Skip to main content

Analysis of Subcritical Crack Growth Using Kitagawa–Takahashi Diagram

  • Conference paper
  • First Online:
  • 1423 Accesses

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Fundamental concepts governing crack initiation and growth in metals and alloys are presented. Cracks being high-energy defects require very high stresses for their initiation and growth. Griffith’s equation shows that the stress needed for initiation of an elastic crack is inversely proportional to the square root of its length. For elastic–plastic crack, based on the Orowan equation, the needed stresses are even higher. Hence, cracks normally nucleate at stress concentrations, either preexisting or in situ generated. In this paper, we analyze the fundamentals of crack initiation and growth contributing to fracture in materials using the modified Kitagawa–Takahashi diagram. The analysis, in principle, is applicable for all subcritical crack growth processes in materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.A. Griffith, The phenomena of fracture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163 (1921)

    Article  Google Scholar 

  2. E. Orowan, Zurkristallplastizitt. III: ber den mechanismus des gleitvorganges. Z. Phys. Hadron. Nucl. 89(9), 634 (1934)

    Google Scholar 

  3. G.R. Irwin, Crack-extension force for a part-through crack in a plate. J. Appl. Mech. 29, 651 (1962)

    Article  Google Scholar 

  4. R.W. Lardner, Bilby-Cottrell-Swinden model for a growing crack with residuals stresses. Proc. R. Soc. Lond. 1098 (1970)

    Google Scholar 

  5. R.A. Oriani, Hydrogen embrittlement of steel. Annu. Rev. Mater. Sci. 8, 327 (1978)

    Article  Google Scholar 

  6. M.H. Kamdar, in Chapter 9, Treatise on Materials Science and Technology, ed. by C.L. Briant, S.K. Benerji, vol. 25 (Academic Press, New York, NY, 1983), p. 361

    Google Scholar 

  7. B.R. Lawn, Fracture of Brittle Solids, 2nd edn., Cambridge Solid State Science Series (Cambridge, UK, 1993)

    Book  Google Scholar 

  8. I. Adlakha, K. Sadananda, K.N. Solanki, Discrete dislocation modeling of stress corrosion cracking in an iron. Corros. Rev. 33, 467 (2015)

    Article  Google Scholar 

  9. H. Kitagawa, S. Takahashi, Applicability of fracture mechanics to a very small crack or the cracks in the early stage, in Second International Conference on Mechanical Behavior of Materials, Metals Park, Ohio (ASM, 1976), p. 627

    Google Scholar 

  10. K. Sadananda, Failure diagram and chemical driving forces for subcritical crack growth. Metall. Mater. Trans. 44A, 1190 (2012)

    Google Scholar 

  11. K. Sadananda, S. Sarkar, Modified Kitagawa diagram and transition from crack nucleation to crack propagation. Metall. Mater. Trans. 44A, 1175 (2013)

    Article  Google Scholar 

  12. K. Sadananda, A.K. Vasudevan, Review of environmental cracking. Metall. Mater. Trans. 42A, 279 (2011)

    Article  Google Scholar 

  13. K. Sadananda, A. Arcari, A.K. Vasudevan, Does a nucleated crack propagate. Eng. Frac. Mech. 176, 144 (2017)

    Article  Google Scholar 

  14. R.M. Mcmeeking, A.G. Evens, Mechanics of transformation toughening in brittle materials. J. Am. Ceram. Soc. 65, 242 (1982)

    Article  Google Scholar 

  15. R.O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fract. 100, 55 (1999)

    Article  Google Scholar 

  16. D.E. Witmer, G.C. Farrington, C. Laird, Changes in strain localization behavior induced by fatigue in inert environments. Acta Metall. 35, 1895 (1987)

    Article  Google Scholar 

  17. Airforce Report, Improved High Cycle Fatigue Life Prediction, UDRI Industry team, UDR-TR-1999-0079 (2001)

    Google Scholar 

  18. Y. Hirose, T. Mura, Crack nucleation and propagation of corrosion fatigue in high strength steel. Eng. Fract. Mech. 22, 859 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sadananda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadananda, K., Viswanathan, A., Nani Babu, M. (2020). Analysis of Subcritical Crack Growth Using Kitagawa–Takahashi Diagram. In: Prakash, R., Suresh Kumar, R., Nagesha, A., Sasikala, G., Bhaduri, A. (eds) Structural Integrity Assessment. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-8767-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8767-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8766-1

  • Online ISBN: 978-981-13-8767-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics