Skip to main content

Control of Yaw and Pitch Maneuvers of a Multilink Dolphin Robot

  • Chapter
  • First Online:
Motion Control of Biomimetic Swimming Robots

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

Abstract

Creatures from across the animal kingdom provide a multitude of design inspirations and principles to make robots more lifelike and practical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taubes, G.: Biologists and engineers create a new generation of robots that imitate life. Science 288, 80–83 (2000)

    Article  Google Scholar 

  2. Meyer, J.A., Guillot, A.: Biologically inspired robots. In Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, vol. 60, pp. 1395–1422. Springer, Berlin (2008)

    Chapter  Google Scholar 

  3. Triantafyllou, M.S., Triantafyllou, G.S.: An efficient swimming machine. Sci. Am. 272, 64–70 (1995)

    Article  Google Scholar 

  4. Webb, P.W.: Maneuverability-general issues. IEEE J. Ocean. Eng. 29, 547–555 (2004)

    Article  Google Scholar 

  5. Triantafyllou, M.S., Techet, A.H., Hover, F.S.: Review of experimental work in biomimetic foils. IEEE J. Ocean. Eng. 29, 585–594 (2004)

    Article  Google Scholar 

  6. Bandyopadhyay, P.R.: Trends in biorobotic autonomous undersea vehicles. IEEE J. Ocean. Eng. 30, 109–139 (2005)

    Article  Google Scholar 

  7. Fish, F.E.: Limits of nature and advances of technology in marine systems: what does biomimetics have to offer to aquatic robots. Appl. Bionics Biomech. 49–60 (2006)

    Google Scholar 

  8. Lauder, G.V., Madden, P.G.A.: Learning from fish: kinematics and experimental hydrodynamics for roboticists. Int. J. Autom. Comput. 3, 325–335 (2006)

    Article  Google Scholar 

  9. Bandyopadhyay, P.R., Beal, D.N., Menozzi, A.: Biorobotic insights into how animals swim. J. Exp. Biol. 211, 206–214 (2008)

    Article  Google Scholar 

  10. Liu, J., Hu, H.: Biological inspiration: from carangiform fish to multi-joint robotic fish. J. Bionic Eng. 7, 35–48 (2010)

    Article  Google Scholar 

  11. Low, K.H., Chong, C.W.: Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin. Bioinsp. Biomim. 5, 046002 (2010)

    Article  Google Scholar 

  12. Fish, F.E., Rohr, J.J.: Review of dolphin hydrodynamics and swimming performance. United State Navy Technical Report 1801 (1999)

    Google Scholar 

  13. Maresh, J.L., Fish, F.E., Nowacek, D.P., Nowacek, S.M., Wells, R.S.: High performance turning capabilities during foraging by bottlenose dolphins. Mar. Mammal Sci. 20, 498–509 (2004)

    Article  Google Scholar 

  14. Nagai, M.: Thinking Fluid Dynamics with Dolphins. Ohmsha Press, Japan (2002)

    Google Scholar 

  15. Fish, F.E.: Drag reduction by dolphins: myths and reality as applied to engineered designs. Bioinsp. Biomim. 1, R17–R25 (2006)

    Article  Google Scholar 

  16. Fish, F.E., Peacock, J.E., Rohr, J.J.: Stabilization mechanism in swimming cetaceans by phased movements. Mar. Mammal Sci. 19, 515–528 (2003)

    Article  Google Scholar 

  17. Fish, F.E.: Balancing requirements for stability and maneuverability in cetaceans. Integ. Comp. Biol. 42, 85–93 (2002)

    Article  Google Scholar 

  18. Fish, F.E., Nicastro, A.J., Weihs, D.: Dynamics of the aerial maneuvers of spinner dolphins. J. Exp. Biol. 209, 590–598 (2006)

    Article  Google Scholar 

  19. Nakashima, M., Ono, K.: Development of a two-joint dolphin robot. In: Ayers, J., Davis, J.L., Rudolph, A. (eds.) Neurotechnology for Biomimetic Robots. MIT Press, Cambridge, MA, USA (2002)

    Google Scholar 

  20. Dogangil, G., Ozcicek, E., Kuzucu, A.: Modeling, simulation, and development of a robotic dolphin prototype. In: Proceedings of IEEE International Conference on Mechatronics and Automation, Niagara Falls, Canada, pp. 952–957 (2005)

    Google Scholar 

  21. Yu, J., Hu, Y., Huo, J., Wang, L.: Dolphin-like propulsive mechanism based on an adjustable Scotch yoke. Mech. Mach. Theory 44, 603–614 (2009)

    Article  Google Scholar 

  22. Yu, J., Hu, Y., Fan, R., Wang, L., Huo, J.: Mechanical design and motion control of biomimetic robotic dolphin. Adv. Robot. 21, 499–513 (2007)

    Article  Google Scholar 

  23. Hu, Y., Wang, L., Yu, J., Huo, J., Jia, Y.: Development and control of dolphin-like underwater vehicle. In: Proceedings of American Control Conference, Washington, USA, pp. 2858–2863 (2008)

    Google Scholar 

  24. Nakashima, M., Tsubaki, T., Ono, K.: Three-dimensional movement in water of the dolphin robot—control between two positions by roll and pitch combination. J. Robot. Mechatronics 18, 347–355 (2006)

    Article  Google Scholar 

  25. Yu, J., Liu, L., Wang, L., Tan, M., Xu, D.: Turning control of a multilink biomimetic robotic fish. IEEE Trans. Robot. 24, 201–206 (2008)

    Article  Google Scholar 

  26. Yu, J., Li, Y., Wang, M., Tan, M.: Turning analysis and its implementation of link-based dolphin-like robots. In: Proceedings of IEEE International Conference on Automation and Logistics, Qingdao, China, pp. 1172–1177 (2008)

    Google Scholar 

  27. Woolsey, C., Leonard, N.E.: Moving mass control for underwater vehicles. In: Proceedings of American Control Conference, Anchorage, AK, pp. 2824–2829 (2002)

    Google Scholar 

  28. Romanenko, E.V.: Fish and Dolphin Swimming, p. 127. Pensoft, Moscow (2002)

    Google Scholar 

  29. Yu, J., Wang, M., Tan, M., Zhang, J.: Three-dimensional swimming. IEEE Robot. Autom. Mag. 18, 47–58 (2011)

    Article  Google Scholar 

  30. Yu, J., Li, Y.F., Hu, Y., Wang, L.: Dynamic analysis and control synthesis of a link-based dolphin-like robot capable of three-dimensional movements. Adv. Robot. 23, 1299–1313 (2009)

    Article  Google Scholar 

  31. Domenici, P., Blake, R.W.: Review: the kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178 (1997)

    Google Scholar 

  32. Su, Z., Yu, J., Tan, M., Zhang, J.: Closed-loop precise turning control for a BCF-mode robotic fish. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, pp. 946–951 (2010)

    Google Scholar 

  33. Maslov, N.K.: Maneuverability and controllability of dolphins. Bionika 4, 46–50 (1970)

    Google Scholar 

  34. Lauder, G.V.: Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them. Exp. Fluids 50, 23–35 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J., Tan, M. (2020). Control of Yaw and Pitch Maneuvers of a Multilink Dolphin Robot. In: Motion Control of Biomimetic Swimming Robots. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-8771-5_6

Download citation

Publish with us

Policies and ethics