Skip to main content

Reactive Oxygen and Nitrogen Species in the Oral Cavity

  • Chapter
  • First Online:

Abstract

In the oral cavity, reactive oxygen and nitrogen species are continuously generated by bacterial metabolism and host-mediated cellular factors. These reactive species facilitate a critical function that regulates the outcomes of both oral and systemic diseases, such as dental caries, periodontitis, and the maintenance of blood pressure. As a result, the protective effects of ROS and RNS are being explored for future therapeutic applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhou P, Liu L, Tong H, Dong X (2012) Role of operon aaoSo-mutT in antioxidant defense in Streptococcus oligofermentans. PLoS One 7(5):e38133. https://doi.org/10.1371/journal.pone.0038133. PubMed PMID: 22666463; PubMed Central PMCID: PMC3364214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19. https://doi.org/10.1097/WOX.0b013e3182439613. PubMed PMID: 23268465; PubMed Central PMCID: PMCPMC3488923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. University Press, Oxford/New York, xxxvi, 851 p

    Google Scholar 

  4. Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215(2):213–219. PubMed PMID: 7688300

    Article  CAS  Google Scholar 

  5. Andrews SC (2010) The ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim Biophys Acta 1800(8):691–705. https://doi.org/10.1016/j.bbagen.2010.05.010. PubMed PMID: 20553812

    Article  CAS  PubMed  Google Scholar 

  6. Zamocky M, Furtmuller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10(9):1527–1548. https://doi.org/10.1089/ars.2008.2046. PubMed PMID: 18498226; PubMed Central PMCID: PMCPMC2959186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Touati D (1989) The molecular genetics of superoxide dismutase in E. coli. An approach to understanding the biological role and regulation of SODS in relation to other elements of the defence system against oxygen toxicity. Free Radic Res Commun 8(1):1–9. PubMed PMID: 2684801

    Article  CAS  Google Scholar 

  8. Rosenthal I (1976) Recent developments in singlet molecular oxygen chemistry. Photochem Photobiol 24(6):641–645. PubMed PMID: 798214

    Article  CAS  Google Scholar 

  9. Lamont RJ (2016) Hydrogen peroxide is a central determinant of oral polymicrobial synergy. Environ Microbiol. https://doi.org/10.1111/1462-2920.13537. PubMed PMID: 27654314

  10. van Velzen AG, Sips AJ, Schothorst RC, Lambers AC, Meulenbelt J (2008) The oral bioavailability of nitrate from nitrate-rich vegetables in humans. Toxicol Lett 181(3):177–181. https://doi.org/10.1016/j.toxlet.2008.07.019. PubMed PMID: 18723086

    Article  CAS  PubMed  Google Scholar 

  11. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005. PubMed PMID: 16272510; PubMed Central PMCID: PMCPMC1287824

    Article  PubMed  PubMed Central  Google Scholar 

  12. Burleigh MC, Liddle L, Monaghan C, Muggeridge DJ, Sculthorpe N, Butcher JP et al (2018) Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic Biol Med 120:80–88. https://doi.org/10.1016/j.freeradbiomed.2018.03.023. PubMed PMID: 29550328

    Article  CAS  PubMed  Google Scholar 

  13. Mariano FS, Campanelli AP, Nociti Jr FH, Mattos-Graner RO, Gonçalves RB (2012) Antimicrobial peptides and nitric oxide production by neutrophils from periodontitis subjects. Braz J Med Biol Res 45(11):1017–1024. https://doi.org/10.1590/s0100-879x2012007500123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288(37):26464–26472. https://doi.org/10.1074/jbc.R113.472936. PubMed PMID: 23861390; PubMed Central PMCID: PMCPMC3772193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pannala AS, Mani AR, Spencer JPE, Skinner V, Bruckdorfer KR, Moore KP et al (2003) The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic Biol Med 34(5):576–584. https://doi.org/10.1016/s0891-5849(02)01353-9

    Article  CAS  PubMed  Google Scholar 

  16. Marsh PD (2006) Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health 6(Suppl 1):S14. https://doi.org/10.1186/1472-6831-6-S1-S14. PubMed PMID: 16934115; PubMed Central PMCID: PMC2147593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369(9555):51–59. https://doi.org/10.1016/S0140-6736(07)60031-2. PubMed PMID: 17208642

    Article  CAS  PubMed  Google Scholar 

  18. Beighton D, Manji F, Baelum V, Fejerskov O, Johnson NW, Wilton JM (1989) Associations between salivary levels of Streptococcus mutans, Streptococcus sobrinus, lactobacilli, and caries experience in Kenyan adolescents. J Dent Res 68(8):1242–1246. https://doi.org/10.1177/00220345890680080601. PubMed PMID: 2632612

    Article  CAS  PubMed  Google Scholar 

  19. Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353–380. PubMed PMID: 3540569; PubMed Central PMCID: PMCPMC373078

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tong H, Chen W, Merritt J, Qi F, Shi W, Dong X (2007) Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. Mol Microbiol 63(3):872–880. https://doi.org/10.1111/j.1365-2958.2006.05546.x. PubMed PMID: 17302806

    Article  CAS  PubMed  Google Scholar 

  21. Kornspan JD, Ginsburg I, Rottem S (2013) The oxidant scavenging capacity of the oral mycoplasma salivarium. Arch Oral Biol 58(10):1378–1384. https://doi.org/10.1016/j.archoralbio.2013.05.001. PubMed PMID: 23735812

    Article  CAS  PubMed  Google Scholar 

  22. Silva PVD, Troiano JA, Nakamune A, Pessan JP, Antoniali C (2016) Increased activity of the antioxidants systems modulate the oxidative stress in saliva of toddlers with early childhood caries. Arch Oral Biol 70:62–66. https://doi.org/10.1016/j.archoralbio.2016.06.003. PubMed PMID: 27328152

    Article  CAS  PubMed  Google Scholar 

  23. Marcenes W, Kassebaum NJ, Bernabe E, Flaxman A, Naghavi M, Lopez A et al (2013) Global burden of oral conditions in 1990-2010: a systematic analysis. J Dent Res 92(7):592–597. https://doi.org/10.1177/0022034513490168. PubMed PMID: 23720570; PubMed Central PMCID: PMCPMC4484374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Darveau RP (2010) Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol 8(7):481–490. https://doi.org/10.1038/nrmicro2337. PubMed PMID: 20514045

    Article  CAS  PubMed  Google Scholar 

  25. Hajishengallis G, Lamont RJ (2012) Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27(6):409–419. https://doi.org/10.1111/j.2041-1014.2012.00663.x. PubMed PMID: 23134607; PubMed Central PMCID: PMCPMC3653317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kinane DF, Preshaw PM, Loos BG (2011) Working group 2 of seventh European workshop on P. host-response: understanding the cellular and molecular mechanisms of host-microbial interactions--consensus of the seventh European workshop on periodontology. J Clin Periodontol 38(Suppl 11):44–48. https://doi.org/10.1111/j.1600-051X.2010.01682.x. PubMed PMID: 21323703

    Article  PubMed  Google Scholar 

  27. Kolenbrander PE, Palmer RJ, Jr., Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000 42:47–79. doi: https://doi.org/10.1111/j.1600-0757.2006.00187.x. PubMed PMID: 16930306

  28. Chen L, Ge X, Dou Y, Wang X, Patel JR, Xu P (2011) Identification of hydrogen peroxide production-related genes in Streptococcus sanguinis and their functional relationship with pyruvate oxidase. Microbiology 157(Pt 1):13–20. https://doi.org/10.1099/mic.0.039669-0. PubMed PMID: 20847003; PubMed Central PMCID: PMC3069532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Periasamy S, Kolenbrander PE (2009) Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol 191(22):6804–6811. https://doi.org/10.1128/JB.01006-09. PubMed PMID: 19749049; PubMed Central PMCID: PMC2772475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Diaz PI, Zilm PS, Rogers AH (2002) Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology 148(Pt 2):467–472. https://doi.org/10.1099/00221287-148-2-467. PubMed PMID: 11832510

    Article  CAS  PubMed  Google Scholar 

  31. Zhou P, Li X, Huang IH, Qi F (2017) Veillonellae catalase protects the growth of fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-present environments. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01079-17. PubMed PMID: 28778894

  32. Ramsey MM, Whiteley M (2009) Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc Natl Acad Sci U S A 106(5):1578–1583. https://doi.org/10.1073/pnas.0809533106. PubMed PMID: 19164580; PubMed Central PMCID: PMCPMC2629492

    Article  PubMed  PubMed Central  Google Scholar 

  33. Duan D, Scoffield JA, Zhou X, Wu H (2016) Fine-tuned production of hydrogen peroxide promotes biofilm formation of Streptococcus parasanguinis by a pathogenic cohabitant Aggregatibacter actinomycetemcomitans. Environ Microbiol. https://doi.org/10.1111/1462-2920.13425. PubMed PMID: 27348605

  34. Wang Y, Andrukhov O, Rausch-Fan X (2017) Oxidative stress and antioxidant system in periodontitis. Front Physiol 8:910. https://doi.org/10.3389/fphys.2017.00910. PubMed PMID: 29180965; PubMed Central PMCID: PMCPMC5693842

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kurita-Ochiai T, Jia R, Cai Y, Yamaguchi Y, Yamamoto M (2015) Periodontal disease-induced atherosclerosis and oxidative stress. Antioxidants (Basel) 4(3):577–590. https://doi.org/10.3390/antiox4030577. PubMed PMID: 26783845; PubMed Central PMCID: PMCPMC4665422

    Article  CAS  Google Scholar 

  36. Hyde ER, Luk B, Cron S, Kusic L, McCue T, Bauch T et al (2014) Characterization of the rat oral microbiome and the effects of dietary nitrate. Free Radic Biol Med 77:249–257. https://doi.org/10.1016/j.freeradbiomed.2014.09.017. PubMed PMID: 25305639

    Article  CAS  PubMed  Google Scholar 

  37. Houston M, Hays L (2014) Acute effects of an oral nitric oxide supplement on blood pressure, endothelial function, and vascular compliance in hypertensive patients. J Clin Hypertens (Greenwich) 16(7):524–529. https://doi.org/10.1111/jch.12352. PubMed PMID: 24962851

    Article  CAS  Google Scholar 

  38. Goto C, Nishioka K, Umemura T, Jitsuiki D, Sakagutchi A, Kawamura M et al (2007) Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. Am J Hypertens 20(8):825–830. https://doi.org/10.1016/j.amjhyper.2007.02.014. PubMed PMID: 17679027

    Article  CAS  PubMed  Google Scholar 

  39. Kapil V, Haydar SM, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A (2013) Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med 55:93–100. https://doi.org/10.1016/j.freeradbiomed.2012.11.013. PubMed PMID: 23183324; PubMed Central PMCID: PMCPMC3605573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Filkins LM, O’Toole GA (2015) Cystic fibrosis lung infections: Polymicrobial, complex, and hard to treat. PLoS Pathog 11(12):e1005258. https://doi.org/10.1371/journal.ppat.1005258. PubMed PMID: 26719892; PubMed Central PMCID: PMCPMC4700991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Filkins LM, Hampton TH, Gifford AH, Gross MJ, Hogan DA, Sogin ML et al (2012) Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol 194(17):4709–4717. https://doi.org/10.1128/JB.00566-12. PubMed PMID: 22753064; PubMed Central PMCID: PMCPMC3415522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scoffield JA, Wu H (2016) Nitrite reductase is critical for Pseudomonas aeruginosa survival during co-infection with the oral commensal Streptococcus parasanguinis. Microbiology 162(2):376–383. https://doi.org/10.1099/mic.0.000226. PubMed PMID: 26673783; PubMed Central PMCID: PMCPMC4766596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scoffield JA, Wu H (2015) Oral streptococci and nitrite-mediated interference of Pseudomonas aeruginosa. Infect Immun 83(1):101–107

    Article  Google Scholar 

  44. Kobayashi Y, Hayashi M, Yoshino F, Tamura M, Yoshida A, Ibi H et al (2014) Passive ultrasonic irrigation in the presence of a low concentration of hydrogen peroxide enhances hydroxyl radical generation and bactericidal effect against Enterococcus faecalis. J Oral Sci 56(1):35–39. https://doi.org/10.2334/josnusd.56.35

    Article  CAS  PubMed  Google Scholar 

  45. Cieplik F, Tabenski L, Buchalla W, Maisch T (2014) Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Front Microbiol 5:405. https://doi.org/10.3389/fmicb.2014.00405. PubMed PMID: 25161649; PubMed Central PMCID: PMCPMC4130309

    Article  PubMed  PubMed Central  Google Scholar 

  46. Syed M, Sachdev V, Chopra R (2016) Intercomparison of salivary nitric oxide as a biomarker of dental caries risk between caries-active and caries-free children. Eur Arch Paediatr Dent 17(4):239–243. https://doi.org/10.1007/s40368-016-0234-z. PubMed PMID: 27357363

    Article  CAS  PubMed  Google Scholar 

  47. Backlund CJ, Worley BV, Schoenfisch MH (2016) Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans. Acta Biomater 29:198–205. https://doi.org/10.1016/j.actbio.2015.10.021. PubMed PMID: 26478472; PubMed Central PMCID: PMCPMC4695967

    Article  CAS  PubMed  Google Scholar 

  48. Ahmadi MS, Lee HH, Sanchez DA, Friedman AJ, Tar MT, Davies KP et al (2016) Sustained nitric oxide-releasing nanoparticles induce cell death in Candida albicans yeast and hyphal cells, preventing biofilm formation in vitro and in a rodent central venous catheter model. Antimicrob Agents Chemother 60(4):2185–2194. https://doi.org/10.1128/AAC.02659-15. PubMed PMID: 26810653; PubMed Central PMCID: PMCPMC4808184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hohensinn B, Haselgrubler R, Muller U, Stadlbauer V, Lanzerstorfer P, Lirk G et al (2016) Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate-rich beetroot juice in young healthy adults reduces salivary pH. Nitric Oxide 60:10–15. https://doi.org/10.1016/j.niox.2016.08.006. PubMed PMID: 27593618

    Article  CAS  PubMed  Google Scholar 

  50. Backlund CJ, Sergesketter AR, Offenbacher S, Schoenfisch MH (2014) Antibacterial efficacy of exogenous nitric oxide on periodontal pathogens. J Dent Res 93(11):1089–1094. https://doi.org/10.1177/0022034514529974. PubMed PMID: 25139363; PubMed Central PMCID: PMCPMC4293763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, P., Scoffield, J., Wu, H. (2019). Reactive Oxygen and Nitrogen Species in the Oral Cavity. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_3

Download citation

Publish with us

Policies and ethics