Skip to main content

3D Maneuvering Control of a Robotic Fish

  • Chapter
  • First Online:
Motion Control of Biomimetic Swimming Robots

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

Abstract

In order to increase the chance of survival, many fish can instantaneously perform surprised behaviors with flexibility and maneuverability, which means a series of changes in direction and position for a certain purpose, especially in avoiding predators and striking at potential preys [1, 2]. In simple behaviors like acceleration, fish state changes in a single plane such as surge (back-and-forth), slip (lateral), and heave (a vertical displacement) or around a single rotational axis such as yaw, pitch, and roll [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tytell, E.D., Lauder, G.V.: Hydrodynamics of the escape response in bluegill sunfish Lepomis macrochirus. J. Exp. Biol. 211, 3359–3369 (2008)

    Article  Google Scholar 

  2. Domenici, P.: Webb scales fast-start maneuvers. J. Exp. Biol. 214, 875–877 (2011)

    Article  Google Scholar 

  3. Shadwick, R.E., Lauder, G.V.: Fish Biomechanics. Elsevier Academic Press, San Diego, California, USA and London, UK (2006)

    Google Scholar 

  4. Webb, P.W.: Maneuverability-general issues. IEEE J. Ocean. Eng. 29, 547–555 (2004)

    Article  Google Scholar 

  5. Low, K.H., Zhou, C., Seet, G., Bi, S., Cai, Y.: Improvement and testing of a robotic manta ray (RoMan-III). In Proceedings of 2011 International Conference on Robot. pp. 1730–1735. Biomim, (Puket, Thailand) (2011)

    Google Scholar 

  6. Rahman, M.M., Toda, Y., Miki, H.: Computational study on a squid-like underwater robot with two undulating side fins. J. Bionic Eng. 8, 25–32 (2011)

    Article  Google Scholar 

  7. Low, K.H., Zhou, C., Zhong, Y.: Gait planning for steady swimming control of biomimetic fish robots. Adv. Robot. 23, 805–829 (2012)

    Article  Google Scholar 

  8. Yu, J., Ding, R., Yang, Q., Tan, M.: On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatron. 17, 847–856 (2012)

    Article  Google Scholar 

  9. Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on CPG-inspired control models and system implementation. IEEE Trans. Neural Netw. Learn. Syst. 25, 441–456 (2014)

    Article  Google Scholar 

  10. Bliss, T., Lwasaki, T., Bart-Smith, H.: Central pattern generator control of a tensegrity swimmer. IEEE/ASME Trans. Mechatron. 18, 586–597 (2013)

    Article  Google Scholar 

  11. Su, Z., Yu, J., Tan, M., Zhang, J.: Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Trans. Mechatron. 19, 329–338 (2014)

    Article  Google Scholar 

  12. Walker, J., Westneat, M.: Kinematics, dynamics, and energetics of rowing and flapping propulsion in fishes. Integr. Comp. Biol. 42, 1032–1043 (2002)

    Article  Google Scholar 

  13. Schriefer, J.E., Hale, M.E.: Strikes and startles of northern pike Esox lucius: a comparison of muscle activity and kinematics between S-start behaviors. J. Exp. Biol. 207, 535–544 (2004)

    Article  Google Scholar 

  14. Shadwick, R.E., Lauder, G.V.: Fish Biomechanics. Elsevier Academic Press, San Diego, California, USA (2006)

    Google Scholar 

  15. Mittal, R., Dong, H.B., Bozkurttas, M., Lauder, G.V., Madden, P.: Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish. Bioinspir. Biomim. 1, S35–S41 (2006)

    Article  Google Scholar 

  16. Gottlieb, J.R., Tangorra, J.L., Esposito, C.J., Lauder, G.V.: A biologically derived pectoral fin for yaw turn manoeuvres. Appl. Bionics Biomech. 7, 41–55 (2010)

    Article  Google Scholar 

  17. Wang, M., Yu, J., Tan, M., Zhang, J.: Multimodal swimming control of a robotic fish with pectoral fins using a CPG network. Chin. Sci. Bull. 57, 1209–1216 (2012)

    Article  Google Scholar 

  18. Drazin, P.G.: Nonlinear systems. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, UK (1992)

    Google Scholar 

  19. Wang, M., Yu, J., Tan, M., Zhang, J.: Multimodal swimming control of a robotic fish with pectoral fins using a CPG network. Chinese Sci. Bull. 57, 1209–1216 (2012)

    Article  Google Scholar 

  20. Buchli, J., Ijspeert, A.J.: Distributed central pattern generator model for robotics application based on phase sensitivity analysis. Biol. Inspired Approaches Adv. Inf. Technol. 5, 333–349 (2004)

    Article  Google Scholar 

  21. Hale, M.E.: S- and C-start escape responses of the muskellunge (Esox masquinongy) require alternative neuromotor mechanisms. J. Exp. Biol. 205, 2005–2016 (2002)

    Google Scholar 

  22. Schrank, A.J., Webb, P.W., Mayberry, S.: How do body and paired-fin positions affect the ability of three teleost fishes to maneuver around bends? Can. J. Zool. 77, 203–210 (1999)

    Article  Google Scholar 

  23. Fish, F.E., Nicastro, A.J., Weihs, D.: Dynamics of the aerial maneuvers of spinner dolphins. J. Exp. Biol. 209, 590–598 (2006)

    Article  Google Scholar 

  24. Herrel, A., Choi, H., Schepper, N., Aerts, P., Adriaens, D.: Kinematics of swimming in two burrowing anguilliform fishes. Zoology 114, 78–84 (2011)

    Article  Google Scholar 

  25. Zelenin, P.V.: Reticulospinal neurons controlling forward and backward swimming in the lamprey. J. Neurophysiol. 105, 1361–1371 (2011)

    Article  Google Scholar 

  26. Grillner, S., Kozlov, A., Dario, P., Stefanini, C., Menciassi, A., Lansner, A., Kotaleski, J.H.: Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Prog. Brain Res. 166, 221–234 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J., Tan, M. (2020). 3D Maneuvering Control of a Robotic Fish. In: Motion Control of Biomimetic Swimming Robots. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-8771-5_5

Download citation

Publish with us

Policies and ethics