Skip to main content

Potentials of Phytopharmaceuticals for Treating Microbiological and Oxidative Stress-Induced Type 2 Diabetes

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases

Abstract

Currently, type 2 diabetes is one of the most widespread noncommunicable maladies that inflict more than 400 million people globally. Diabetes-induced oxidative stress and distortion in gastrointestinal microbiota seem to play an important role in the occurrence of metabolic syndrome and related disorders. Oxidative stress causes imbalance between highly reactive oxygen species (ROS) and antioxidant systems of the body, resulting in metabolic syndrome, atherosclerosis, cardiovascular diseases, kidney problem, neuropathy, retinopathy, cancer risk, etc. Some studies show that imbalance in the gut microbiota also contributes in the development of type 2 diabetes. Microbial dysbiosis is considered to cause diabetic complications like cardiometabolic syndrome. Soluble dietary fibers have beneficial effects on gut microbiota and promote metabolic benefits on glucose control, but the underlying mechanisms remain unknown. Oral administration of purified and standardized phytopharmaceuticals containing bioactive compounds of different medicinal plants which help to normalize blood sugar level and promote healthy microbiota have proven useful in the prevention, mitigation, and management of diabetes as well as associated cardiometabolic syndrome. Recently, probiotics/prebiotics/synbiotics have gained importance in promoting healthy microbiota in diabetic patients. Probiotics consist of live bacteria present in foods like yogurt/cheese that confer health benefits on the host, while prebiotics are indigestible oligosaccharides that promote growth of beneficial bacteria in the gut. The focus of the review is to highlight the therapeutic potential of various types of phytomedicines and their known mechanistic actions involved in the management of type 2 diabetes. Results of clinical trials of herbal remedies and probiotics/prebiotics in humans and in vivo effects observed in animal models will also be described in this review. Randomized, placebo-controlled, and double-blind clinical studies with robust endpoints are needed for establishing the long-term safety, efficacy, and therapeutic relevance of phytopharmaceuticals and probiotics/ prebiotics/synbiotics in treating patients suffering from type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diabetes Prevention Program Research Group (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403

    Article  PubMed Central  Google Scholar 

  2. Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomedicine 7:1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Piconi L, Quagliaro L, Ceriello A (2003) Oxidative stress in diabetes. Clin Chem Lab Med 41(9):1144–1149

    Article  CAS  PubMed  Google Scholar 

  4. Wright E, Scism-Bacon JL, Glass LC (2006) Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 60(3):308–314

    Article  CAS  PubMed  Google Scholar 

  5. Betteridge DJ (2000) What is oxidative stress? Metabolism 49(2 Suppl 1):3–8

    Google Scholar 

  6. Morteza A, Jenab Y, Nargesi AA, Ghazizadeh Z, Salabati M (2012) Urea and oxidative stress in type 2 diabetes. J Metabolic Synd 1(105):2167–0943

    Google Scholar 

  7. Crommen S, Simon MC (2017) Microbial regulation of glucose metabolism and insulin resistance. Genes 9(1):10

    Article  PubMed Central  CAS  Google Scholar 

  8. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916

    Article  CAS  PubMed  Google Scholar 

  9. Qin J, Li Y, Cai Z., Li S, Zhu J, Zhang F, … Peng Y (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–last page

    Google Scholar 

  10. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99

    Article  CAS  PubMed  Google Scholar 

  11. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23(7):850

    Article  CAS  PubMed  Google Scholar 

  12. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121(6):2126–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242

    Article  CAS  PubMed  Google Scholar 

  14. Diamant M, Blaak EE, De Vos WM (2011) Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12(4):272–281

    Article  CAS  PubMed  Google Scholar 

  15. Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 27(1):73–83

    Article  CAS  PubMed  Google Scholar 

  16. Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59(4):617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kootte RS, Vrieze A, Holleman F, Dallinga-Thie GM, Zoetendal EG, de Vos WM et al (2012) The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 14(2):112–120

    Article  CAS  PubMed  Google Scholar 

  18. Mingqian H, Shi B (2017) Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 7(1):54

    Article  CAS  Google Scholar 

  19. Delzenne NM, Cani PD (2011) Gut microbiota and the pathogenesis of insulin resistance. Curr Diab Rep 11(3):154

    Article  CAS  PubMed  Google Scholar 

  20. Makiura N, Ojima M, Kou Y, Furuta N, Okahashi N, Shizukuishi S, Amano A (2008) Relationship of Porphyromonas gingivalis with glycemic level in patients with type 2 diabetes following periodontal treatment. Mol Oral Microbiol 23(4):348–351

    CAS  Google Scholar 

  21. Aemaimanan P, Amimanan P, Taweechaisupapong S (2013) Quantification of key periodontal pathogens in insulin-dependent type 2 diabetic and non-diabetic patients with generalized chronic periodontitis. Anaerobe 22:64–68

    Article  CAS  PubMed  Google Scholar 

  22. Thorstensson H, Dahlen G, Hugoson A (1995) Some suspected periodontopathogens and serum antibody response in adult long-duration insulin-dependent diabetics. J Clin Periodontol 22(6):449–458

    Article  CAS  PubMed  Google Scholar 

  23. Kazi S (2014) Use of traditional plants in diabetes mellitus. Intl J Pharmaceut 4(4):283–289

    Google Scholar 

  24. Bathaie SZ, Mokarizade N, Shirali S (2012) An overview of the mechanisms of plant ingredients in the treatment of diabetes mellitus. J Med Plants 4(44):1–24

    Google Scholar 

  25. Hui H, Zhao X, Perfetti R (2005) Structure and function studies of glucagon-like peptide-1 (GLP-1): the designing of a novel pharmacological agent for the treatment of diabetes. Diabetes Metab Res Rev 21(4):313–331

    Article  CAS  PubMed  Google Scholar 

  26. Kooti W, Moradi MT, Ali-Akbari S, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D (2014) Therapeutic and pharmacological potential of Foeniculum vulgare Mill: a review. J Herb Med Pharmacol:4

    Google Scholar 

  27. Afrisham R, Aberomand M, Ghaffari MA, Siahpoosh A, Jamalan M (2015) Inhibitory effect of Heracleum persicum and Ziziphus jujuba on activity of alpha-amylase. J Bot 2015:1

    Article  CAS  Google Scholar 

  28. Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Phil Trans R Soc Lond B 311(1152):617–631

    Article  CAS  Google Scholar 

  29. Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bansal AK, Bilaspuri GS (2011) Impacts of oxidative stress and antioxidants on semen functions. Vet Med Intl 2011:1–7

    Article  CAS  Google Scholar 

  31. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Intl J Biomed Sci IJBS 4(2):89

    CAS  Google Scholar 

  32. Lipinski B (2001) Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complicat 15(4):203–210

    Article  CAS  Google Scholar 

  33. Maritim AC, Sanders A, Watkins J (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    Article  CAS  PubMed  Google Scholar 

  34. Moussa SA (2008) Oxidative stress in diabetes mellitus. Romanian J Biophys 18(3):225–236

    CAS  Google Scholar 

  35. Erejuwa OO (2012) Oxidative stress in diabetes mellitus: is there a role for hypoglycemic drugs and/or antioxidants. Oxidative Stress Diseases 217:246

    Google Scholar 

  36. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2):e9085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Ji L (2013) Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8(8):e71108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ceolotto G, Bevilacqua M, Papparella I, Baritono E, Franco L, Corvaja C, Avogaro A (2004) Insulin generates free radicals by an NAD (P) H, phosphatidylinositol 3′-kinase-dependent mechanism in human skin fibroblasts ex vivo. Diabetes 53(5):1344–1351

    Article  CAS  PubMed  Google Scholar 

  39. Levy J, Gavin JR, Sowers JR (1994) Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am J Med 96(3):260–273

    Article  CAS  PubMed  Google Scholar 

  40. Wohaieb SA, Godin DV (1987) Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat: effects of insulin treatment. Diabetes 36(9):1014–1018

    Article  CAS  PubMed  Google Scholar 

  41. Sardesai VM (1995) Role of antioxidants in health maintenance. Nutr Clin Pract 10(1):19–25

    Article  CAS  PubMed  Google Scholar 

  42. Gibaldi M (1996) Antioxidant vitamins and health. J Clin Pharmacol 36(12):1093–1099

    Article  CAS  PubMed  Google Scholar 

  43. Gökkus C, Palanduz S, Ademoğlu E, Tamer S (2001) Oxidant and antioxidant systems in NIDDM patients: influence of vitamin E supplementation. Endocr Res 27(3):377–386

    Article  Google Scholar 

  44. Garcia-Medina JJ, Pinazo-Duran MD, Garcia-Medina M, Zanon-Moreno V, Pons-Vazquez SA (2011) A 5-year follow-up of antioxidant supplementation in type 2 diabetic retinopathy. Eur J Ophthalmol 21(5):637–643

    Article  PubMed  Google Scholar 

  45. Perez C, Canal JR, Torres MD (2003) Experimental diabetes treated with ficus carica extract: effect on oxidative stress parameters. Acta Diabetol 40(1):3–8

    Article  CAS  PubMed  Google Scholar 

  46. Welihinda J, Karunanayake EH (1986) Extra-pancreatic effects of Momordica charantia in rats. J Ethnopharmacol 17(3):247–255

    Article  CAS  PubMed  Google Scholar 

  47. Song F, Chen W, Jia W, Yao P, Nussler AK, Sun X, Liu L (2006) A natural sweetener, Momordica grosvenori, attenuates the imbalance of cellular immune functions in alloxan-induced diabetic mice. Phytother Res 20(7):552–560

    Article  PubMed  Google Scholar 

  48. Waisundara VY, Hsu A, Huang D, Tan BKH (2008) Scutellaria baicalensis enhances the anti-diabetic activity of metformin in streptozotocin-induced diabetic Wistar rats. Am J Chin Med 36(03):517–540

    Article  CAS  PubMed  Google Scholar 

  49. Xi M, Hai C, Tang H, Chen M, Fang K, Liang X (2008) Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus. Phytother Res 22(2):228–237

    Article  CAS  PubMed  Google Scholar 

  50. Resmi CR, Venukumar MR, Latha MS (2006) Antioxidant activity of Albizzia lebbeck (Linn.) Benth. in alloxan diabetic rats. Indian J Physiol Pharmacol 50(3):297

    Google Scholar 

  51. Luo Q, Cai Y, Yan J, Sun M, Corke H (2004) Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci 76(2):137–149

    Article  CAS  PubMed  Google Scholar 

  52. Li XM (2007) Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int J Biol Macromol 40(5):461–465

    Article  CAS  PubMed  Google Scholar 

  53. Wu H, Guo H, Zhao R (2006) Effect of Lycium barbarum polysaccharide on the improvement of antioxidant ability and DNA damage in NIDDM rats. Yakugaku Zasshi 126(5):365–371

    Article  CAS  PubMed  Google Scholar 

  54. Fadzelly AM, Asmah R, Fauziah O (2006) Effects of Strobilanthes crispus tea aqueous extracts on glucose and lipid profile in normal and streptozotocin-induced hyperglycemic rats. Plant Foods Hum Nutr 61(1):6–11

    Article  Google Scholar 

  55. Huseini HF, Larijani B, Heshmat RA, Fakhrzadeh H, Radjabipour B, Toliat T, Raza M (2006) The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type 2 diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res 20(12):1036–1039

    Article  CAS  PubMed  Google Scholar 

  56. Xiong S, Melton LD, Easteal AJ, Siew D (2006) Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel. J Agric Food Chem 54(17):6201–6208

    Article  CAS  PubMed  Google Scholar 

  57. Wu FH, Liang JY, Yu P, Cai SF (2005) Studies on the hypoglycemia and lipids regulating effects of Plantago depressa var. montata. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi China J Chinese materia medica 30(15):1179–1183

    Google Scholar 

  58. Soon YY, Tan BKH (2002) Evaluation of the hypoglycemic and anti-oxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singap Med J 43(2):077–085

    CAS  Google Scholar 

  59. Kim HK, Kim MJ, Cho HY, Kim EK, Shin DH (2006) Antioxidative and anti-diabetic effects of amaranth (Amaranthus esculentus) in streptozotocin-induced diabetic rats. Cell Biochem Funct 24(3):195–199

    Article  CAS  PubMed  Google Scholar 

  60. Sezik E, Aslan M, Yesilada E, Ito S (2005) Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 76(11):1223–1238

    Article  CAS  PubMed  Google Scholar 

  61. Orhan DD, Aslan M, Aktay G, Ergun E, Yesilada E, Ergun F (2003) Evaluation of hepatoprotective effect of Gentiana olivieri herbs on subacute administration and isolation of active principle. Life Sci 72(20):2273–2283

    Article  PubMed  CAS  Google Scholar 

  62. Xie ZC, Qian ZK, Liu ZW (1993) Effect of ginseng on antiperoxidate injury in myocardium and erythrocytes in streptozocin-induced diabetic rats. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi Chinese J Integr Trad Western Med 13(5):289–290

    CAS  Google Scholar 

  63. Anwar MM, Meki ARM (2003) Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A Mol Integr Physiol 135(4):539–547

    Article  PubMed  CAS  Google Scholar 

  64. Raphael KR, Sabu MC, Kuttan R (2002) Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum & Thonn on alloxan induced diabetes mellitus in rats and its relationship with antioxidant potential. Indian J Exp Biol 40(8):905–909

    PubMed  Google Scholar 

  65. Patel DK, Prasad SK, Kumar R, Hemalatha S (2012) An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2(4):320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feshani AM, Kouhsari SM, Mohammadi S (2011) Vaccinium arctostaphylos, a common herbal medicine in Iran: molecular and biochemical study of its antidiabetic effects on alloxan-diabetic Wistar rats. J Ethnopharmacol 133(1):67–74

    Article  CAS  PubMed  Google Scholar 

  67. Feng CG, Zhang LX, Liu X (2005) Progress in research of aldose reductase inhibitors in traditional medicinal herbs. Zhongguo Zhong yao za zhi Zhongguo zhongyao zazhi China J Chin Materia Medica 30(19):1496–1500

    CAS  Google Scholar 

  68. Yoshikawa M, Nishida N, Shimoda H, Takada M, Kawahara Y, Matsuda H (2001) Polyphenol constituents from Salacia species: quantitative analysis of mangiferin with alpha-glucosidase and aldose reductase inhibitory activities. Yakugaku zasshi J Pharmaceut Soc Japan 121(5):371–378

    Article  CAS  Google Scholar 

  69. Thakur AK, Shakya A, Husain GM, Emerald M, Kumar V (2014) Gut-microbiota and mental health: current and future perspectives. J Pharmacol Clin Toxicol 2(1):1016

    Google Scholar 

  70. Khin-Maung-U MK, Nyunt-Nyunt-Wai AK (1985) Clinical trial of berberine in acute watery diarrhoea. Br Med J (Clin Res Ed) 291(6509):1601

    Article  CAS  Google Scholar 

  71. Rabbani GH, Butler T, Knight J, Sanyal SC, Alam K (1987) Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J Infect Dis 155(5):979–984

    Article  CAS  PubMed  Google Scholar 

  72. Tang J, Feng Y, Tsao S, Wang N, Curtain R, Wang Y (2009) Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations. J Ethnopharmacol 126(1):5–17

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, Ren G (2008) Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metabol 93(7):2559–2565

    Article  CAS  Google Scholar 

  74. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li X (2012) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 7(8):e42529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X, Pang X (2015) Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J 9(3):552

    Article  PubMed  Google Scholar 

  76. Peluso I, Villaño Valencia D, Chen CYO, Palmery M (2018) Antioxidant, anti-inflammatory, and microbial-modulating activities of nutraceuticals and functional foods. Oxidative Med Cell Longev 2018:1

    Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginpreet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khogta, S., Addepalli, V., Buttar, H.S., Kaur, G. (2019). Potentials of Phytopharmaceuticals for Treating Microbiological and Oxidative Stress-Induced Type 2 Diabetes. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_26

Download citation

Publish with us

Policies and ethics