Skip to main content

Blood Biomarkers of Oxidative Stress in Human and Canine Leishmaniosis

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases

Abstract

Leishmaniosis includes a set of diseases produced by protozoan parasites of the genus Leishmania by invasion of the mononuclear phagocyte system of mammalian hosts. Different studies performed in human and canine leishmaniosis have reported that there is an increase in the biomarkers of oxidant status and a decrease in the biomarkers of antioxidant defense, causing an imbalance among oxidants and antioxidants and thus showing that the oxidative damage plays an important role in both diseases. In this chapter the main changes in blood biomarkers of oxidative stress occurring in human and canine leishmaniosis are discussed. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters W, Killick-Kendrick R (1987) The Leishmaniases in biology and medicine. Academic, London/Orlando

    Google Scholar 

  2. WHO (2010) Control of the leishmaniases. World Health Organization, Geneva

    Google Scholar 

  3. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den BM, Team the WLC (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Magill AJ (2012) Leishmaniasis. In: Magill AJ, Strickland GT, Maguire JH, Ryan ET, Solomon T (eds) Hunter’s tropical medicine and emerging infectious diseases. Elsevier Health Sciences, Edinburgh, p 1215

    Google Scholar 

  5. Ashford RW (1996) Leishmaniasis reservoirs and their significance in control. Clin Dermatol 14:523–532

    Article  CAS  PubMed  Google Scholar 

  6. Dedet JP, Pratlong F (2009) Protozoa infection. In: Cook GC, Gordon C, Zumla A, Manson P (eds) Manson’s tropical diseases Saunders/Elsevier, Amsterdam, p 1830

    Google Scholar 

  7. Fátima Horta M, Mendes BP, Roma EH, Soares F, Noronha M, Pereira Macêdo J, Oliveira LS, Duarte MM, Vieira LQ (2012) Reactive oxygen species and nitric oxide in cutaneous Leishmaniasis. J Parasitol Res 2012:11

    Google Scholar 

  8. Dumonteila E, Ramirez-Sierra MJ, Escobedo-Ortegon J, Garcı́a-Miss M del R (2003) DNA vaccines induce partial protection against Leishmania mexicana. Vaccine 21:2161–2168

    Article  CAS  Google Scholar 

  9. Ribeiro RR, Michalick MSM, da Silva ME, dos Santos CCP, Frézard FJG, da Silva SM (2018) Canine Leishmaniasis: an overview of the current status and strategies for control. Biomed Res Int 2018:1–12

    Article  CAS  Google Scholar 

  10. Solano-Gallego L, Miró G, Koutinas A et al (2011) LeishVet guidelines for the practical management of canine leishmaniosis. Parasit Vectors 4:86

    Article  PubMed  PubMed Central  Google Scholar 

  11. Noli C, Saridomichelakis MN (2014) An update on the diagnosis and treatment of canine leishmaniosis caused by Leishmania infantum (syn. L. chagasi). Vet J 202:425–435

    Article  PubMed  Google Scholar 

  12. Van Assche T, Deschacht M, da Luz RAI, Maes L, Cos P (2011) Leishmania–macrophage interactions: insights into the redox biology. Free Radic Biol Med 51:337–351

    Article  CAS  PubMed  Google Scholar 

  13. Stafford JL, Neumann NF, Belosevic M (2002) Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol 28:187–248

    Article  PubMed  Google Scholar 

  14. Mukbel RM, Patten C, Gibson K, Ghosh M, Petersen C, Jones DE (2007) Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. Am J Trop Med Hyg 76:669–675

    Article  CAS  PubMed  Google Scholar 

  15. Vural H, Aksoy N, Ozbilge H (2004) Alterations of oxidative–antioxidative status in human cutaneous leishmaniasis. Cell Biochem Funct 22:153–156

    Article  CAS  PubMed  Google Scholar 

  16. Kocyigit A, Gurel M, Ulukanligil M, Kocyigit A, Gurel M, Ulukanligil M (2003) Erythrocyte antioxidative enzyme activities and lipid peroxidation levels in patients with cutaneous leishmaniasis. Parasite 10:277–281

    Article  CAS  PubMed  Google Scholar 

  17. Ozbilge H, Aksoy N, Kilic E, Saraymen R, Yazar S, Vural H (2005) Evaluation of oxidative stress in cutaneous leishmaniasis. J Dermatol 32:7–11

    Article  PubMed  Google Scholar 

  18. Serarslan G, Yilmaz HR, Sogut S (2005) Serum antioxidant activities, malondialdehyde and nitric oxide levels in human cutaneous leishmaniasis. Clin Exp Dermatol 30:267–271

    Article  CAS  PubMed  Google Scholar 

  19. Kocyigit A, Keles H, Selek S, Guzel S, Celik H, Erel O (2005) Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. Mutat Res 585:71–78

    Article  CAS  PubMed  Google Scholar 

  20. AbdulGhani S, Hezam A (2014) Biochemical and hematological levels in patients with cutaneous Leishmaniasis in Yemen (Online)

    Google Scholar 

  21. Asmaa Q, Al-Shamerii S, Al-Tag M, Al-Shamerii A, Li Y, Osman BH (2017) Parasitological and biochemical studies on cutaneous leishmaniasis in Shara’b district, Taiz, Yemen. Ann Clin Microbiol Antimicrob 16:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jain SK, Levine SN, Duett J, Hollier B (1990) Elevated lipid peroxidation levels in red blood cells of streptozotocin-treated diabetic rats. Metabolism 39:971–975

    Article  CAS  PubMed  Google Scholar 

  23. Jain SK, McVie R, Duett J, Herbst JJ (1989) Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38:1539–1543

    Article  CAS  PubMed  Google Scholar 

  24. Jain SK (1988) Evidence for membrane lipid peroxidation during the in vivo aging of human erythrocytes. Biochim Biophys Acta 937:205–210

    Article  CAS  PubMed  Google Scholar 

  25. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  26. Fong KL, McCay PB, Poyer JL, Keele BB, Misra H (1973) Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem 248:7792–7797

    CAS  PubMed  Google Scholar 

  27. Biswas T, Ghosh DK, Mukherjee N, Ghosal J (1997) Lipid peroxidation of erythrocytes in visceral leishmaniasis. J Parasitol 83:151–152

    Article  CAS  PubMed  Google Scholar 

  28. Neupane DP, Majhi S, Chandra L, Rijal S, Baral N, Baral N (2008) Erythrocyte glutathione status in human visceral leishmaniasis. Indian J Clin Biochem 23:95–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Erel O, Kocyigit A, Bulut V, Gurel S (1999) Reactive nitrogen and oxygen intermediates in patients with cutaneous Leishmaniasis. Mem Inst Oswaldo Cruz Rio Janeiro 179:179–179

    Article  Google Scholar 

  30. Cabrera M, Rodriguez O, Monsalve I, Tovar R, Hagel I (2003) Variations in the serum levels of soluble CD23, nitric oxide and IgE across the spectrum of American cutaneous leishmaniasis. Acta Trop 88:145–151

    Article  CAS  PubMed  Google Scholar 

  31. Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    Article  CAS  PubMed  Google Scholar 

  32. Assreuy J, Cunha FQ, Epperlein M, Noronha-Dutra A, O’Donnell CA, Liew FY, Moncada S (1994) Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol 24:672–676

    Article  CAS  PubMed  Google Scholar 

  33. Saltman P (1989) Oxidative stress: a radical view. Semin Hematol 26:249–256

    CAS  PubMed  Google Scholar 

  34. Rush JWE, Sandiford SD (2003) Plasma glutathione peroxidase in healthy young adults: influence of gender and physical activity. Clin Biochem 36:345–351

    Article  CAS  PubMed  Google Scholar 

  35. Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA (2005) Uric acid and oxidative stress. Curr Pharm Des 11:4145–4151

    Article  CAS  PubMed  Google Scholar 

  36. Irwin MI, Hutchins BK (1976) A conspectus of research on vitamin C requirements of man. J Nutr 106:821–879

    Article  CAS  PubMed  Google Scholar 

  37. Gultekin M, Pasa S, Ural K, Balikci C, Ekren Asici GS, Gultekin G (2018) Oxidative status and lipid profile among dogs at different stages of visceral Leishmaniasis. Turkish J Parasitol 41:183–187

    Article  Google Scholar 

  38. Almeida BFM, Narciso LG, Melo LM, Preve PP, Bosco AM, Lima VMF, Ciarlini PC (2013) Leishmaniasis causes oxidative stress and alteration of oxidative metabolism and viability of neutrophils in dogs. Vet J 198:599–605

    Article  CAS  PubMed  Google Scholar 

  39. Rubio CPCP, Martinez-Subiela S, Tvarijonaviciute A, Hernández-Ruiz J, Pardo-Marin L, Segarra S, Ceron JJ (2016) Changes in serum biomarkers of oxidative stress after treatment for canine leishmaniosis in sick dogs. Comp Immunol Microbiol Infect Dis 49:51–57

    Article  PubMed  Google Scholar 

  40. Bildik A, Kargın F, Seyrek K, Pasa S, Özensoy S (2004) Oxidative stress and non-enzymatic antioxidative status in dogs with visceral Leishmaniasis. Res Vet Sci 77:63–66

    Article  CAS  PubMed  Google Scholar 

  41. Heidarpour M, Soltani S, Mohri M, Khoshnegah J (2012) Canine visceral leishmaniasis: relationships between oxidative stress, liver and kidney variables, trace elements, and clinical status. Parasitol Res 111:1491–1496

    Article  CAS  PubMed  Google Scholar 

  42. Rubio CP, Martinez-Subiela S, Hernández-Ruiz J, Tvarijonaviciute A, Ceron JJ (2017) Analytical validation of an automated assay for ferric-reducing ability of plasma in dog serum. J Vet Diagnostic Investig 29:574–578

    Article  CAS  Google Scholar 

  43. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-Subiela S, Cerón JJ, Strauss-Ayali D, Garcia-Martinez JD, Tecles F, Tvarijonaviciute A, Caldin M, Baneth G (2014) Serum ferritin and paraoxonase-1 in canine leishmaniosis. Comp Immunol Microbiol Infect Dis 37:23–29

    Article  CAS  PubMed  Google Scholar 

  45. Yardim-Akaydin S, Ozkan Y, Ozkan E, Torun M, Simşek B (2003) The role of plasma thiol compounds and antioxidant vitamins in patients with cardiovascular diseases. Clin Chim Acta 338:99–105

    Article  CAS  PubMed  Google Scholar 

  46. Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026

    Article  CAS  PubMed  Google Scholar 

  47. Solcà MS, Andrade BB, Abbehusen MMC et al (2016) Circulating biomarkers of immune activation, oxidative stress and inflammation characterize severe canine visceral Leishmaniasis. Sci Rep 6:32619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martínez-Subiela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rubio, C.P., Escribano, D., Hernández, J., Cerón, J.J., Tvarijonaviciute, A., Martínez-Subiela, S. (2019). Blood Biomarkers of Oxidative Stress in Human and Canine Leishmaniosis. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_2

Download citation

Publish with us

Policies and ethics