Advertisement

Hot-Point Drills

  • Pavel G. TalalayEmail author
Chapter
  • 217 Downloads
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

Hot-points are designed for producing boreholes without a core by melting ice and used to install ablation sticks, to determine ice thickness, to locate englacial and subglacial streams, to deploy sensors and tools under ice shelves, to measure temperatures and closure rates of glaciers, to study subglacial environment in Earth and other planets. The energy for the melting tip heater is provided by a hot fluid that is pumped down using hoses in a closed circuit or by electricity transported via electrical cable.

Keywords

Thermal tip Ice melting Fluid heating medium Electric heaters Meltwater refreezing Drill’s vertical stabilization 

References

  1. Aamot HWC (1967a) Pendulum steering for thermal probes in glaciers. USA CRREL Special Report 116Google Scholar
  2. Aamot HWC (1967b) The Philberth probe for investigating polar ice caps. USA CRREL Special Report 119Google Scholar
  3. Aamot HWC (1967c) Heat transfer and performance analysis of a thermal probe for glaciers. USA CRREL Technical Report 194Google Scholar
  4. Aamot HWC (1968a) Instrumented probes for deep glacial investigations. USA CRREL Technical Report 210Google Scholar
  5. Aamot HWC (1968b) Instrumented probes for deep glacial investigations. J Glaciol 7(50):321–328CrossRefGoogle Scholar
  6. Aamot HWC (1968c) A buoyancy-stabilized hot-point drill for glacier studies. USA CRREL Technical Report 215Google Scholar
  7. Aamot HWC (1968d) A buoyancy-stabilized hot-point drill for glacier studies. J Glaciol 7(51):493–498CrossRefGoogle Scholar
  8. Aamot HWC (1968e) Pendulum steered thermal probe. US Patent 3,390,729Google Scholar
  9. Aamot HWC (1969) Winding long, slender coils by the orthocyclic method. USA CRREL Special Report 128Google Scholar
  10. Aamot HWC (1970a) Self-contained thermal probes for remote measurements within an ice sheet. In: International symposium on antarctic glaciological exploration (ISAGE), IASH Publ. 86, pp 63–68Google Scholar
  11. Aamot HWC (1970b) Development of a vertically stabilized thermal probe for studies in and below ice sheets. Trans ASME, J Eng Ind 92(2):263–268CrossRefGoogle Scholar
  12. Antarctica: ANDRILL (2005) The scientific method. Retrieved 2 Feb 2017 from https://www.flickr.com/photos/orebody/sets/72157622811009641
  13. Bazhev AB, Zagorodnov VS, Rototaeva OV (1988) Burovye raboty v oblasti pitaniya lednika Garabashi na El’bruse [Drilling operations in the ice-feeding region of Garabashi Glacier at Elbrus]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 64, pp 11–12 (in Russian)Google Scholar
  14. Benson T, Cherwinka J, Duvernois M et al (2014) IceCube enhanced hot water drill functional description. Ann Glaciol 55(68):105–114CrossRefGoogle Scholar
  15. Bentley CR, Koci BR, Augustin LJ-M et al (2009) Ice drilling and coring. In: Bar-Cohen Y, Zacny K (eds) Drilling in extreme environments. Penetration and sampling on earth and other planets. WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim, pp 221–308Google Scholar
  16. Biele J, Ulamec S, Garry J et al (2002) Melting probes at Lake Vostok and Europa. In: Proceeding of the First European Workshop on Exo/Astrobiology, 16–19 September, 2002. Graz, Austria, ESA SP-518, pp 253–260Google Scholar
  17. Biele J, Ulamec S, Hilchenbach M et al (2011) In situ analysis of Europa ices by short-range melting probes. Adv Space Res 48:755–763CrossRefGoogle Scholar
  18. Calciati M (1945) Le perforazioni eseguite del ghiacciaio d’Hosand. Bolletino del Comitato Glaciologico Italiano 23:19–28Google Scholar
  19. Cardell G, Hecht MH, Carsey FD et al (2004) The subsurface ice probe (SIPR): a low-power thermal probe for the martian polar layered deposits. In: 35th Lunar and planetary science conference, 15–19 March 2004. League City, Texas, USA, Abstract no 2041Google Scholar
  20. Clarke GKC (1987) A short history of scientific investigations on glaciers. J Glaciol, Spec Issue, 4–24CrossRefGoogle Scholar
  21. Classen DF (1970) Thermal drilling and deep ice-temperature measurements on the Fox glacier, Yukon. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science. Department of Geophysics. The University of British Columbia, Vancouver, Canada, April 1970, 65 pGoogle Scholar
  22. Classen DF (1977) Temperature profiles for the Barnes ice cap surge zone. J Glaciol 18(80):391–405CrossRefGoogle Scholar
  23. Classen DF, Clarke GKC (1972) Thermal drilling and deep ice temperature measurements on the Rusty Glacier. In: Icefield ranges research project. Scientific results, vol 3. In: Bushnell VC, Ragle RH (eds) American Geographical Society, New York and Arctic Institute of North America, Montreal, Canada, pp 103–116Google Scholar
  24. Dachwald B, Mikucki J, Tulaczyk S et al (2014) IceMole: a maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems. Ann Glaciol 55(65):14–22CrossRefGoogle Scholar
  25. Dachwald B, Kowalski J, Baader F et al (2016) Enceladus explorer: next steps in the development and testing of a steerable subsurface ice probe for autonomous operation. In: Proceeding of the conference Enceladus and the Icy Moons of Saturn, 26–29 July, 2016. Boulder, USA, Abstract no 3031Google Scholar
  26. Datta PM (1980) Design and fabrication of hot point probe for Zemu glacier operation. Geol Surv India Spec Publ 4:296–301Google Scholar
  27. Davis A (2017) A prototype ice-melting probe for collecting biological samples from cryogenic ice at low pressure. Astrobiology 17(8):709–720CrossRefGoogle Scholar
  28. Di Pippo S, Mugnuolo R, Vielmo P et al (1999) The exploitation of Europa ice and water basins: an assessment on required technological developments, on system design approaches and on relevant expected benefits to space- and earth-based activities. Planet Space Sci 47:921–933CrossRefGoogle Scholar
  29. Dubrovin LI (1960) Rassol v shel’fovom lednike Lazareva [Brine in the Lazarev Ice Shelf]. Informatsionny Byulleten’ Sovetkoj Antarkticheskoj Ekspeditsii [Soviet Antarctic Expedition Information Bulletin] 22:15–16 (in Russian)Google Scholar
  30. Dutta RK (1980) Drilling in Zemu glacier, North Sikkem. A study of methodology and problems. Geol Surv India Spec Publ 4:229–233Google Scholar
  31. Ekman SR (1961) Notes on glaciological activities in Kebnekajse, Sweden. Thermal drilling in Insfallglaciären, Kebnekajsę. Geografiska Annaler 43(3/4):422Google Scholar
  32. Elliott JO, Carsey FD (2004) Deep subsurface exploration of planetary ice enabled by nuclear power. In: Proceeding of 2004 IEEE Aerospace Conference, 6–13 March 2004, vol 5. Big Sky, Montana, USA, pp 2978–2987Google Scholar
  33. Aviation Epps (2009) Coporate Brochure. DeKalb-Peachtree Airport, Atlanta, USAGoogle Scholar
  34. French L, Anderson FS, Carsey F et al (2001) Cryobots: an answer to subsurface mobility in planetary icy environments. In: Proceeding of the 6th international symposium on artificial intelligence and robotics & automation in space: i-SAIRAS 2001, 18–22 June, 2001. Canadian Space Agency, St-Hubert, Quebec, Canada, 8 pGoogle Scholar
  35. Gerrard JAF, Perutz MF, Roch A (1952) Measurements of the velocity distribution along a vertical line through a glacier. Proc R Soc Ser A 213(115):546–558Google Scholar
  36. Gillet F (1975) Steam, hot-water and electrical thermal drills for temperate glaciers. J Glaciol 14(70):171–179CrossRefGoogle Scholar
  37. Gillet F, Rado C, Maree G et al (1984). “Climatopic” thermal probe. In: Holdsworth G, Kuivinen KC, Rand JH (eds) Proceeding of the second international workshop/symposim on ice drilling technology, 30–31 August 1982. Calgary, Alberta, Canada. USA CRREL Special Report 84–34, pp. 95–99Google Scholar
  38. Golubev GN, Sukhanov LA, Khromov RS (1976) Beskernovoye termoelektroburenie i ego primenenie dlya izuchenia stroeniya lednika Jankuat [Full-diameter thermal drilling and its using for structure investigations of Jankuat Glacier]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 28, pp 96–104 (in Russian)Google Scholar
  39. Grilli R, Marrocco N, Desbois T et al (2014) SUBGLACIOR: An optical analyzer embedded in an Antarctic ice probe for exploring the past climate. Rev Sci Instrum 85:111301CrossRefGoogle Scholar
  40. Grześ M (1980) Non-cored hot point drills on Hans Glacier (Spitsbergen), method and first results. Pol Polar Res 1(2–3):75–85Google Scholar
  41. Haehnel RB, Knuth MA (2011) Potable water supply feasibility study for summit station, Greenland. USA CRREL Report ERDC/CRREL TR-11-4Google Scholar
  42. Hansen BL, Kersten L (1984) An in-situ sampling thermal probe. In: Holdsworth G, Kuivinen KC, Rand JH (eds) Proceeding of the second international workshop/symposium on ice drilling technology, 30–31 August, 1982. Calgary, Alberta, Canada. USA CRREL Special Report 84–34, pp 119–122Google Scholar
  43. Harrison WD (1975) Temperature measurements in a temperate glacier. J Glaciol 14(70):23–30CrossRefGoogle Scholar
  44. Harrison WD, Kamb B (1976) Drilling to observe subglacial conditions and sliding motion. In: Splettstoesser JF (ed.) Ice-core drilling: proceeding of the symposium, 28–30 August, 1974. University of Nebraska, Lincoln, USA. University of Nebraska Press, Lincoln, pp 37–43Google Scholar
  45. Hayes D (1995) The lost squadron … Found! Georgia Tech., Spring, pp 40–47Google Scholar
  46. Hodge SM (1974) Variations in the sliding of a temperate glacier. J Glaciol 13(69):349–369CrossRefGoogle Scholar
  47. Hodge SM (1976) Direct measurement of a pilot basal water pressures: study. J Glaciol 16(74):205–218CrossRefGoogle Scholar
  48. Hodge SM (1979) Direct measurement of basal water pressures: progress and problems. J Glaciol 23(89):309–319CrossRefGoogle Scholar
  49. Hooke RLeB (1976). University of Minnesota ice drill. In: Splettstoesser JF (ed.) Ice-core drilling: proceeding of the symposium, 28–30 August, 1974, University of Nebraska, Lincoln, USA. Univ. of Nebraska Press, Lincoln, pp 47–57Google Scholar
  50. Hooke RLeB, Alexander Jr EC (1980) Temperature profiles in the Barnes Ice Cap, Baffin Island, Canada, and heat flux from the subglacial terrane. Can J Earth Sci 17:1174–1188CrossRefGoogle Scholar
  51. Hooke RLeB, Hanson B (1986). Borehole deformation experiments, Barnes Ice Cap, Canada. Cold Reg Sci Tech 12 261–276CrossRefGoogle Scholar
  52. Horne MF (2018) Thermal probe design for Europa sample acquisition. Acta Astronaut 142:29–36CrossRefGoogle Scholar
  53. Hotpoint (n.d.). Retrieved 19 July 2016 from http://www.hotpoint.com/
  54. Ignatov VS (1960a) Izuchenie stroenia snezhno-firnovoi tolshchi v Antarktide termicheskim sposobom [Study of the structure of snow and firn cover in Antarctica by the thermal method]. Informatsionny Byulleten’ Sovetkoj Antarkticheskoj ekspeditsii [Soviet Antarctic Expedition Information Bulletin] 21:16–18 (in Russian)Google Scholar
  55. Ignatov VS (1960b) Opyt termicheskoy prokhodki ledyanikh skvazhin na stantsii Vostok [Experiment in the thermal drilling of holes in the ice at Vostok Station]. Informatsionny Byulleten’ Sovetkoj Antarkticheskoj ekspeditsii [Soviet Antarctic Expedition Information Bulletin] 22:50–52 (in Russian)Google Scholar
  56. Ignatov VS (1962) God na polyuse kholoda [A Year on the Pole of Cold]. Geografgiz, Moscow (in Russian)Google Scholar
  57. Kamb B, Shreve RL (1966) Results of a new method for measuring internal deformation in glaciers. Trans Am Geophys Union 47:190Google Scholar
  58. Kasser P (1960) Ein leichter thermischer Eisbohrer als Hilfsgerät zur Installation von Ablationsstangen auf Gletschern. Geofisica Pura e Applicllla 45(1):97–114CrossRefGoogle Scholar
  59. Kaufmann E, Kargl G, Kömle NI et al (2009) Melting and sublimation of planetary ices under low pressure conditions: laboratory experiments with a melting probe prototype. Earth Moon Planets 105:11–29CrossRefGoogle Scholar
  60. Kelty JR (1995) An in situ sampling thermal probe for studying global ice sheets. Dissertation presented to the Faculty of the Graduate College in the University of Nebraska in partial fulfillment of requirements for the degree of Doctor of Philosophy. Major: Interdepartmental area of engineering (Electrical engineering) under the supervision of Prof. D. P. Billesbach, Nebraska, Lincoln, USA, May 1995Google Scholar
  61. Kharitonov VV (2005) Peculiarities of fractional composition of the Pechora Sea first-year ridges. In: Proceeding of the 18th international conferences on port and ocean engineering under Arctic Conditions (POAC), vol 2, 26–30 June, 2005, Potsdam, New York, pp. 907–916Google Scholar
  62. Kharitonov VV (2008) Internal structure of ice ridges and stamukhas based on thermal drilling data. Cold Reg Sci Tech 52:302–325CrossRefGoogle Scholar
  63. Kharitonov VV, Morev VA (2005) Research of the internal structure of ridges in the Central Arctic by electrothermal drilling method. In: Proceeding of the 18th international conference on port and ocean engineering under Arctic conditions (POAC), vol 2, 26–30 June, 2005. Potsdam, New York, pp 917–926Google Scholar
  64. Kharitonov VV, Morev VA (2009) Torosy v raione dreifuyushchei stantsii “Severnyi Polyus – 35” [Ice ridges in the region of drifting station “Severnyi Polyus – 35”]. Meteorologiya i gidrologiya [Meteorology and Hydrology] 6:68–73 (in Russian)Google Scholar
  65. Kharitonov VV, Morev VA (2011) Metod issledovaniya vnutrennego stroeniya torosov i stamukh s pomoshchyu technologii termobureniya [Research of inner structure of ice ridges and stamikhas with thermal drilling technology]. Meteorologiya i gidrologiya [Meteorology and Hydrology] 7:49–58 (in Russian)Google Scholar
  66. Koechlin R (1945) Procédé pour sonder les glaciers et installation pour sa mise en oeuvre. FR Patent 910,034Google Scholar
  67. Konstantinidis K, Martinez CLF, Dachwald B et al (2014) A lander mission to probe subglacial water on Saturn’s moon Enceladus for life. Acta Astronaut 106:63–89CrossRefGoogle Scholar
  68. Korotkevich YeS (ed.) (1965) Pyataya kontinental’naya ekspeditsiya 1959–1961 gg. Obshchee opisanye [Fifth Continental Expedition of 1959–1961. General description]. Trudy Sovetskoy Antarkticheskoy Ekspeditsii (Transactions of Soviet Antarctic Expedition) 36. (in Russian)Google Scholar
  69. Korotkevich YeS, Kudryashov BB (1976) Ice sheet drilling by Soviet Antarctic expeditions. In: Splettstoesser JF (ed.) Ice-core drilling: proceeding of the symposium, 28–30 August, 1974. University of Nebraska, Lincoln, USA. University of Nebraska Press, Lincoln, pp 63–70Google Scholar
  70. Kotlyakov VM (ed) (1985) Glyatsiologiya Shpitsbergena [Glaciology of Spitsbergen]. Nauka, Moscow (in Russian.)Google Scholar
  71. Kowalski J and 33 others (2016) Navigation technology for exploration of glacier ice with maneuverable melting probes. Cold Reg Sci Tech 123:53–70CrossRefGoogle Scholar
  72. Kömle NI, Kargl G, Steller M (2002) Melting probes as a means to explore planetary glaciers and ice caps. In: Proceeding of the first European workshop on exo-astrobiology, 16–19 Sept 2002, Graz, Austria, ESA SP-518, pp 305–308Google Scholar
  73. Kömle NI, Treffer M, Kargl G, et al. (2004) Development of melting probes for exploring ice sheets and permafrost layers. J Glaciol Geocryol (Issue z1): 310–318Google Scholar
  74. Kömle NI, Tiefenbacher P, Weiss P et al (2018a) Melting probes revisited—ice penetration experiments under Mars surface pressure conditions. Icarus 308:117–127CrossRefGoogle Scholar
  75. Kömle NI, Tiefenbacher P, Kahr A (2018b) Melting probe experiments under Mars surface conditions—the influence of dust layers, CO2 ice and porosity. Icarus 315:7–19CrossRefGoogle Scholar
  76. LaChapelle E (1963) A simple thermal ice drill. J Glaciol 4(35):637–642CrossRefGoogle Scholar
  77. Lane AL, Carsey FD, French GD et al (2001) Development of extreme environment systems for seeking out extremophiles. In: Proceeding of OCEANS, 2001. MTS/IEEE Conference and Exhibition, 5–8 November, 2001, vol 4. Honolulu, USA, pp 2036–2042Google Scholar
  78. Limeburner R, Harwood D, Webb P (2006) ANDRILL SMS Mooring Deployment Report. Available on-line at http://www.whoi.edu/science/PO/ANDRILL_Mooring/pdfs/deployment.pdf
  79. Lorenz RD (2012) Thermal drilling in planetary ices: an analytic solution with application to planetary protection problems of radioisotope power sources. Astrobiology 12:799–802CrossRefGoogle Scholar
  80. Mae S, Wushiki H, Ageta Y et al (1975) Thermal drilling and temperature measurements in Khumbu Glacier, Nepal Measurements Himalayas. J Jpn Soc Snow Ice 37(4):161–169CrossRefGoogle Scholar
  81. Mathews WH (1957) Glaciological research in Western Canada in 1956. Can Alpine J 40:94–96Google Scholar
  82. Mathews WH (1958) Glaciological research in Western Canada in 1957. Can Alpine J 41:90–91Google Scholar
  83. Mathews WH (1959) Vertical distribution of velocity in Salmon Glacier, British Columbia. J Glaciol 3(26):448–454CrossRefGoogle Scholar
  84. Meier MF, Rigsbyt GP, Sharp RP (1954) Preliminary data from Saskatchewan glacier, Alberta, Canada. R.P. Arctic 7(1):3–26Google Scholar
  85. Mellor M (1986) Equipment for making access holes through arctic sea ice. USA CRREL Special Report 86–32Google Scholar
  86. Miller MM (1953) The application of electro-thermic boring methods to englacial research with special reference to the Juneau Icefield investigations in 1952–53. Arctic Institute of North America, Report No. 4, Project ONR-86. Dec 1952 (supplemented Dec 1953)Google Scholar
  87. Morev VA (1966) Opity po bureniyu l’da elektroteplovym sposobom v Mirnom [Experimental electrothermal ice drilling at Mirny]. Informatsionny Byulleten’ Sovetkoj Antarkticheskoj ekspeditsii [Soviet Antarctic Expedition Information Bulletin] 56:52–56 (in Russian)Google Scholar
  88. Morev VA (1976) Elektrotermobury dlia bureniia skvazhin v lednikovom pokrove [Electric thermal drills for glacier core drilling]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 28, pp 118–120. (in Russian)Google Scholar
  89. Morev VA, Pukhov VA (1981) Eksperimental’nye raboty po bureniiu kholodnykh pokrovnykh lednikov termoburovymi snariadami AANII [Using AARI thermodrills in experimental drilling of cold ice sheets]. Trudy Arkticheskogo i Antarkticheskogo nauchno-issledovatel’skogo instituta [Transactions of Arctic and Antarctic Research Institute] 367:64–68 (in Russian)Google Scholar
  90. Morev V, Kharitonov V (2001). Definition of the internal structure of large ice features by thermal drilling methods. In: Proceeding of the 16th international conference on port and ocean engineering under arctic condition POAC’01, vol 3, 12–17 August 2001. Ottawa, Ontario, Canada, pp 1465–1472Google Scholar
  91. Morev VA, Pukhov VA, Yakovlev VM et al (1984) Equipment and technology for drilling in temperate glaciers. In: Holdsworth G, Kuivinen KC, Rand JH (eds.) Proceeding of the second international workshop/symposium on ice drilling technology, 30–31 August 1982. Calgary, Alberta, Canada. USA CRREL Special Report 84–34, pp 125–127Google Scholar
  92. Morev VA, Klement’ev OL, Manevskii LN, et al. (1988) Glyatsio-burobye raboty na lednike Vavilova v 1979–1985 gg. [Ice drilling on Vavilov Glacier in 1979–1985]. Geograficheskie i glyatsiologicheskie issledovaniya v polarnikh stranakh [Geographical and glaciological investigations in polar regions]. Leningrad, Gidrometeoizdat, pp 25–32. (in Russian)Google Scholar
  93. Morton BR, Lightfoot RM (1975) A prototype meltsonde probe-design and experience. Australian Antarctic Division, Department of Science, Tech Note No 14Google Scholar
  94. Negre B (1950) Sondages Thermiques. Rapport Preliminaire de la Campagne au Groenland, 1949, Serie Scientifique, No. 10, Expéditions Françaises, pp 28–30Google Scholar
  95. Nizery A (1951) Electrothermic rig for the boring of glaciers. Trans AGU 32(1):66–72CrossRefGoogle Scholar
  96. Nizery A, Terrier M (1952) Sonde thermique pour glaciers. FR Patent 1,011,327Google Scholar
  97. Northwood TD (1947) Drill for determining thickness of ice. Can J Res 25:196–197CrossRefGoogle Scholar
  98. Orvig S, Mason RW (1963) Ice temperatures and heat flux, McCall Glacier, Alaska. Union Geodesique el Geophysique Internationale. Association Internationale d’Hydrologie Scientifique. Assemblee generale de Berkele. 19–31 March 1963. Commission des Neiges et des Glaces, pp 181–188Google Scholar
  99. Paige DA, Wood SE, Vasavada AR (1993) Drill/borescope system for the mars polar pathfinder. Workshop on advanced technologies for planetary instruments, 28–30 April 1993. Fairfax, Virginia, USA. LPI Technical Report 93-02, Part I, pp 18–19Google Scholar
  100. Philberth B (1956) Beseitigung radioaktiver Abfallsubstanzen. Atomkern-Energie 11(12):396–400Google Scholar
  101. Philberth K (1962) Une méthode pour mesurer les témperatures à l’intérieur d’un Inlandsis. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 254(1962):3881–3883Google Scholar
  102. Philberth K (1964) Über zwei Elktro-Schmelzsonden mit Vertikal-Stabilisierung. Polarforschung 34(1–2):278–280Google Scholar
  103. Philberth K (1966) Sur la stabilisation de la course d’une sonde thermique. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 262:456–459Google Scholar
  104. Philberth K (1976) The thermal probe deep-drilling method by EGIG in 1968 at Station Jarl-Joset, Central Greenland. In: Splettstoesser JF (ed) Ice-core drilling: proceeding of the symposium, 28–30 August 1974. University of Nebraska, Lincoln, USA. University of Nebraska Press, Lincoln, pp 117–132Google Scholar
  105. Philberth K (1984) Die thermische Tiefbohrung in Station Jarl-Joset und ihre theoretische Auswertung. Polarforschung 54(1):43–49Google Scholar
  106. Project SCIN (n.d.) Motivation-sea ice challenges. Retrieved 1 Feb 2017 from http://scini.mlml.calstate.edu/SCINI_2007/seaice.html
  107. Rejcek P (2015) Lifeblood of a glacier. Probe melts its way into river of ice to retrieve brine that feeds red-stained feature. The Antarctic Sun. United States Antarctic Program. Posted 4 Mar 2015. Retrieved 26 Jan 2017 from https://antarcticsun.usap.gov/science/contentHandler.cfm?id=4122
  108. Remenieras MG, Terrier MM (1951) La sonde électrothermique E.D.F. pour le forage des glaciers. Union Géodésiques Géophys. Intern. Assoc. Hydrologie Sci., Assemblée Générale de Bruxelles [Proc. of the Int. Assoc. of Scientific Hydrology, Union of Geodesy and Geophysics, General Assembly of Brussels,] 1, pp 254–260Google Scholar
  109. Rogers JC, LaChapelle ER (1974) The measurement of vertical strain in glacier bore holes. J Glaciol 13(68):315–319CrossRefGoogle Scholar
  110. Ryumin AK, Nozdryukhin VK, Emel’yanov YuN et al (1974) Stroenie lednika Abramova po dannym radiolokatsionnogo zondirovaniya [Structure of Abramov Glacier according with radar sounding]. Trudy SARNIGMI [Transactions of Middle-East Regional Research Hydro-Meteorological Institute] 14(95), 27–35. (in Russian)Google Scholar
  111. Savage JC, Paterson WSB (1963) Borehole measurements in the Athabasca Glacier. J Geophys Res 68(15):4521–4536CrossRefGoogle Scholar
  112. Schuler CG, Winebrenner DP, Elam WT et al (2018). In situ contamination of melt probes: Implications for future subglacial microbiological sampling and icy worlds life detection missions. In: 67th Annual Southeastern GSA section meeting, 12–13 April, 2018. Knoxville, Tennessee, USA. Geological Society of America, Abstracts with Programs 50(3), Paper No. 23–10Google Scholar
  113. Schüller K, Kowalski J (2019) Melting probe technology for subsurface exploration of extraterrestrial ice—critical refreezing length and the role of gravity. Icarus 317:1–9CrossRefGoogle Scholar
  114. Sharp RP (1951) Thermal regimen of firn on upper Seward glacier, Yukon territory, Canada. J Glaciol 1(9):476–487, 491CrossRefGoogle Scholar
  115. Sharp RP (1953) Deformation of a vertical bore hole in a piedmont glacier. J Glaciol 2(13):182–184CrossRefGoogle Scholar
  116. Shreve RL (1961) The borehole experiment on Blue Glacier, Washington. Union Geodesique et Ge-ophysique Internationale. Association Internationale d’ Hydrologie Scientifique. Assemblie generale de Helsinki, 25 July–6 August, 1960. Commission des Neiges et Glaces, Publ. No 54, pp 530–531Google Scholar
  117. Shreve RL (1962a) Theory of performance of isothermal solid-nose hotpoints boring in temperate ice. J Glaciol 4(32):151–160CrossRefGoogle Scholar
  118. Shreve RLP (1962b). Review on P. Kasser. Ein leichter thermischer Eisbohrer als Hilfsgerät zur Installation von Ablationsstangen auf Gletschern. Geofisica Pura e Applicata, vol 45, No 1, 1960, 97–114. J Glaciol 4(32):234–235Google Scholar
  119. Shreve RL, Sharp RP (1970) Internal deformation and thermal anomalies in Lower Blue Glacier, Mount Olympus, Washington, U.S.A. J Glaciol 9(55):65–86Google Scholar
  120. Siegel V, Hogan B, Stone WC et al (2016) Development and field testing VALKYRIE—a prototype cryobot for clean subglacial access and sampling. In: SCAR biennial meetings & open science Conference, 20–30 August 2016, Kuala Lumpur, Malaysia, Abstracts, p 52Google Scholar
  121. Stacey JS (1960) A prototype hotpoint for thermal boring on the Athabaska Glacier. J Glaciol 3(28):783–786CrossRefGoogle Scholar
  122. Stone WC, Hogan B, Siegel V et al (2014) Progress towards an optically powered cryobot. Ann Glaciol 55(65):1–13CrossRefGoogle Scholar
  123. Stone W, Hogan B, Siegel VL, et al (2016) SPINDLE: a 2-stage nuclear-powered cryobot for ocean world exploration. In: American geophysical union, fall general assembly, 12–16 December, 2016. San-Francisco, California, USA, Abstract no C51E-07Google Scholar
  124. Stone W, Hogan B, Siegel V et al (2018) Project VALKYRIE: laser-powered cryobots and other methods for penetrating deep ice on ocean worlds. In: Badescu V, Zacny K (eds) Outer solar system. Springer, Cham, pp 47–165CrossRefGoogle Scholar
  125. Sukhanov LA (1975) Sposob opredeleniya plotnosti snezhno-ledyanogo pokrova (Method of estimation of snow-ice layers density). USSR Patent 468,133Google Scholar
  126. Sukhanov LA, Morev VA, Zotikov IA (1974) Potativnye ledovye elektrobury [Portable thermo-electric ice drills]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 23, pp 234–238. (in Russian)Google Scholar
  127. Suto Y, Saito S, Osada K et al (2008) Laboratory experiments and thermal calculations for the development of a next-generation glacier-ice exploration system: development of an electro-thermal drilling device. Polar Sci 2:15–26CrossRefGoogle Scholar
  128. Talalay PG (2016) Mechanical ice drilling technology. Geological Publishing House, Beijing and Springer Science+Business Media SingaporeCrossRefGoogle Scholar
  129. Talalay PG, Markov AN, Sysoev MA (2013) New frontiers of Antarctic subglacial lakes exploration. Geogr Environ Sust 6(1):14–28CrossRefGoogle Scholar
  130. Talalay PG, Zagorodnov VS, Markov AN et al (2014) Recoverable autonomous sonde (RECAS) for environmental exploration of Antarctic subglacial lakes: general concept. Ann Glaciol 55(65):23–30CrossRefGoogle Scholar
  131. Talalay P, Yang C, Cao P et al (2015) Ice-core drilling problems and solutions. Cold Reg Sci Tech 120:1–20CrossRefGoogle Scholar
  132. Talalay PG, Li Y, Sysoev MA et al (2019) Thermal tips for ice hot-point drilling: experiments and preliminary thermal modeling. Cold Reg Sci Tech 160:97–109Google Scholar
  133. Taylor PL (1976) Solid-nose and coring thermal drills for temperate ice. In: Splettstoesser JF (ed) Ice-core drilling: proceeding of the symposium 28–30 August, 1974. University of Nebraska, Lincoln, USA. University of Nebraska Press, Lincoln, pp 167–177Google Scholar
  134. These priests’ invention could help us drill into icy alien worlds someday (2015). WIRED. Retrieved 10 Dec 2016 from https://www.wired.com/2015/01/philberth-priests-probe-icy-moons-nuclear-waste/
  135. Tibcken M, Dimmler W (1997) Einsatz einer Durchschmelzsonde (SUSI) zum Transporteiner kommerziellen CTD-Sonde unter das Schelfeis. Die Expedition ANTARKTIS-XII mit FS “Polarstern” 1995. In: Jokat W, Oerter H (eds) Bericht vom Fahrtabschnitt ANT-XII/3, Berichte zur Polarforschung, Ber. Polarforsch. 219, pp 106–112Google Scholar
  136. Treffer M, Kömle NI, Kargl G et al (2006) Preliminary studies concerning subsurface probes for the exploration of icy planetary bodies. Planet Space Sci 54:621–634CrossRefGoogle Scholar
  137. Tyler SW, Holland DM, Zagorodnov V et al (2013) Using distributed temperature sensors to monitor an Antarctic ice shelf and sub-ice shelf cavity. J Glaciol 59(215):583–591CrossRefGoogle Scholar
  138. Ulamec S, Biele J, Drescher J, et al. (2005) A melting probe with applications on Mars, Europa and Antarctica. In: 56th international astronautical congress, IAC-A1.7.08, 17–21 October, 2005, Fukuoka, Japan, pp 1–8Google Scholar
  139. Ulamec S, Biele J, Funke O et al (2007) Access to glacial and subglacial environments in the solar system by melting probe technology. Rev Environ Sci Biotechnol 6:71–94CrossRefGoogle Scholar
  140. VALKYRIE 2015 Matanuksa Glacier, Alaska (2015) Posted 16 June 2015. Retrieved 26 Jan 2017 from http://valkyrie2015.weebly.com/expedition-log/matanuska-or-bust
  141. Vallelonga P, Svensson A (2014) Ice core archives of mineral dust. Mineral dust: a key player in the earth system. In: Knippertz P, Stuut J-BW (eds) Springer Science+Business Media Dordrecht, pp 463–485Google Scholar
  142. Vasilenko EV, Gromyko AN, Dmitriev DN et al (1988) Stroenie lednika Davydova po dannym radiozondirovaniya i termobureniya [Structure of the Davydov Glacier according with radio sounding and thermal drilling data]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 62, pp 208–215. (in Russian)Google Scholar
  143. Wade FA (1945) The physical aspects of the Ross Shelf Ice. Proc Am Philoso Soc 89(1):160–173Google Scholar
  144. Ward WH (1952) The glaciological studies of the Baffin Island Expedition, 1950. Part Ill: equipment and techniques. J Glaciol 2(12):115–121CrossRefGoogle Scholar
  145. Ward WH (1961) Experiences with electro-thermal ice drills on Austerdalsbre, 1956–59. Union Geodesique et Geophysique Internationale. Association Internationale d’ Hydrologie Scien-tifique. Assemblie generale de Helsinki, 25 July–6 August, 1960. Commission des Neiges et Glaces, Publ No 54, pp 532–542Google Scholar
  146. Weinberg B (1912) Der elektrische Eisbohrer. Zeitschrift für Gletscherkunde 6:214–217Google Scholar
  147. Weiss P, Yung KL, Ng TC et al (2008) Study of a thermal drill head for the exploration of subsurface planetary ice layers. Planet Space Sci 56:1280–1292CrossRefGoogle Scholar
  148. Weiss P, Yung KL, Kömle N et al (2011) Thermal drill sampling system onboard high-velocity impactors for exploring the subsurface of Europa. Adv Space Res 48:743–754CrossRefGoogle Scholar
  149. Winebrenner DP, Elam WT, Miller V et al (2013) A thermal ice-melt probe for exploration of Earth-analogs to Mars, Europa and Enceladus. In: 44th lunar and planetary science conference, 18–22 March 2013. The Woodlands, Texas, USA, Abstract no 2986Google Scholar
  150. Winebrenner DP, Elam WT, Kintner PMS et al (2016) Clean, logistically light access to explore the closest places on Earth to Europa and Enceladus. In: AGU Fall Meeting, 12–16 December, 2016. San-Francisco, California, USA, Abstract no C51E-08Google Scholar
  151. Wirtz M, Hildebrandt M (2016) IceShuttle Teredo: an ice-penetrating robotic system to transport an exploration AUV into the ocean of Jupiter’s Moon Europa. In: Proceeding of the 67th international astronautical congress (IAC), 26–30 Sept 2016. Guadalajara, Mexico, no. IAC-16-A3.5.2Google Scholar
  152. Zacny K, Paulsen G, Bar-Cohen Y et al (2016) Drilling and breaking ice. In: Bar-Cohen Y (ed) Low temperature materials and mechanisms. CRC Press, pp 271–347Google Scholar
  153. Zagorodnov VS (1981) Issledovanie stroeniia i temperaturnogo rezhima shpitsbergenskikh lednikov s pomoshch’iu termobureniia [Using thermal drills in studying temperature regime of Spitsbergen glaciers]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 41, pp 196–199. (in Russian)Google Scholar
  154. Zagorodnov VS (1988) Recent Soviet activities on ice core drilling and core investigations in Arctic region. Bull Glacier Res 6:81–84Google Scholar
  155. Zagorodnov VS, Zotikov IA (1981) Kernovoe burenie na Shpitsbergene [Core drilling at Spitsbergen]. Akademiia nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledo-vanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 40, pp 157–163. (in Russian)Google Scholar
  156. Zagorodnov VS, Zinger EM (1982) Gliatsiologicheskie raboty na Severo-Vostochnoi Zemle [Glaciological investigations on North East Land]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 43, p 30. (Text in Russian)Google Scholar
  157. Zagorodnov VS, Zotikov IA, Barbash VR et al (1976) O termoburenii na lednike Obrucheva [Thermal drilling on the Obruchev glacier]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 28, pp 112–118. (in Russian)Google Scholar
  158. Zagorodnov VS, Samoilov OYu, Raikovsii YuV et al (1984) Glubinnoe stroenie lednikovogo plato Lomonosova na o. Zap. Spitsbergen [Deep structure of the glacial Lomonosov Plateau on Western Spitsbergen]. Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 50, pp 119–126. (in Russian)Google Scholar
  159. Zagorodnov VS, Arkhipov SM Bazhev AB et al (1991) Stroenie, sostav i gidrotermicheskii rezhim lednika Garabashi na El’bruse [Structure, composition and hydrothermal regime of the Garabashi Glacier on Elbrus] Akademiya nauk SSSR. Institut geografii. Materialy gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR. Institute of Geography. Data of Glaciological Studies] 73, pp 109–117. (in Russian)Google Scholar
  160. Zagorodnov V, Mosley-Thompson E, Mikhalenko V (2013) Snow and firn density variability in West Central Greenland. IN: 7th international workshop on ice drilling technology: abstracts. Pyle Center, University of Wisconsin, Madison, USA, 9–13 September 2013, p 64Google Scholar
  161. Zagorodnov V, Tyler S, Holland D et al (2014) New technique for access-borehole drilling in shelf glaciers using lightweight drills. J Glaciol 60(223):935–944CrossRefGoogle Scholar
  162. Zeibig M, Delisle G (1994) Drilling into Antarctic ice—the new BGR ice drill. Polarforschung 62(2/3):147–150Google Scholar
  163. Zimmerman W, Bonitz R, Feldman J (2001) Cryobot: an ice penetrating robotic vehicle for Mars and Europa. In: IEEE aerospace conference, vol 1, 10–17 March 2001. Big Sky, Montana, USA, pp. 311–323Google Scholar
  164. Zimmerman W, Anderson FS, Carsey F et al (2002) The Mars’07 North polar cap deep penetration cryo-scout mission. In: IEEE aerospace conference, 9–16 March 2002, vol 1. Big Sky, Montana, USA, pp 1-305–1-315Google Scholar
  165. Zotikov IA (2006) The Antarctic Subglacial Lake Vostok. Glaciology, biology and planetology. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar

Copyright information

© Geological Publishing House and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.College of Construction EngineeringJilin UniversityChangchunChina

Personalised recommendations