Skip to main content

Role of Gut Microbiota in Combating Oxidative Stress

  • Chapter
  • First Online:

Abstract

We are at a fascinating junction of medical microbiology, witnessing a paradigm shift in the basic understanding of diseases and their treatment strategies. Here, we have summarized different diseases that induce oxidative stress like pathophysiological, metabolic, neurodegenerative, and microbial infectious diseases and the role of gut microbiota correspondingly to alleviate the toxic state. The concepts of oxidative stress, gastrointestinal tract, and healthy gut microbiota are briefly introduced followed by an elucidated account of their relationships in different diseased conditions. Almost all diseases are linked to, or lead to gut dysbiosis, particularly characterized by an overall decline in gut microbial diversity; reduction in number of beneficial microbial members like Lactobacillus, Bifidobacterium, and anaerobic short-chain fatty acid producers (e.g., Bacteroidetes and Faecalibacterium prausnitzii); and altered proportions of Firmicutes and Bacteroidetes members. This is accompanied by an increase in aerotolerant or facultative anaerobic opportunistic pathogens like the Gram-negative proteobacterial members of Enterobacteriaceae and Enterococcaceae. Thus, future therapeutic interventions must be directed towards maintaining or restoring the gut microbiota composition to its healthy state to overcome the oxidative stress generated in different diseased conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016:44

    Google Scholar 

  2. Jones RM, Mercante JW, Neish AS (2012) Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem 19:1519–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neish AS (2013) Redox signaling mediated by the gut microbiota. Free Radic Res 47:950–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balmus IM, Ciobica A, Trifan A, Stanciu C (2016) The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: clinical aspects and animal models. Saudi J Gastroenterol 22:3–17

    Article  PubMed  PubMed Central  Google Scholar 

  6. Choghakhori R, Abbasnezhad A, Hasanvand A, Amani R (2017) Inflammatory cytokines and oxidative stress biomarkers in irritable bowel syndrome: association with digestive symptoms and quality of life. Cytokine 93:34–43

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017:11

    Google Scholar 

  8. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maritim AC, Sanders R, Watkins Iii JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  PubMed  Google Scholar 

  10. Qiao Y, Sun J, Ding Y, Le G, Shi Y (2013) Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl Microbiol Biotechnol 97:1689–1697

    Article  CAS  PubMed  Google Scholar 

  11. Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Med J 4:287–293

    Article  Google Scholar 

  12. Mironczuk-Chodakowska I, Witkowska AM, Zujko ME (2018) Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 63:68–78

    Article  PubMed  Google Scholar 

  13. Bouayed J, Bohn T (2010) Exogenous antioxidants--double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3:228–237

    Google Scholar 

  14. Miranda-Bautista J, Banares R, Vaquero J (2017) Chapter 1 – the gastrointestinal system: anatomy and sources of oxidative stress. In: Gracia-Sancho J, Salvado J (eds) Gastrointestinal tissue. Academic, Cambridge, MA, pp 3–20

    Chapter  Google Scholar 

  15. Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11:2112–2122

    Article  PubMed  Google Scholar 

  16. Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504–516

    Google Scholar 

  18. Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci 100:10452–10459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589

    Article  CAS  PubMed  Google Scholar 

  20. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  CAS  PubMed  Google Scholar 

  21. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Million M, Tidjani Alou M, Khelaifia S, Bachar D, Lagier J-C et al (2016) Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep 6:26051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson EL, Heaver SL, Walters WA, Ley RE (2017) Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. J Cell Mol Med 95:1–8

    Article  CAS  Google Scholar 

  24. Ray K (2012) Gut microbiota: married to our gut microbiota. Nat Rev Gastroenterol Hepatol 9:555

    Article  PubMed  Google Scholar 

  25. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R et al (2007) The human microbiome project. Nature 449:804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kundu P, Blacher E, Elinav E, Pettersson S (2017) Our gut microbiome: the evolving inner self. Cell 171:1481–1493

    Article  CAS  PubMed  Google Scholar 

  27. Madan JC, Hoen AG, Lundgren SN, Farzan SF, Cottingham KL et al (2016) Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. JAMA Pediatr 170:212–219

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sjogren YM, Tomicic S, Lundberg A, Bottcher MF, Bjorksten B et al (2009) Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy 39:1842–1851

    Article  CAS  PubMed  Google Scholar 

  29. Khanna S, Tosh PK (2014) A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc 89:107–114

    Article  CAS  PubMed  Google Scholar 

  30. Kaoutari AE, Armougom F, Gordon JI, Raoult D, Henrissat B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Rev Microbiol 11:497

    Article  CAS  Google Scholar 

  31. Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:93

    Google Scholar 

  32. Wang B, Yao M, Lv L, Ling Z, Li L (2017) The human microbiota in health and disease. Engineering 3:71–82

    Article  Google Scholar 

  33. Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Guo Y, Chen H, Wei H, Wan C (2018) Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress. Can J Microbiol 64:327–337

    Google Scholar 

  35. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H et al (2013) The long-term stability of the human gut microbiota. Science 341:1237439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McDermott AJ, Huffnagle GB (2014) The microbiome and regulation of mucosal immunity. Immunology 142:24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L et al (2014) The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146:1470–1476

    Article  CAS  PubMed  Google Scholar 

  38. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219

    Article  CAS  PubMed  Google Scholar 

  39. Galland L (2014) The gut microbiome and the brain. J Med Food 17:1261–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quigley EM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17:94

    Article  CAS  PubMed  Google Scholar 

  41. Odenwald MA, Turner JR (2013) Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol 11:1075–1083

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gareau MG, Silva MA, Perdue MH (2008) Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 8:274–281

    Article  CAS  PubMed  Google Scholar 

  43. Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Banerjee S, Sar A, Misra A, Pal S, Chakraborty A, Dam B (2018) Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short chain fatty acid producers. Microbiology 164:142–153

    Article  CAS  PubMed  Google Scholar 

  45. Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H et al (2009) The Firmicutes/ Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Biagi E, Nylund L, Candela M, Ostan R, Bucci L et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:e10667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ et al (2013) The role of short chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340

    Google Scholar 

  49. Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE et al (2007) Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 176:149–169

    Article  CAS  PubMed  Google Scholar 

  51. Burakoff R (1998) Less commonly used therapies for IBD or treatments on the fringe. Inflamm Bowel Dis 4:308–317

    Article  CAS  PubMed  Google Scholar 

  52. Tian Y, Xu Q, Sun L, Ye Y, Ji G (2018) Short chain fatty acids administration is protective in colitis-associated colorectal cancer development. J Nutr Biochem 57:103–109

    Article  CAS  PubMed  Google Scholar 

  53. Blouin JM, Penot G, Collinet M, Nacfer M, Forest C et al (2011) Butyrate elicits a metabolic switch in human colon cancer cells by targeting the pyruvate dehydrogenase complex. Int J Cancer 128:2591–2601

    Article  CAS  PubMed  Google Scholar 

  54. Brady LJ, Gallaher DD, Busta FF (2000) The role of probiotic cultures in the prevention of colon cancer. J Nutr 130:410S–414S

    Article  CAS  PubMed  Google Scholar 

  55. Fung KY, Cosgrove L, Lockett T, Head R, Topping DL (2012) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108:820–831

    Article  CAS  PubMed  Google Scholar 

  56. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  PubMed  Google Scholar 

  57. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ohira H, Tsutsui W, Fujioka Y (2017) Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 24:660–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR et al (2014) The role of short chain fatty acids in health and disease. Adv Immunol 121:91–119

    Article  CAS  PubMed  Google Scholar 

  60. Zhao L, Zhang F, Ding X, Wu G, Lam YY et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–1156

    Article  CAS  PubMed  Google Scholar 

  61. MacFabe DF (2012) Short chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 23:19260

    Google Scholar 

  62. Kelly JR, Borre Y, OBrien C, Patterson E, El Aidy S et al (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118

    Article  PubMed  Google Scholar 

  63. Ho L, Ono K, Tsuji M, Mazzola P, Singh R et al (2017) Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimers’ disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 18:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gu S, Chen Y, Zhang X, Lu H, Lv T et al (2016) Identification of key taxa that favor intestinal colonization of Clostridium difficile in an adult Chinese population. Microbes Infect 18:30–38

    Google Scholar 

  65. Tahara Y, Yamazaki M, Sukigara H, Motohashi H, Sasaki H et al (2018) Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci Rep 8:1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Macfarlane S, Macfarlane GT (2003) Regulation of short chain fatty acid production. Proc Nutr Soc 62:67–72

    Article  CAS  PubMed  Google Scholar 

  67. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS et al (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M (2017) Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11:841

    Article  PubMed  PubMed Central  Google Scholar 

  69. Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN (1999) Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116:1107–1114

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S et al (2011) Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol 301:G39–G49

    Article  CAS  PubMed  Google Scholar 

  71. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32:1720

    Article  CAS  Google Scholar 

  72. Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri M et al (2009) Shifts in Clostridia, Bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes 33:758

    Article  CAS  Google Scholar 

  73. Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA et al (2009) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195

    Article  PubMed  Google Scholar 

  75. Santacruz A, Marcos A, Warnberg J, Marti A, Martin-Matillas M et al (2009) Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17:1906–1915

    Article  PubMed  Google Scholar 

  76. Roesch LF, Lorca GL, Casella G, Giongo A, Naranjo A et al (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 3:536–548

    Article  CAS  PubMed  Google Scholar 

  77. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2008) Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol 8:232

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cani PD, Rodrigo B, Knauf C, Waget A, Neyrinck AM et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    Article  CAS  PubMed  Google Scholar 

  80. Buermans H, Den Dunnen J (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941

    Article  CAS  PubMed  Google Scholar 

  81. Quail MA, Smith M, Coupland P, Otto TD, Harris SR et al (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 7:e34242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huys G, Vanhoutte T, Joossens M, Mahious AS, De Brandt E et al (2008) Coamplification of eukaryotic DNA with 16S rRNA gene-based PCR primers: possible consequences for population fingerprinting of complex microbial communities. Curr Microbiol 56:553–557

    Article  CAS  PubMed  Google Scholar 

  84. Roesch LF, Casella G, Simell O, Krischer J, Wasserfall CH et al (2009) Influence of fecal sample storage on bacterial community diversity. Open Microbiol J 3:40–46

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gevers D, Kugathasan S, Denson Lee A, Vazquez-Baeza Y, Van Treuren W et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hillman ET, Lu H, Yao T, Nakatsu CH (2017) Microbial ecology along the gastrointestinal tract. Microbes Environ 32:300–313

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen D, Yang X, Yang J, Lai G, Yong T et al (2017) Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci 9:403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X et al (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 6:30028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Desbonnet L, Clarke G, Traplin A, OSullivan O, Crispie F et al (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173

    Article  CAS  PubMed  Google Scholar 

  90. Liu Z, Liu HY, Zhou H, Zhan Q, Lai W et al (2017) Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Front Microbiol 8:1687

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT et al (2014) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317

    Article  Google Scholar 

  92. Gareau MG (2014) Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol 817:357–371

    Article  CAS  PubMed  Google Scholar 

  93. Cheng M, Zhang X, Zhu J, Cheng L, Cao J et al (2018) A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food Funct 9:1079–1087

    Article  CAS  PubMed  Google Scholar 

  94. He Q, Gao Y, Jie Z, Yu X, Laursen JM et al (2017) Two distinct metacommunities characterize the gut microbiota in Crohn’s disease patients. GigaScience 6:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qin J, Li Y, Cai Z, Li S, Zhu J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  PubMed  Google Scholar 

  96. Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245

    Article  CAS  PubMed  Google Scholar 

  97. Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM et al (2016) Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 8:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203

    Article  CAS  PubMed  Google Scholar 

  99. Marseglia L, Manti S, DAngelo G, Nicotera A, Parisi E et al (2014) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16:378–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  101. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  102. Abdallah Ismail N, Ragab SH, Abd Elbaky A, Shoeib AR, Alhosary Y et al (2011) Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch Med Sci 7:501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lakhtakia R (2013) The history of diabetes mellitus. Sultan Qaboos Univ Med J 13:368–370

    Article  PubMed  PubMed Central  Google Scholar 

  104. Barach JH (1952) Paul Langerhans, 1847-1888. Diabetes 1:411–413

    Article  CAS  PubMed  Google Scholar 

  105. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69

    Article  PubMed Central  Google Scholar 

  106. Asmat U, Abad K, Ismail K (2016) Diabetes mellitus and oxidative stress- a concise review. Saudi Pharm J 24:547–553

    Google Scholar 

  107. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  108. Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M et al (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47:3–27

    Article  CAS  PubMed  Google Scholar 

  109. Haskins K, Bradley B, Powers K, Fadok V, Flores S et al (2003) Oxidative stress in type 1 diabetes. Ann N Y Acad Sci 1005:43–54

    Article  CAS  PubMed  Google Scholar 

  110. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Han H, Li Y, Fang J, Liu G, Yin J et al (2018) Gut microbiota and type 1 diabetes. Int J Mol Sci 19:995

    Article  CAS  PubMed Central  Google Scholar 

  112. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuno MI (2014) Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 5:190

    Article  PubMed  PubMed Central  Google Scholar 

  113. Walton EL (2017) Oxidative stress and diabetes: glucose response in the cROSsfire. Biomed J 40(5):241–244

    Google Scholar 

  114. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM et al (2012) Short chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Utzschneider KM, Kratz M, Damman CJ, Hullarg M (2016) Mechanisms linking the gut microbiome and glucose metabolism. J Clin Endocrinol Metab 101:1445–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Harman D (2006) Free radical theory of aging: an update. Ann N Y Acad Sci 1067:10–21

    Article  CAS  PubMed  Google Scholar 

  117. Aron-Wisnewsky J, Gaborit B, Dutour A, Clement K (2013) Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin Microbiol Infect 19:338–348

    Article  CAS  PubMed  Google Scholar 

  118. Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6:109–120

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ke Y, Li D, Zhao M, Liu C, Liu J et al (2018) Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radical Bio Med 116:88–100

    Article  CAS  Google Scholar 

  120. Kumar M, Babaei P, Ji B, Nielsen J (2016) Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging 4:3–16

    Article  PubMed  PubMed Central  Google Scholar 

  121. Anderson KE, Ricigliano VA, Mott BM, Copeland DC, Floyd AS et al (2018) The queen’s gut refines with age: longevity phenotypes in a social insect model. Microbiome 6:108

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ticinesi A, Lauretani F, Milani C, Nouvenne A, Tana C et al (2017) Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis? Nutrients 9

    Google Scholar 

  123. Jie Z, Xia H, Zhong SL, Feng Q, Li S et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845

    Google Scholar 

  124. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N et al (2015) Gut dysbiosis is linked to hypertension. Hypertension 65:1331–1340

    Article  CAS  PubMed  Google Scholar 

  126. Davis CD (2016) The gut microbiome and its role in obesity. Nutr Today 51:167

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hoen AG, Li J, Moulton LA, Otoole GA, Housman ML et al (2015) Associations between gut microbial colonization in early life and respiratory outcomes in cystic fibrosis. J Pediatr 167:138–147.e133

    Google Scholar 

  128. Ridlon JM, Alves JM, Hylemon PB, Bajaj JS (2013) Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes 4:382–387

    Article  PubMed  PubMed Central  Google Scholar 

  129. Qin N, Yang F, Li A, Prifti E, Chen Y et al (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature 513:59

    Article  CAS  PubMed  Google Scholar 

  130. Foster JA, Rinaman L, Cryan JF (2017) Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136

    Article  PubMed  PubMed Central  Google Scholar 

  131. Seril DN, Liao J, Yang GY, Yang CS (2003) Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 24:353–362

    Article  CAS  PubMed  Google Scholar 

  132. Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37:47–55

    Article  CAS  PubMed  Google Scholar 

  133. Mete R, Tulubas F, Oran M, Yilmaz A, Avci BA et al (2013) The role of oxidants and reactive nitrogen species in irritable bowel syndrome: a potential etiological explanation. Med Sci Monit 19:762–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Loh G, Blaut M (2012) Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 3:544–555

    Article  PubMed  PubMed Central  Google Scholar 

  135. Jeffery IB, OToole PW, Ohman L, Claesson MJ, Deane J et al (2011) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61:997–1006

    Article  PubMed  Google Scholar 

  136. Caracciolo B, Xu W, Collins S, Fratiglioni L (2014) Cognitive decline, dietary factors and gut-brain interactions. Mech Ageing Dev 136-137:59–69

    Article  PubMed  Google Scholar 

  137. Oriach CS, Robertson RC, Stanton C, Cryan JF, Dinan TG (2016) Food for thought: the role of nutrition in the microbiota-gut-brain axis. Clin Nutr Exper 6:25–38

    Article  Google Scholar 

  138. Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595:489–503

    Article  CAS  PubMed  Google Scholar 

  139. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72

    Google Scholar 

  140. Gerhardt S, Mohajeri M (2018) Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients 10:708

    Article  CAS  PubMed Central  Google Scholar 

  141. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7:13537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kohler CA, Maes M, Slyepchenko A, Berk M, Solmi M et al (2016) The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer’s disease. Curr Pharm Des 22:6152–6166

    Article  CAS  PubMed  Google Scholar 

  143. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M et al (2011) Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med 17:1585–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Perez-Santiago J, Gianella S, Massanella M, Spina CA, Karris MY et al (2013) Gut Lactobacillales are associated with higher CD4 and less microbial translocation during HIV infection. AIDS 27:1921–1931

    Article  CAS  PubMed  Google Scholar 

  145. Dubourg G, Lagier JC, Hue S, Surenaud M, Bachar D et al (2016) Gut microbiota associated with HIV infection is significantly enriched in bacteria tolerant to oxygen. BMJ Open Gastroenterol:3

    Google Scholar 

  146. Heinlen L, Ballard JD (2010) Clostridium difficile infection. Am J Med Sci 340:247–252

    Google Scholar 

  147. Gao JJ, Zhang Y, Gerhard M, Mejias-Luque R, Zhang L et al (2018) Association between gut microbiota and Helicobacter pylori related gastric lesions in a high-risk population of gastric cancer. Front Cell Infect Mi 8:202

    Google Scholar 

  148. Sheh A, Fox JG (2013) The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 4:505–531

    Article  PubMed  PubMed Central  Google Scholar 

  149. Noto JM, Peek RM Jr (2017) The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog 13:e1006573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5:63–63

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chen Y, Chen Z, Guo R, Chen N, Lu H et al (2011) Correlation between gastrointestinal fungi and varying degrees of chronic Hepatitis B virus infection. Diagn Microbiol Infect Dis 70:492–498

    Article  PubMed  Google Scholar 

  152. Hager CL, Ghannoum MA (2017) The mycobiome: role in health and disease, and as a potential probiotic target in gastrointestinal disease. Digest Liver Dis 49:1171–1176

    Article  CAS  Google Scholar 

  153. Nkamga VD, Henrissat B, Drancourt M (2017) Archaea: essential inhabitants of the human digestive microbiota. Hum Microbiome J 3:1–8

    Article  Google Scholar 

  154. van de Pol JA, van Best N, Mbakwa CA, Thijs C, Savelkoul PH et al (2017) Gut colonization by methanogenic archaea is associated with organic dairy consumption in children. Front Microbiol 8:355

    PubMed  PubMed Central  Google Scholar 

  155. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI (2012) Going viral: next generation sequencing applied to human gut phage populations. Nat Rev Microbiol 10:607–617

    Google Scholar 

  156. Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A et al (2015) The human gut microbiota and virome: potential therapeutic implications. Digest Liver Dis 47:1007–1012

    Article  Google Scholar 

  157. Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ et al (2014) A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 5:4498

    Article  CAS  PubMed  Google Scholar 

  158. Vital M, Gao J, Rizzo M, Harrison T, Tiedje JM (2015) Diet is a major factor governing the fecal butyrate-producing community structure across mammalia, aves and reptilia. ISME J 9:832–843

    Article  CAS  PubMed  Google Scholar 

  159. Givens CE, Ransom B, Bano N, Hollibaugh JT (2015) Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar Ecol Prog Ser 518:209–223

    Article  Google Scholar 

  160. Bourassa MW, Alim I, Bultman SJ, Ratan RR (2016) Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett 625:56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Valdes L, Cuervo A, Salazar N, Ruas-Madiedo P, Gueimonde M et al (2015) The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct 6:2424–2439

    Article  CAS  PubMed  Google Scholar 

  162. Rastmanesh R (2011) High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem Biol Interact 189:1–8

    Article  CAS  PubMed  Google Scholar 

  163. David L, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559

    Article  CAS  PubMed  Google Scholar 

  164. Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374s–379s

    Google Scholar 

  165. Sengul N, Isık S, Aslım B, Ucar G, Demirbag AE (2011) The effect of exopolysaccharide-producing probiotic strains on gut oxidative damage in experimental colitis. Digest Dis and Sci 56:707–714

    Article  Google Scholar 

  166. Morrow LE, Kollef MH, Casale TB (2010) Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am J Respir Crit Care Med 182:1058–1064

    Article  PubMed  PubMed Central  Google Scholar 

  167. Amar J, Chabo C, Al W, Klopp P, Vachoux C et al (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3:559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bordalo Tonucci L, Dos Santos KMO, De Luces Fortes Ferreira CL, Ribeiro SMR, De Oliveira LL et al (2015) Gut microbiota and probiotics: focus on diabetes mellitus. Crit Rev Food Sci Nutr 57:2296–2309

    Article  Google Scholar 

  169. Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T (2013) Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in ats: new insight into the probiotics for the gut-liver axis. PLoS One 8:e63388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Martin R, Miquel S, Benevides L, Bridonneau C, Robert V et al (2017) Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol 8:1226

    Google Scholar 

  171. Brugere JF, Ben Hania W, Arnal ME, Ribiere C, Ballet N et al (2018) Archaea: microbial candidates in next-generation probiotics development. J Clin Gastroenterol 52:S71

    Article  PubMed  Google Scholar 

  172. McFarland LV, Bernasconi P (1993) Saccharomyces boulardii: a review of an innovative biotherapeutic agent. Microb Ecol Health Dis 6:157–171

    Article  Google Scholar 

  173. Scott KP, Martin JC, Duncan SH, Flint HJ (2014) Prebiotic stimulation of human colonic butyrate-producing bacteria and Bifidobacteria. In Vitro FEMS Microbiol Ecol 87

    Google Scholar 

  174. Walters SS, Quiros A, Rolston M, Grishina I, Li J et al (2014) Analysis of gut microbiome and diet modification in patients with Crohn’s disease. SOJ Microbiol Infect Dis 2:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  175. Dolara P, Luceri C, Filippo CD, Femia AP, Giovannelli L et al (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res Fundam Mol Mech Mutagen 591:237–246

    Article  CAS  Google Scholar 

  176. Cardona F, Andres-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuno MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24:1415–1422

    Article  CAS  PubMed  Google Scholar 

  177. Queipo-Ortuno MI, Boto-Ordonez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M et al (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95:1323–1334

    Article  CAS  PubMed  Google Scholar 

  178. Cueva C, Sanchez-Patan F, Monagas M, Walton GE, Gibson GR et al (2013) In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol 83:792–805

    Article  CAS  PubMed  Google Scholar 

  179. Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876–884

    Article  CAS  PubMed  Google Scholar 

  180. Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A et al (2014) Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 168:1063–1069

    Article  PubMed  Google Scholar 

  181. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207

    Article  CAS  Google Scholar 

  182. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152–307ra152

    Google Scholar 

  183. Dubourg G, Surenaud M, Levy Y, Hue S, Raoult D (2017) Microbiome of HIV-infected people. Microb Pathogen 106:85–93

    Article  CAS  Google Scholar 

  184. Potgieter M, Bester J, Kell DB, Pretorius E (2015) The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 39:567–591

    Article  PubMed  PubMed Central  Google Scholar 

  185. Borody TJ, Khoruts A (2011) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9:88–96

    Article  CAS  PubMed  Google Scholar 

  186. Brandt LJ (2013) Intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. difficile infection. Am J Gastroenterol 108:177–185

    Article  PubMed  Google Scholar 

  187. Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D et al (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1:3

    Google Scholar 

  188. Rao K, Young VB (2015) Fecal microbiota transplantation for the management of Clostridium difficile infection. Infect Dis Clin N Am 29:109–122

    Google Scholar 

  189. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM et al (2015) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339

    Article  PubMed  Google Scholar 

  190. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW et al (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250

    Google Scholar 

  191. Blacher E, Levy M, Tatirovsky E, Elinav E (2017) Microbiome-modulated metabolites at the interface of host immunity. J Immunol Res 198:572–580

    CAS  Google Scholar 

  192. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938

    Article  PubMed  PubMed Central  Google Scholar 

  193. Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R et al (2016) Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis 67:483–498

    Article  CAS  PubMed  Google Scholar 

  194. Sun M, Wu W, Liu Z, Cong Y (2017) Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol Hepatol 52:1–8

    CAS  Google Scholar 

  195. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242

    Article  CAS  PubMed  Google Scholar 

  196. Ahmad R, Sorrell MF, Batra SK, Dhawan P, Singh AB (2017) Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol 10:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C et al (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82–91

    Article  CAS  PubMed  Google Scholar 

  199. Wu X, Ma C, Han L, Nawaz M, Gao F et al (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61:69–78

    Article  CAS  PubMed  Google Scholar 

  200. Gupta SS, Mohammed MH, Ghosh TS, Kanungo S, Nair GB et al (2011) Metagenome of the gut of a malnourished child. Gut Pathog 3: 7

    Google Scholar 

  201. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916.e917

    Google Scholar 

  202. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30:1351–1360

    Article  CAS  PubMed  Google Scholar 

  203. Wang T, Cai G, Qiu Y, Fei N, Zhang M et al (2011) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6:320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial assistance from DST-SERB [No.SB/YS/LS-16/2013], CSIR [No. 38(1410)/15/ EMR-II)], UGC MRP [No. 43-462/2014(SR)] and WB-DST [No. ST/P/S&T/5G-18/2017] is thankfully acknowledged. Sohini Banerjee is grateful to CSIR [No. 38(1410)/15/EMR-II] for her fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bomba Dam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dam, B., Misra, A., Banerjee, S. (2019). Role of Gut Microbiota in Combating Oxidative Stress. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_4

Download citation

Publish with us

Policies and ethics