholar
  12. Barrett BE, Nicholls KW, Murray T et al (2009) Rapid recent warming on Rutford Ice Stream, West Antarctica, from borehole thermometry. Geophys Res Lett 36:L02708CrossRefGoogle Scholar
  13. Barrett PJ, Carter L, Damiani D et al (2005) Oceanography and sedimentation beneath the Mcmurdo Ice Shelf in Windless Bight, Antarctica. Antarctic Data Series No. 25, Antarctic Research Centre, Victoria University of Wellington, New ZealandGoogle Scholar
  14. Bässler K-H, Miller H (1989) Evaluation of hot water drills//Ice Core Drilling. In: Rado C, Beaudoing D (eds) Proceedings of the third international workshop on ice drilling technology, Grenoble, France, 10–14 Oct 1988. Laboratoire de Glaciologie et Geophysique de l’Environnement, Grenoble, pp 116–122Google Scholar
  15. Benson T, Cherwinka J, Duvernois M et al (2014) IceCube enhanced hot water drill functional description. Ann Glaciol 55(68):105–114Google Scholar
  16. Bentley CR, Koci BR (2007) Drilling to the beds of the Greenland and Antarctic ice sheets: a review. Ann Glaciol 47:1–9CrossRefGoogle Scholar
  17. Bentley CR, Koci BR, Augustin LJ-M et al. (2009) Ice drilling and coring. In: Bar-Cohen Y, Zacny K (eds) Drilling in extreme environments. penetration and sampling on earth and other planets. Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, pp 221–308Google Scholar
  18. Beverly C (1982) ADOM (Air Deployed Oceanographic Mooring). ADM (Advanced Development Model) thermal ice drill. Test results. Marine Systems Engineering Laboratory, University of New Hampshire, Sept 1982. Project NR-294–063Google Scholar
  19. Beverly C (1983) Autonomous computer controlled ice drill performance tests. In: Proceedings of IEEE OCEANS’83 Conference, 29 Aug–1 Sept 1983, San Francisco, USA, pp 1057–1059Google Scholar
  20. Beverly CN, Westneat AS (1982a) Autonomous computer controlled ice drill. Marine Systems Engineering Laboratory, University of New Hampshire, Durhan, USA, Sept 1982. Report on Project NR-294-063Google Scholar
  21. Beverly C, Westneat A (1982b) Autonomous computer controlled ice drill. In: Proceedings of IEEE OCEANS’82 Conference, 20–22 Sept 1982, Washington, DC, USA, pp 1261–1264Google Scholar
  22. Bindschadler RA, Koci B, Iken A (1988) Drilling on crary ice rise, Antarctica. Antarct J US 23(5):60–62Google Scholar
  23. Björnsson H (1991) Skýrsla um starfsemi Jöklarannsóknafélags Íslands 1990 [Report on the activities of the Icelandic Glaciological Society 1990]. Jökull 41:105–108Google Scholar
  24. Blake EW, Clarke GKC, Gérin MC (1992) Tools for examining subglacial bed deformation. J Glaciol 38(130):388–396CrossRefGoogle Scholar
  25. Blatter H (1987) On the thermal regime of an Arctic valley glacier: a study of White Glacier, Axel Heiberg Island, N.W.T., Canada. J Glaciol 33(114):200–211CrossRefGoogle Scholar
  26. Blythe DS, Duling DV, Gibson DE (2014) Developing a hot-water drill system for the WISSARD project: 2. In situ water production. Ann Glaciol 55(68):298–302CrossRefGoogle Scholar
  27. Boller WL, Sonderup JM (1988). Hot-water drilling on the Siple Coast. Antarct J US 23(5):62–63Google Scholar
  28. Bolsey RJ (n.d.) Hot water ice drilling. Retrieved on 12 Mar 2018 from
  29. Boulton GS, Dobbie KE, Zatsepin S (2001) Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quatern Int 86:3–28CrossRefGoogle Scholar
  30. Browning JA, Bigl RA, Sommerville DA (1979) Hot-water drilling and coring at site J-9, Ross Ice Shelf. Antarct J US 14(5):60–61Google Scholar
  31. Burnett J, Rack FR, Blythe D et al (2014) Developing a hot-water drill system for the WISSARD project: 3. Instrumentation and control systems. Ann Glaciol 55(68):303–310CrossRefGoogle Scholar
  32. Campbell D (2013) Warming ocean thawing Antarctic glacier, researchers say. UAF News and information. Posted on 18 Sept 2013. Retrieved 18 Sept 2018 from
  33. Chandler D, Hubbard B, Hubbard A et al (2008) Optimising ice flow law parameters using borehole deformation measurements and numerical modelling. Geoph Res Lett 35:L12502CrossRefGoogle Scholar
  34. Choi CQ (2010) Glaciers may have soggier bottoms than thought. Live science, Planet Earth. Posted on 29 Sept 2010. Retrieved 6 Mar 2018 from
  35. Clarke GKC, Blake EW (1991) Geometric and thermal evolution of a surge-type glacier in its quiescent state—Trapridge Glacier, Yukon Territory, Canada, 1969–89. J Glaciol 37(125):158–169CrossRefGoogle Scholar
  36. Clarke GKC, Collins SG, Thompson DE (1984) Flow, thermal structure and subglacial conditions of a surge-type glacier. Can J Earth Sci 21:232–240CrossRefGoogle Scholar
  37. Clarke R, Corr H, Nicholls K (2016) Initial environmental evaluation science projects on the Filchner-Ronne Ice Shelf, Antarctica. British Antarctic Survey, Cambridge, UK and Alfred Wegener Institute, Bremerhaven, GermanyGoogle Scholar
  38. Climate change scientists from Aber are heading to the Himalayas to study the world’s highest glacier (2017) Aber Times. Posted on 19 Apr 2017. Retrieved 18 Feb 2018 from
  39. Copland L, Harbor J, Sharp M (1997) Borehole video observation of englacial and basal ice conditions in a temperate valley glacier. Ann Glaciol 24:277–282CrossRefGoogle Scholar
  40. Craven M, Elcheikh A, Brand R et al (2002a) Hot water drilling on the Amery Ice Shelf—the AMISOR project. Mem Natl Inst Polar Res Spec Issue 56:217–225Google Scholar
  41. Craven M, Elcheikh A, Brand R et al (2002b) Hot water drilling on the Amery Ice Shelf, East Antarctica. In: Smedsrud LH (ed) Proceedings of 16th Forum for Research into Ice Shelf Processes (FRISP), 25–26 June 2002, Bergen Geophysical Institute, University of Bergen, Norway, Report No. 14 (Report Series R27)Google Scholar
  42. Craven M, Allison I, Brand R et al (2004) Initial borehole results from the Amery Ice Shelf hot-water drilling project. Ann Glaciol 39:531–539CrossRefGoogle Scholar
  43. Craven M, Carsey F, Behar A et al (2005) Borehole imagery of meteoric and marine ice layers in the Amery Ice Shelf, East Antarctica. J Glaciol 51(172):75–84CrossRefGoogle Scholar
  44. Craven M, Allison I, Fricker HA et al (2009) Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica. J Glaciol 55(192):717–728CrossRefGoogle Scholar
  45. Davis M (2013) The Greenland Ice Sheet and surface meltwater. Posted on 22 Feb 2013. Retrieved 29 Sept 2018 from
  46. Doble MJ, Forrest AL, Wadhams P et al (2009) Through-ice AUV deployment: operational and technical experience from two seasons of Arctic fieldwork. Cold Reg Sci Tech 56:90–97CrossRefGoogle Scholar
  47. Donenfeld J (2013) Building the Askaryan Radio Array at the South Pole. Posted on 31 Jan 2013, Retrieved 18 Feb 2018 from
  48. Down the Hole (n.d.) Rodwell adventure videos. Retrieved 31 May 2018 from
  49. Doyle SH, Hubbard B, Christoffersen P et al (2018) Physical conditions of fast glacier flow: 1. Measurements from boreholes drilled to the bed of Store Glacier in West Greenland. J Geophys Res Earth Surf 123:324–348CrossRefGoogle Scholar
  50. Engelhardt H (2004a) Thermal regime and dynamics of the West Antarctic ice sheet. Ann Glaciol 39:85–92CrossRefGoogle Scholar
  51. Engelhardt H (2004b) Ice temperature and high geothermal flux at Siple Dome, West Antarctica, from bore hole measurements. J Glaciol 50(169):251–256CrossRefGoogle Scholar
  52. Engelhardt H, Determann J (1987a) Borehole evidence for a thick layer of basal ice in the central Ronne Ice Shelf. Nature 327(6120):318–319CrossRefGoogle Scholar
  53. Engelhardt H, Determann J (1987b) Heisswasserbohrungen und geophysikalische Untersuchungen auf dem Filchner und Ekström Schelfeis [Hot water drilling and geophysical investigations on the Filchner and Ekström shelves]. In: Fütterer D (ed) Die Expedition ANTARKTIS-IV mit FS “Polarstern” 1985/86: Bericht von den Fahrtabschnitten ANT-IV/3-4 [The expedition ANTARKTIS-IV of RV “Polarstern” 1985/86, Report of Legs ANT-IV/3-4]. Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, vol 33, pp 126–130Google Scholar
  54. Engelhardt H, Kamb B (1997) Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. J Glaciol 43(144):207–230CrossRefGoogle Scholar
  55. Engelhardt H, Kamb B (1998) Basal sliding of Ice Stream B, West Antarctica. J Glaciol 44(147):223–230CrossRefGoogle Scholar
  56. Engelhardt H, Fahnestock M, Humphrey N et al (1989) Borehole drilling to the bed of ice stream B, Antarctica. Antarct J US 24(5):83–84Google Scholar
  57. Engelhardt H, Humphrey N, Kamb B et al (1990) Physical conditions at the base of a fast moving Antarctic ice stream. Science 248:57–59CrossRefGoogle Scholar
  58. Engelhardt H, Kamb B, Bolsey R (2000) A hot-water ice-coring drill. J Glaciol 46(153):341–345CrossRefGoogle Scholar
  59. Eyles N, Rogerson R (1977) Artificially induced thermokarst in active glacier ice: An example from northwest British Columbia, Canada. J Glaciol 18:437–444CrossRefGoogle Scholar
  60. Falconer T, Pyne A, Olney M et al (2007) Operations overview for the ANDRILL McMurdo ice shelf project, Antarctica. Terra Antarct 14(3):131–140Google Scholar
  61. Field Update: Dec. 12, 2010 (2010). ANDRILL, Antarctic Geological Drilling. Retrieved 24 Feb 2018 from
  62. Final comprehensive environmental evaluation (CEE) for ANDRILL (2006) McMurdo Sound Portfolio. In: Huston M, Gilbert N, Newman J (eds). International Antarctic Centre, Christchurch, New ZealandGoogle Scholar
  63. Fischer UH, Porter PH, Schuler T et al (2001) Hydraulic and mechanical properties of glacial sediments beneath Unteraargletscher, Switzerland: Implications for glacier basal motion. Hydrol Process 15:3525–3540CrossRefGoogle Scholar
  64. Fisher AT, Mankoff KD, Tulaczyk SM et al (2015) High geothermal heat flux measured below the West Antarctic Ice Sheet. Sci Adv 1:e1500093CrossRefGoogle Scholar
  65. Fisher D, Jones S (1971) The possible future behaviour of Berendon Glacier, Canada—a further study. J Glaciol 10(58):85–92CrossRefGoogle Scholar
  66. Fountain AG (1994) Borehole water-level variations and implications for the subglacial hydraulics of South Cascade Glacier, Washington State, USA. J Glaciol 40(135):293–304CrossRefGoogle Scholar
  67. Fountain AG, Schlichting R, Jansson P et al (2005) Observations of englacial flow passages—a fracture dominated system. Ann Glaciol 40:25–30CrossRefGoogle Scholar
  68. Fox D (2018) Life below the ice. Nature 564:180–182CrossRefGoogle Scholar
  69. Fox D (2019) Tiny animal carcasses found in buried Antarctic lake. Nature 565:405–406CrossRefGoogle Scholar
  70. Francois RE (1977) Arctic underwater operational systems. Arctic Systems. In: Amaria PJ, Bruneau AA, Lapp PA (eds) Proceedings of conference, 18–22 Aug 1975, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada. Plenum Press, New York, pp 81–102Google Scholar
  71. Francois RE, Harrison JG (1975) A thermal drill for making large holes in sea ice. In: Proceedings of IEEE OCEAN’75 Conference, 22–25 Sept 1975, San Diego, USA. The Institute of Electrical and Electronics Engineers, Inc., New York, pp 303–310Google Scholar
  72. Fudge TJ, Humphrey NF, Joel T et al (2008) Diurnal fluctuations in borehole water levels: configuration of the drainage system beneath Bench Glacier, Alaska, USA. J Glaciol 54(185):297–306CrossRefGoogle Scholar
  73. Gaidos E, Lanoil B, Thorsteinsson Th et al (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4(3):327–344CrossRefGoogle Scholar
  74. Gillet F (1975) Steam, hot-water and electrical thermal drills for temperate glaciers. J Glaciol 14(70):171–179CrossRefGoogle Scholar
  75. Govoni JW, Tucker WB III (1989) An update on portable hot-water sea ice drilling. Cold Reg Sci Tech 16:175–178CrossRefGoogle Scholar
  76. Gow AJ, Engelhardt H (2000) Preliminary analysis of ice cores from Siple Dome, West Antarctica. In: Proceedings of international symposium on physics of ice core records, 14–17 Sept 1998, Shikotsukohan, Hokkaido, Japan. Hokkaido University Press, Sapporo, pp 63–82Google Scholar
  77. Greenler L, Benson T, Cherwinka J et al (2014) Modeling hole size, lifetime and fuel consumption in hot-water ice drilling. Ann Glaciol 55(68):115–123CrossRefGoogle Scholar
  78. Grosfeld K, Hempel L (1991) Untersuchungen des Filchner-Ronne-Schelfeises mit Hilfe von Heiss-wasserbohrungen [Investigation of the Filchner-Ronne ice Shelf with the help of hot water holes]. In: Miller H, Oerter H (eds) Die Expedition ANTARKTIS-VIII mit FS “Polarstern” 1989/90: Bericht vom Fahrtabschnitt ANT-VIII/5 [The expedition ANTARKTIS-VIII of RV “POLARSTERN” 1989/90: Report of Leg ANT-VI 11/5]. Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, vol 86, pp 67–69Google Scholar
  79. Gusmeroli A, Murray T, Jansson P et al (2009) Geophysical techniques to measure the hydrothermal structure of Storglaciären, spring and summer 2009. Tarfala Research Station, Annual Report 2008/2009Google Scholar
  80. Gusmeroli A, Murray T, Jansson P et al (2010) Vertical distribution of water within the polythermal glacier Storglaciären, Sweden. J Geophys Res 115:F04002CrossRefGoogle Scholar
  81. Haeberli W, Fisch W (1984) Electrical resistivity soundings of glacier beds: a test study on Grubengletscher, Wallis, Swiss Alps. J Glaciol 30(106):373–376CrossRefGoogle Scholar
  82. Haehnel RB, Knuth MA (2011) Potable water supply feasibility study for Summit Station, Greenland. USA CRREL Report ERDC/CRREL TR-11-4Google Scholar
  83. Halzen F, Klein SR (2008) Astronomy and astrophysics with neutrinos. Phys Today 61(5):29–35CrossRefGoogle Scholar
  84. Hancock WH, Koci B (1989) Ice drilling instrumentation. In: Ice core drilling. In: Rado C, Beaudoing D (eds) Proceedings of the third international workshop on ice drilling technology, Grenoble, France, 10–14 Oct 1988. Laboratoire de Glaciologie et Geophysique de l’Environnement, Grenoble, pp 38–50Google Scholar
  85. Hansen DP (1987) Thermal hole opener. Cold Reg Sci Tech 14:51–56CrossRefGoogle Scholar
  86. Hanson B, Hooke RLB, Grace Jr EM (1998) Short-term velocity and water-pressure variations down-glacier from a riegel, Storglaciären, Sweden. J Glaciol 44(147):359–367CrossRefGoogle Scholar
  87. Hantz D, Lliboutry L (1983) Water ways, ice permeability at depth, and water pressures at Glacier D’Argentiere, French Alps. J Glaciol 29(102):227–239CrossRefGoogle Scholar
  88. Harper JT, Humphrey NF (1995) Borehole video analysis of a temperate glacier’s englacial and subglacial structure: implications for glacier flow models. Geology 23(10):901–904CrossRefGoogle Scholar
  89. Harper JT, Humphrey NF, Pfeffer WT (1998) Three-dimensional deformation measured in an Alaskan glacier. Science 281(5381):1340–1342CrossRefGoogle Scholar
  90. Harper JT, Humphrey NF, Pfeffer WF et al (2001) Spatial variability in the flow of a valley glacier: deformation of a large array of boreholes. J Geophys Res 106(B5):8547–8562CrossRefGoogle Scholar
  91. Harper JT, Humphrey NF, Pfeffer WT et al (2005) Evolution of subglacial water pressure along a glacier’s length. Ann Glaciol 40:31–36CrossRefGoogle Scholar
  92. Harper JT, Bradford JH, Humphrey NF et al (2010) Vertical extension of the subglacial drainage system into basal crevasses. Nature 467:579–582CrossRefGoogle Scholar
  93. Harper JT, Humphrey NF, Meierbachtol TW et al (2017) Borehole measurements indicate hard bed conditions, Kangerlussuaq sector, Western Greenland Ice Sheet. J Geophys Res Earth Surf 122:1605–1618CrossRefGoogle Scholar
  94. Harrington JA, Humphrey NF, Harper JT (2015) Temperature distribution and thermal anomalies along a flowline of the Greenland ice sheet. Ann Glaciol 56(70):98–104CrossRefGoogle Scholar
  95. Harrison WD, Truffer M, Echelmeyer KA et al (2004) Probing the till beneath Black Rapids Glacier, Alaska, USA. J Glaciol 50(171):608–614CrossRefGoogle Scholar
  96. Hattermann T, Nøst OA, Lilly JM et al (2012) Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophys Res Lett 39:L12605CrossRefGoogle Scholar
  97. Hodge SM (1979) Direct measurement of basal water pressures: progress and problems. J Glaciol 23(89):309–319CrossRefGoogle Scholar
  98. Hooke RL, Pohjola VA (1994) Hydrology of a segment of a glacier situated overdeepening, Storglaciären, Sweden. J Glaciol 40(134):140–148Google Scholar
  99. Hooke RL, Holmlund P, Iverson N (1987) Extrusion flow demonstrated by bore-hole deformation measurements over a Riegel, Storglaciären, Sweden. J Glaciol 33(113):72–78CrossRefGoogle Scholar
  100. Hooke RL, Miller SB, Kohler J (1988) Character of the englacial and subglacial drainage system in the upper part of the ablation area of Storglaciären, Sweden. J Glaciol 34(117):228–231CrossRefGoogle Scholar
  101. Hooke RL, Pohjola VA, Jansson P et al (1992) Intra-seasonal changes in deformation profiles revealed by borehole studies, Storglaciären, Sweden. J Glaciol 38(130):348–358Google Scholar
  102. Hot Water Drilling (n.d.) British Antarctic Service. Retrieved 16 Sept 2018 from
  103. Hot Water Drilling at Langhovde Glacier, East Antarctica (2012) Retrieved 26 Feb 2018 from
  104. How P, Benn DI, Hulton NRJ et al (2017) Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities. Cryosphere 11:2691–2710CrossRefGoogle Scholar
  105. Hubbard B, Glasser N (2005) Field techniques in glaciology and glacial geomorphology. Wiley, EnglandGoogle Scholar
  106. Hubbard B, Sharp MJ, Willis IC et al (1995) Borehole water-level variations and the structure of the subglacial hydrological system of Haut Glacier d’Arolla, Valais, Switzerland. J Glaciol 41(139):572–583CrossRefGoogle Scholar
  107. Hubbard B, Binley A, Slater L et al (1998) Inter-borehole electrical resistivity imaging of englacial drainage. J Glaciol 44(147):429–434CrossRefGoogle Scholar
  108. Hubbard B, Tison J-L, Pattyn F et al (2012) Optical-televiewer-based identification and characterization of material facies associated with an Antarctic ice-shelf rift. Ann Glaciol 53(60):137–146CrossRefGoogle Scholar
  109. Hubbard B, Luckman A, Ashmore DW et al (2016) Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat Commun 7:11897CrossRefGoogle Scholar
  110. Hughes KG, Langhorne PJ, Williams MJM (2013) Estimates of the refreezing rate in an ice-shelf borehole. J Glaciol 59(217):938–948CrossRefGoogle Scholar
  111. Humphrey N, Echelmeyer K (1990) Hot-water drilling and bore-hole closure in cold ice. J Glaciol 36(124):287–298CrossRefGoogle Scholar
  112. Humphrey N, Kamb B, Fahnestock M et al (1993) Characteristics of the bed of the lower Columbia Glacier, Alaska. J Geophys Res 98:837–846CrossRefGoogle Scholar
  113. Huss M, Bauder A, Werder M et al (2007) Glacier-dammed lake outburst events of Gornersee, Switzerland. J Glaciol 53(181):189–200CrossRefGoogle Scholar
  114. IceCube 2008 (2008) University of Wisconsin-Madison News. Retrieved 8 Oct 2018 from
  115. Iken A (1988) Adaptation of the hot-water-drilling method for drilling to great depth. Eidg. Tech. Hochschule, Zürich. Versuchsanst. Wasserbau. Hydrol Glaziol Mitt 94:211–229Google Scholar
  116. Iken A, Bindschadler RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J Glaciol 32(110):101–119CrossRefGoogle Scholar
  117. Iken A, Truffer M (1997) The relationship between subglacial water pressure and velocity of Findelengletscher, Switzerland, during its advance and retreat. J Glaciol 43(144):328–338CrossRefGoogle Scholar
  118. Iken A, Röthlisberger H, Hutter K (1977) Deep drilling with a hot water jet. Z Gletscherkd Glazialgeol 12(2):143–156Google Scholar
  119. Iken A, Echelmeyer K, Harrison WD (1989) A light-weight hot water drill for large depth: experiences with drilling on Jakobshavns glacier, Greenland. In: Rado C, Beaudoing D (eds) Ice core drilling. Proceedings of the third international workshop on ice drilling technology, Grenoble, France, 10–14 Oct 1988. Laboratoire de Glaciologie et Geophysique de l’Environnement, Grenoble, pp 123–136Google Scholar
  120. Iken A, Echelmeyer K, Harrison W et al (1993) Mechanisms of fast flow in Jakobshavns Isbræ, West Greenland: Part I. Measurements of temperature and water level in deep boreholes. J Glaciol 39(131):15–25CrossRefGoogle Scholar
  121. Kamb B, Engelhardt H (1991) Antarctic ice stream B: conditions controlling its motion and interactions with the climate system. In: Kotlyakov VM, Ushakov A, Glazovsky A (eds) Glaciers-Ocean-Atmosphere Interactions. Proceedings of the international symposium, 24–29 Sept 1990, St. Petersburg. IAHS Publ., vol 208, pp 145–154Google Scholar
  122. Kamb B, Raymond CF, Harrison WD et al (1985) Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science 227(4686):469–479CrossRefGoogle Scholar
  123. Kaminski C, Crees T, Ferguson J et al (2010) 12 days under ice—a historic AUV deployment in the Canadian High Arctic. In: Proceedings of the 2010 IEEE/OES autonomous underwater vehicles (AUV) Conference, 1–3 Sept 2010, Monterey, California, USA, pp 1–11Google Scholar
  124. Kaufman M (2012) Race is on to find life under Antarctic ice. National Geographic. Posted on 18 Dec 2012. Retrieved 10 Oct 2018 from
  125. Koci BR (1984) Hot water drilling in Antarctic firn and freezing rates in water filled boreholes. In: Holdsworth G, Kuivinen KC, Rand JH (eds) Proceedings of the second international workshop/symposium on ice drilling technology, 30–31 Aug 1982, Calgary, Alberta, Canada. USA CRREL Spec. Rep. 84–34, pp 101–103Google Scholar
  126. Koci B (1989) A deep hot water drill system with potential for bottom sampling. In: Rado C, Beaudoing D (eds) Ice core drilling. Proceedings of the third international workshop on ice drilling technology, Grenoble, France, 10–14 Oct 1988. Laboratoire de Glaciologie et Geophysique de l’Environnement, Grenoble, pp 137–139Google Scholar
  127. Koci B (1994) The AMANDA project: drilling precise, large-diameter holes using hot water. Mem Natl Inst Polar Res Spec Issue 49:203–211Google Scholar
  128. Koci B (2002) Wotan: A drill for ice cube. Mem Natl Inst Polar Res Spec Issue 56:209–216Google Scholar
  129. Koci BR, Kuivinen KC (1986) PICO drilling activities at Siple Station and on the Siple Coast during 1985–1986. Antarct. J US 21(5):117Google Scholar
  130. Koci B, Bindschandler R (1989) Hot-water drilling on Crary ice rise, Antarctica. Ann Glaciol 12:214CrossRefGoogle Scholar
  131. Koci B, Nagornov O, Zagorodnov V et al (1997) Hot water drilling of large diameter holes in cold ice. In: Lee Y, Hallett W (eds) Proceedings of the 5th international symposium on thermal engineering and sciences for cold regions, 19–22 May 1996, Ottawa, Canada, National Research Council Canada, pp 312–317Google Scholar
  132. Kravchenko VV (1984) Bureniye ledyanikh massivov nebol’shoi moshnosti [Drilling through massive ice of small thickness]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 50, pp 161–164Google Scholar
  133. Kudryashov BB, Menshikov NG (1994) Ice core hot-fluid drilling. Nankyoku Shiryo (Antarctic Record) 38(3):193–198Google Scholar
  134. Kuivinen KC, Koci BR (1984) Hot-water drilling on the Siple Coast and ice core drilling at Siple and South Pole Stations. Antarct. J US 19(5):58–59Google Scholar
  135. Kuivinen КC, Marshall PS, Koci BR (1980) Polar Ice Coring Office (PICO) drilling activities, 1979–80. Antarct. J US 15(5):76–77Google Scholar
  136. Li F (1993) An analysis of melt water freezing in the ice borehole. Polar Ice Coring Office, University of Alaska—Fairbanks, PICO TR-93-2Google Scholar
  137. Lüthi M, Funk M, Iken A et al (2002) Mechanisms of fast flow in Jakobshavn Isbræ, West Greenland. Part III. Measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. J Glaciol 48(162):369–385CrossRefGoogle Scholar
  138. Makinson K (1993) The BAS hot water drill: development and current design. Cold Reg Sci Tech 22:121–132CrossRefGoogle Scholar
  139. Makinson K (1994) BAS hot water drilling on Ronne Ice Shelf, Antarctica. Mem Natl Inst Polar Res Spec Issue 49:192–202Google Scholar
  140. Makinson K (2003) Future hot water drilling on Rutford Ice Stream 2004/05. FRISP Rep 14:163–166Google Scholar
  141. Makinson K, Anker PGD (2014) The BAS ice-shelf hot-water drill: design, methods and tools. Ann Glaciol 55(68):44–52CrossRefGoogle Scholar
  142. Makinson K, Pearce D, Hodgson DA et al (2016) Clean subglacial access: prospects for future deep hot-water drilling. Phil Trans R Soc A 374:20140304CrossRefGoogle Scholar
  143. Makovicka T, Strauss T, Hancock W et al (1998) The PICO hot water drill system. In: Hall J (ed) Proceedings of the seventh symposium on antarctic logistics and operations, 6–7 Aug 1996, Cambridge, United Kingdom. British Antarctic Survey, Cambridge, UK, pp 185–192Google Scholar
  144. Meier M, Lundstrom S, Stone D et al (1994) Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1. Observations. J Geophys Res 99(B8):15219–15229CrossRefGoogle Scholar
  145. Meierbachtol T, Harper J, Humphrey N (2013) Basal drainage system response to increasing surface melt on the Greenland Ice Sheet. Science 341:777–779CrossRefGoogle Scholar
  146. Meierbachtol TW, Harper JT, Humphrey NF et al (2016) Mechanical forcing of water pressure in a hydraulically isolated reach beneath Western Greenland’s ablation zone. Ann Glaciol 57(72):62–70CrossRefGoogle Scholar
  147. Mellor M (1986) Equipment for making access holes through Arctic sea ice. USA CRREL Spec Rep 86–32Google Scholar
  148. Metcalfe T (2019) Photos: drilling into Antarctic Subglacial Lake Mercer. Live Science Posted on 15 Jan 2019. Retrieved on 7 Mar 2019 from
  149. Miles K (2017) Image of the week—drilling into a Himalayan glacier. EGU Blogs. Posted on 28 July 2017. Retrieved 18 Feb 2018 from
  150. Miles KE, Hubbard B, Quincey DJ et al (2018) Polythermal structure of a Himalayan debris-covered glacier revealed by borehole thermometry. Sci Rep 8:16825CrossRefGoogle Scholar
  151. Mironov YU, Morev VA, Porubayev VS et al (2003) Study of geometry and internal structure of ice ridges and stamukhas using thermal water drilling. In: Proceedings of port and ocean engineering under arctic conditions (POAC ‘03), 16–19 June 2003, Trondheim, Norway, pp 623–634Google Scholar
  152. Morev VA, Pukhov VA, Yakovlev VM et al (1984) Equipment and technology for drilling in temperate glaciers. In: Holdsworth G, Kuivinen KC, Rand JH (eds) Proceedings of the second international workshop/symposium on ice drilling technology, 30–31 Aug 1982, Calgary, Alberta, Canada, USA CRREL Spec Rep 84–34, pp 125–127Google Scholar
  153. Morev VA, Toskin VV, Yakovlev VM (1986) Tekhnicheskie sredstva dlya teplovogo bureniya i rezaniya l’da [Devices for thermal drilling and cutting in ice]. Problemy inzhenernoi glyatsiologii [Problems of Engineering Glaciology], Nauka, Nobosibirsk, pp 37–39 (in Russian)Google Scholar
  154. Müller F (1976) On the thermal regime of a high-arctic valley glacier. J Glaciol 16(74):119–133CrossRefGoogle Scholar
  155. Münchow A, Padman L, Washam P et al (2016) The ice shelf of Petermann Gletscher, North Greenland, and its connection to the Arctic and Atlantic Oceans. Oceanography 29(4):84–95CrossRefGoogle Scholar
  156. Murray T, Porter PR (2001) Basal conditions beneath a soft-bedded polythermal surge-type glacier: Bakaninbreen, Svalbard. Quatern Int 86(1):103–116CrossRefGoogle Scholar
  157. Murray T, Gooch DL, Stuart GW (1997) Structures within the surge front at Bakaninbreen, Svalbard, using ground-penetrating radar. Ann Glaciol 24:122–129CrossRefGoogle Scholar
  158. Murray T, Stuart GW, Fry M et al (2000) Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. J Glaciol 46(154):389–398CrossRefGoogle Scholar
  159. Napoléoni JGP, Clarke GKC (1978) Hot water drilling in cold glacier. Can J Earth Sci 15:316–321CrossRefGoogle Scholar
  160. Nicholls K (2015) Arctic blog: hot water drilling on Petermann Glacier. Posted on 24 Aug 2015. Retrieved 19 Sept 2018 from
  161. Nicholls KW, Makinson K (1998) A ‘light weight’ hot water drill for use on Ronne Ice Shelf. In: Hall J (ed) Proceedings of the seventh symposium on antarctic logistics and operations, 6–7 Aug 1996, Cambridge, United Kingdom. British Antarctic Survey, Cambridge, UK, pp 193–202Google Scholar
  162. Nicholls KW, Østerhus S, Makinson K et al (2001) Oceanographic conditions south of Berkner Island, beneath Filchner-Ronne Ice Shelf, Antarctica. J Geophys Res 106(C6):11481–11492CrossRefGoogle Scholar
  163. Nicholls KW, Makinson K, Østerhus S (2004) Circulation and water masses beneath the northern Ronne Ice Shelf, Antarctica. J Geophys Res 109(C12):C12017CrossRefGoogle Scholar
  164. Nicholls KW, Corr HFJ, Makinson K et al (2012) Rock debris in an Antarctic ice shelf. Ann Glaciol 53(60):235–240CrossRefGoogle Scholar
  165. Nixdorf U, Mandler H, Wege C et al (1994a) Heisswasserbohrung [Hot water drilling]. In: Miller H (ed) Die Expedition ANTARKTIS-X mit FS “Polarstern” 1992: Bericht von den Fahrtabschnitten ANT-X/1a und 2 [The expedition ANTARKTIS-X of RV “Polarstern” 1992: Report of Legs ANT-X/1a and 2], Bremerhaven, Alfred Wegener Institute for Polar and Marine Research 152, pp 191–195 (in German)Google Scholar
  166. Nixdorf U, Oerter H, Miller H (1994b) First access to the ocean beneath the Ekströmisen Antarctica, by means of hot-water drilling. Ann Glaciol 20:110–114CrossRefGoogle Scholar
  167. Nixdorf U, Dunker E, Eckstaller A et al (1997) Schelfeis-Ozean-Wechselwirkung [Ice Shelf-Ocean Interaction]. In: Jokat W, Oerter H (eds) Die Expedition ANTARKTIS-XII mit FS “Polarstern” 1995: Bericht vom Fahrtabschnitt ANT-XII/3 [The expedition ANTARKTIS-XII of RV “Polarstern” in 1995: report of leg ANT-XII/3], Bremerhaven, Alfred Wegener Institute for Polar and Marine Research 219, pp 69–88 (in German)Google Scholar
  168. Nøst OA (2009) The second drilling successful. Norwegian Polar Institute. Posted on 19 Dec 2009. Retrieved 16 Mar 2018 from
  169. Nøst OA, Gabrielsen PG, Smedsrud LH (2009) Hot water drilling manual. Norwegian Polar Institute, OsloGoogle Scholar
  170. Olesen OB (1989) A Danish contribution to the family of hot-water glacier drills. In: Rado C, Beaudoing D (eds) Ice core drilling. Proceedings of the third international workshop on ice drilling technology, Grenoble, France, 10–14 Oct 1988. Laboratoire de Glaciologie et Geophysique de l’Environnement, Grenoble, pp 140–148Google Scholar
  171. Orheim O, Hagen JO, Østerhus S et al (1990) Studies on, and underneath, the Ice Shelf Fimbulisen. Meddelelser 113. In: Orheim O (ed) Report of the Norwegian Antarctic Research Expedition, Norsk Polarinstituit, Oslo, pp 59–73Google Scholar
  172. Orheim O, Østerhus S, Melvold K et al (1997) Hot water drilling near Filchner Station, Ronne Ice Shelf. Meddelelser 125. In: Orheim O (ed) Report of the Norwegian Antarctic Research Expedition 1992/93. Norsk Polarinstituit, Oslo, pp 93–96Google Scholar
  173. Østerhus S, Orheim O (1992) Studies through Jutulgryta. Fimbulisen in the 1991/92 season. In: Oerter H (ed) Filchner-Ronne-Ice-Shelf-Programme, Report No. 6, Bremerhaven, AWI, pp 103–109Google Scholar
  174. Paren JG, Cooper S (1988) Thermal regime of George VI Ice Shelf, Antarctic Peninsula. Ann Glaciol 11:206CrossRefGoogle Scholar
  175. Pohjola VA (1994) TV-video observations of englacial voids Storglaciären, Sweden. J Glaciol 40(135):231–240CrossRefGoogle Scholar
  176. Poplin JP, Ralston TD, Lawrence WS (1987) A thermal ice drill for profiling thick multiyear ice. Cold Reg Sci Tech 14:1–11CrossRefGoogle Scholar
  177. Porter PR, Murray T, Dowdeswell JA (1997) Sediment deformation and basal dynamics beneath a glacier surge front: Bakaninbreen, Svalbard. Ann Glaciol 24:21–26CrossRefGoogle Scholar
  178. Rack FR (2016) Enabling clean access into Subglacial Lake Whillans: development and use of the WISSARD hot water drill system. Phil Trans R Soc A 374:20140305CrossRefGoogle Scholar
  179. Rack FR, Duling D, Blythe D et al (2014) Developing a hot-water drill system for the WISSARD project: 1. Basic drill system components and design. Ann Glaciol 55(68):285–297CrossRefGoogle Scholar
  180. Rado C, Girard C, Perrin J (1987) Electrochaude: a self-flushing hot-water drilling apparatus for glaciars with debris. J Glaciol 33(114):236–238CrossRefGoogle Scholar
  181. Rand J (1982) Developing a water well for the ice backfilling of Dye-2. USA CRREL Spec Rep 82–32Google Scholar
  182. Reed L (2015) UNL drillers help make new discoveries in Antarctica. Office of University Communications, University of Nebraska–Lincoln. Posted on 21 Jan 2015. Retrieved 2 Oct 2018 from
  183. Return to the Glacier (2013) Arctic Research. Reports from INTERACT field sites. Posted on 26 July 2013 by chaxtell89. Available at: Accessed 11 Feb 2016
  184. Reynaud L, Courdouan P (1962) Reconnaissance du thalweg sous-glaciaire de la Mer de Glace en vue de l’établissement d’une prise d’eau. La Houille Blanche, Special Issue B-1962, pp 808–816Google Scholar
  185. Roberson S, Hubbard B (2010) Application of borehole optical televiewing to investigating the 3-D structure of glaciers: Implications for the formation of longitudinal debris ridges, midre Lovénbreen, Svalbard. J Glaciol 56(195):143–156CrossRefGoogle Scholar
  186. Röösli C, Walter F, Husen S et al (2014) Sustained seismic tremors and icequakes detected in the ablation zone of the Greenland ice sheet. J Glaciol 60(221):563–575CrossRefGoogle Scholar
  187. Russell FL (1965) Water production in a polar ice cap by utilization of waste engine heat. USA CRREL Tech Report 168Google Scholar
  188. Ryser C, Lüthi MP, Andrews LC et al (2014) Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation. J Glaciol 60(222):647–660CrossRefGoogle Scholar
  189. SALSA Chief Scientist Reports (2019) Compiled science field reports, 15 Dec 2018–6 Jan 2019. Available on-line at:
  190. Schiermeier Q (2014) Polar drilling problems revealed. Nature 505:463CrossRefGoogle Scholar
  191. Scientists drill to record depths in West Antarctica (2019) British Antarctic Survey Press release. Posted on 24 Jan 2019. Retrieved on 8 Mar 2019 from
  192. Sediment Laden Lake Ice Drill (n.d.) U.S. Ice Drilling Program, Current Inventory. Retrieved 20 Feb 2018 from
  193. Siegert MJ, Clarke RJ, Mowlem M et al (2012) Clean access, measurement, and sampling of Ellsworth Subglacial Lake: a method for exploring deep Antarctic subglacial lake environments. Rev Geophys 50(RG1):RG1003Google Scholar
  194. Siegert MJ, Makinson K, Blake D et al (2014) An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13. Ann Glaciol 55(65):59–73CrossRefGoogle Scholar
  195. Silverwood N (2018) The long haul. New Zealand Geographic. Retrieved 8 Sept 2018 from
  196. Small Hot Water Drill (n.d.) U.S. Ice Drilling Program, Equipment. Retrieved 20 Feb 2018 from
  197. Smeets CJPP, Boot W, Hubbard A et al (2012) A wireless subglacial probe for deep ice applications. J Glaciol 58(211):841–848CrossRefGoogle Scholar
  198. Smirnov VN, Mironov EU (2010) Issledovania prochnosti, morfometrii i dynamiki l’da v inzhenernikh zadachakh pri osvoenii shel’fa v zamerzayushchikh moryakh [Research on strength, morphometry and ice dynamics in the engineering missions during investigations of the shelf of freezing seas]. Problemy Arktiki i Antarktiki [Problems of Arctic and Anatrctica] 2(85):5–15 (in Russian)Google Scholar
  199. Smith AM (2005) RABID: Basal conditions on Rutford Ice Stream, West Antarctica: Hot-water drilling and down-hole instrumentation. British Antarctic Survey Field Report, R/2004/S3, BAS Archives ref: AD6/2R/2004/S3Google Scholar
  200. Smith A, Fothergill C (2016) BEAMISH initial environmental evaluation. Environment Office, British Antarctic Survey, Cambridge, United KingdomGoogle Scholar
  201. Spears A, West M, Meister M et al (2016) Under ice in Antarctica: the ICEFIN unmanned underwater vehicle development and deployment. IEEE Robot Autom Mag 23(4):30–41CrossRefGoogle Scholar
  202. Stanton TP, Shaw WJ, Truffer M et al (2013) Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica. Science 341:1236–1239CrossRefGoogle Scholar
  203. Sugiyama S, Tsutaki S, Nishimura D et al (2008) Hot water drilling and glaciological observations at the terminal part of Rhonegletscher, Switzerland in 2007. Bull Glaciol Res 26:41–47Google Scholar
  204. Sugiyama S, Skvarca P, Naito N et al (2010) Hot-water drilling at Glaciar Perito Moreno, Southern Patagonia Icefield. Bull Glaciol Res 28:27–32CrossRefGoogle Scholar
  205. Sugiyama S, Sawagaki T, Fukuda T et al (2014) Active water exchange and life near the grounding line of an Antarctic outlet glacier. Earth Planet Sci Lett 399:52–60CrossRefGoogle Scholar
  206. Talalay PG (2016) Mechanical ice drilling technology. Geological Publishing House, Beijing and Springer Science + Business Media SingaporeCrossRefGoogle Scholar
  207. Talalay PG, Pyne AR (2017) Geological drilling in McMurdo Dry Valleys and McMurdo Sound, Antarctica: historical development. Cold Reg Sci Tech 141:131–162CrossRefGoogle Scholar
  208. Talalay P, Yang C, Cao P et al (2015) Ice-core drilling problems and solutions. Cold Reg Sci Tech 120:1–20CrossRefGoogle Scholar
  209. Talalay P, Liu G, Wang R et al (2018) Shallow hot-water ice drill: estimation of drilling parameters and testing. Cold Reg Sci Tech 155:11–19CrossRefGoogle Scholar
  210. Taylor PL (1984) A hot water drill for temperate ice. In: Holdsworth G, Kuivinen KC, Rand JH (eds) Proceedings of the second international workshop/symposium on ice drilling technology, 30–31 Aug 1982, Calgary, Alberta, Canada. USA CRREL Spec Rep 84–34, pp 105–117Google Scholar
  211. Taylor S, Lever JH, Harvey RP et al (1997) Collecting micrometeorites from the South Pole water well. USA CRREL Rep 97-1Google Scholar
  212. The Franklin Expedition (2017) Parks Canada. Retrieved 21 Feb 2018 from
  213. Thermal drilling equipment (n.d.) Kovacs ice drilling equipment. Retrieved 15 Sept 2016 from
  214. Thomsen HH, Olesen O, Braithwaite RJ et al (1991) Ice drilling and mass balance at Pâkitsoq, central West Greenland. Grønlands Geologiske Undersøgelse 152, Copenhagen, Denmark, pp 80–84Google Scholar
  215. Thorsteinsson T, Elefsen SÓ, Gaidos E et al (2008) A hot water drill with built-in sterilization: design, testing and performance. Jökull 57:71–82Google Scholar
  216. Treverrow A, Donoghue S (2010) AMISOR: understanding the ocean beneath the ice. Aust Antarct Mag 19:26–27Google Scholar
  217. Treverrow A, Warner RC, Budd WF et al (2010) Meteoric and marine ice crystal orientation fabrics from the Amery Ice Shelf, East Antarctica. J Glaciol 56(199):877–890CrossRefGoogle Scholar
  218. Truffer M (2017) Drilling through the Nansen Ice Shelf. Glacier adventures: Reports from the field. Posted on 15 Feb 2017. Retrieved 8 Mar 2018 from
  219. Truffer M, Motyka RJ, Harrison WD et al (1999) Subglacial drilling at Black Rapids Glacier, Alaska, U.S.A.: Drilling method and sample descriptions. J Glaciol 45(151):495–505Google Scholar
  220. Tsutaki S, Sugiyama S (2007) Construction of a hot water drilling system. Preprints of the annual conference, Japanese Society of Snow and Ice 2007, 4-4, 2007 (in Japanese)Google Scholar
  221. Tsutaki S, Sugiyama S (2009) Development of a hot water drilling system for subglacial and englacial measurements. Bull Glaciol Res 27:7–14Google Scholar
  222. Tucker WB III, Govoni JW (1987) A portable hot-water ice drill. Cold Reg Sci Tech 14:57–64CrossRefGoogle Scholar
  223. Tulaczyk S, Kamb B, Scherer R et al (1998) Sedimentary processes at the base of a West Antarctic Ice Stream: constraints from textural and compositional properties of subglacial debris. J Sediment Res 68(3):487–496CrossRefGoogle Scholar
  224. Tulaczyk S, Mikucki JA, Siegfried MR et al (2014) WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann Glaciol 55(65):51–58CrossRefGoogle Scholar
  225. Verrall R (2001) A guide to Arctic field trips. Defence Research Establishment Atlantic, CanadaGoogle Scholar
  226. Verrall R, Baade D (1984) A simple hot-water drill for penetrating ice shelves. In: Holdsworth G, Kuivinen KC, Rand JH (eds) Proceedings of the second international workshop/symposium on ice drilling technology, 30–31 Aug 1982, Calgary, Alberta, Canada. USA CRREL Spec Rep 84–34, pp 87–94Google Scholar
  227. Vogel SW (2009) On the geometry of core-catcher holders for hot-water based ice coring of sediment-laden ice. J Glaciol 55(189):188–190CrossRefGoogle Scholar
  228. Waddington BS, Clarke CKC (1995) Hydraulic properties of subglacial sediment determined from the mechanical response of water-filled boreholes. J Glaciol 41(137):112–124CrossRefGoogle Scholar
  229. Willis A, Mair D, Hubbard B et al (2003) Seasonal variations in ice deformation and basal motion across the tongue of Haut Glacier d’Arolla, Switzerland. Ann Glaciol 36:157–167CrossRefGoogle Scholar
  230. Yen Y-C, Tien C (1976) Heat transfer characteristics of melting and refreezing a drill hole through an ice shelf in Antarctica. USA CRREL Rep 76-12Google Scholar
  231. Zagorodnov VS, Kelley JJ, Stanford KL et al (1992) Borehole monitoring with impulse acoustic sensors. Polar Ice Coring Office Technical Note, TN-92-4, University of Alaska FairbanksGoogle Scholar

Copyright information

© Geological Publishing House and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.College of Construction EngineeringJilin UniversityChangchunChina

Personalised recommendations