Ice Grain Boundary Electrophoresis

  • Arinori InagawaEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter discusses a new principle, namely “ice grain boundary electrophoresis,” for the fabrication of size-tunable fluidic nano- and microchannels by freezing an aqueous solution (Inagawa and Okada in Ice grain boundary electrophoresis. In: Proceeding of MicroTAS2013, pp 560–562, 2013, [1]; Inagawa et al. in Sci Rep 5:17308, 2015, [2]). Grooves filled with FCSs are spontaneously formed on the surface of ice when an aqueous solution of the appropriate dopant is frozen. Sucrose-doping allows the development of grooves with lengths of 300 μm along the boundaries of the ice crystal grains. This chapter focuses on the control of the size of the liquid-filled groove and reveals its applicability to the size-selective differentiation of nano- and micromaterials. The width of this groove can be varied across the range 200 nm–4 μm by adjusting the working temperature of the frozen platform. The channel dimension is reproducible when the same frozen conditions are employed. The size-selective entrapment of particles by controlling the physical interference of the ice wall is demonstrated.


Ice Grain boundary Electrophoresis Size-tunable microchannel Particle separation 


  1. 1.
    Inagawa A, Okada T (2013) Ice grain boundary electrophoresis. In: Proceeding of MicroTAS2013, pp 560–562Google Scholar
  2. 2.
    Inagawa A, Harada M, Okada T (2015) Fluidic grooves on doped-ice surface as size-tunable channels. Sci Rep 5:17308CrossRefGoogle Scholar
  3. 3.
    Barth HG, Jackson C, Boyes BE (1994) Size exclusion chromatography. Anal Chem 66(12):595–620CrossRefGoogle Scholar
  4. 4.
    McMaster GK, Carmichael GG, Gordon G (1977) Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 74(11):4835–4838CrossRefGoogle Scholar
  5. 5.
    Mikkers FEP, Everaerts FM, Verheggen TPEM (1979) High-performance zone electrophoresis. J Chromatogr A 169(C):11–20CrossRefGoogle Scholar
  6. 6.
    Swinney K, Bornhop DJ (2000) Detection in capillary electrophoresis. Electrophoresis 21(7):1239–1250CrossRefGoogle Scholar
  7. 7.
    Iwasawa A, Aoki R, Yamauchi K (2007) Preparation of monodisperse micron-size particles. Dai Nippon Toryo Gijutsu Houbun 7:2–6 (in Japanese)Google Scholar
  8. 8.
    Carle GF, Olson MV (1984) Nucleic Acids Res 12(14):5647–5664CrossRefGoogle Scholar
  9. 9.
    Kaji N, Tezuka Y, Takamura Y, Ueda M, Nishimoto T, Nakanishi H, Horiike Y, Baba Y (2004) Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal Chem 76(1):15–22CrossRefGoogle Scholar
  10. 10.
    Mizuno M, Yamada M, Mitamura R, Ike K, Toyama K, Seki M (2013) Magnetophoresis-integrated hydrodynamic filtration system for size-and surface marker-based two-dimensional cell sorting. Anal Chem 85(16):7666–7673CrossRefGoogle Scholar
  11. 11.
    Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36(3):492–506CrossRefGoogle Scholar
  12. 12.
    Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci 103(40):14779–14784CrossRefGoogle Scholar
  13. 13.
    Von Der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal Chem 30(3):425–436CrossRefGoogle Scholar
  14. 14.
    Cao Z, Yobas L (2014) Fast DNA sieving through submicrometer cylindrical glass capillary matrix. Anal Chem 86(1):737–743CrossRefGoogle Scholar
  15. 15.
    Strychalski E, Lau HW, Archer L (2009) Nonequilibrium separation of short DNA using nanoslit arrays. J Appl Phys 106(2):24915CrossRefGoogle Scholar
  16. 16.
    Lindahl PE (1948) Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 161:648–649CrossRefGoogle Scholar
  17. 17.
    Sajeesh P, Sen AK (2013) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluidics 17(1):1–52CrossRefGoogle Scholar
  18. 18.
    VanOman BB, McIntire GL (1989) Analytical separation of polystyrene nanospheres by capillary electrophoresis. J Microcolumn Sep 1(6):289–293CrossRefGoogle Scholar
  19. 19.
    Kowalkowski T, Buszewski B, Cantado C, Dondi F (2006) Field-flow fractionation: theory, techniques, applications and the challenges. Crit Rev Anal Chem 36(2):129–135CrossRefGoogle Scholar
  20. 20.
    Wyatt Shields IV C, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249CrossRefGoogle Scholar
  21. 21.
    Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644CrossRefGoogle Scholar
  22. 22.
    Lenshof A, Laurell T (2010) continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203CrossRefGoogle Scholar
  23. 23.
    Kamalakshakurup G, Lee A (2017) High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices. Lab Chip 17:4324–4333CrossRefGoogle Scholar
  24. 24.
    Devendra R, Drazer G (2012) Gravity driven deterministic lateral displacement for particle separation in micro fluidic devices. Anal Chem 84(24):10621–10627CrossRefGoogle Scholar
  25. 25.
    Staton SJR, Kim SY, Hart SJ, Collins GE, Terray A (2013) Pico-force optical exchange (Pico-FOX): utilizing optical forces applied to an orthogonal electroosmotic flow for particulate enrichment from mixed sample streams. Anal Chem 85(18):8647–8653CrossRefGoogle Scholar
  26. 26.
    Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang TJ (2016) Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 7:1–11CrossRefGoogle Scholar
  27. 27.
    Weerakoon-Ratnayake KM, Uba FI, Oliver-Calixte NJ, Soper SA (2016) Electrophoretic separation of single particles using nanoscale thermoplastic columns. Anal ChemGoogle Scholar
  28. 28.
    Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973–1983PubMedGoogle Scholar
  29. 29.
    Uyama M, Harada M, Tsukahara T, Okada T (2013) Behavior of polyhydric alcohols at ice/liquid interface. J Phys Chem C 117(47):24873–24882CrossRefGoogle Scholar
  30. 30.
    Körber C, Scheiwe MW, Wollhöver K (1983) Solute polarization during planar freezing of aqueous salt solutions. Int J Heat Mass Transf 26(8):1241–1253CrossRefGoogle Scholar
  31. 31.
    Andrade ENDC (1930) The viscosity of liquids. Nature 125:582–584CrossRefGoogle Scholar
  32. 32.
    Young FE, Jones FT (1949) Sucrose hydrates, the sucrose-water phase diagram. J Phys Chem 53(9):1334–1350CrossRefGoogle Scholar
  33. 33.
    Matsuoka S, Hibara A, Ueno M, Kitamori T (2006) Supercooled micro flows and application for asymmetric synthesis. Lab Chip 6(9):1236–1238CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Regional Development and CreativityUtsunomiya UniversityUtsunomiyaJapan

Personalised recommendations