Skip to main content

Oxidative Stress and Antioxidants in Host Defense in Leishmaniasis

  • Chapter
  • First Online:
Oxidative Stress in Microbial Diseases

Abstract

Leishmaniasis, a tropical neglected disease of the poor and underserved populations, is characterized by skin lesions and ulcers or a clinical pattern of visceral/internal complications which can be lethal. Since innate response is important in hanseniasis, this work reviewed and updated the role of reactive oxygen/nitrogen species in different clinical forms of leishmaniasis (cutaneous, mucocutaneous, and visceral), as well as their role in phagocyte free radicals generators (NADPH-oxidase, iNOS, myeloperoxidase, mitochondrial pathways, and extracellular traps). Knowledge of multiple leishmanial antioxidant responses that can rescue parasites from death and promote resistance to treatment is essential to develop genetic and pharmacologic leishmanicidal strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvar J, Vélez ID, Bern C et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671. https://doi.org/10.1371/journal.pone.0035671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gossage SM, Rogers ME, Bates PA (2003) Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol 33:1027–1034

    Article  PubMed  PubMed Central  Google Scholar 

  3. WHO (2018) Leishmaniasis. WHO fact sheet. Available at: http://www.who.int/news-room/fact-sheets/detail/leishmaniasis [07/03/2018]

  4. Reithinger R, Dujardin J-C, Louzir H et al (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7:581–596

    Article  PubMed  Google Scholar 

  5. Coelho LIC, Paes M, Guerra JA et al (2011) Characterization of Leishmania spp. causing cutaneous leishmaniasis in Manaus, Amazonas, Brazil. Parasitol Res 108(3):671–677

    Article  PubMed  Google Scholar 

  6. Kone AK, Niare DS, Thera MA et al (2016) Epidemiology of the outbreak, vectors and reservoirs of cutaneous leishmaniasis in Mali: a systematic review and meta-analysis. Asian Pacific J Trop Med 9(10):985–990

    Article  Google Scholar 

  7. Harhay MO, Olliaro PL, Costa DL, Costa CHN (2011) Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol 27(9):403–409

    Article  PubMed  Google Scholar 

  8. Reis LL, Balieiro AAS, Fonseca FR, Gonçalves MJF (2017) Changes in the epidemiology of visceral leishmaniasis in Brazil from 2001 to 2014. Rev Soc Bras Med Trop 50(5):638–645

    Article  PubMed  Google Scholar 

  9. Kariyawasam K, Selvapandiyan A, Siriwardana HVYD et al (2018) Dermotropic Leishmania donovani in Sri Lanka: visceralizing potential in clinical and preclinical studies. Parasitology 145(4):443–452

    Article  CAS  PubMed  Google Scholar 

  10. Organização Panamericana da Saúde (OPAS) (2018) Leishmanioses. Informe epidemiológico das Américas. Informe de Leishmanioses, n.6. Washington, PAHO, 7p

    Google Scholar 

  11. França EL, Mandadori MN, França JL, Botelho ACF, Ferrari CKB, Honorio-França AC (2009) Epidemiological aspects of American cutaneous Leishmaniasis in the city of Juína, Mato Grosso state, Brazil. Scientia Médica 19(3):103–107

    Google Scholar 

  12. Bagaitkar J, Huang J, Zeng MY et al (2018) NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 2018:blood-2017-09-809004. https://doi.org/10.1182/blood-2017-09-809004

  13. Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or consequence? Lancet 344(8924):721–724

    Article  CAS  PubMed  Google Scholar 

  14. Minakami R, Sumimoto H (2006) Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the nadph oxidase (nox). Int J Hematol 84:193–198

    Article  CAS  PubMed  Google Scholar 

  15. Ferrari CKB, Souto PCS, França EL, Honorio-França AC (2011) Oxidative and nitrosative stress on phagocytes’ function: from effective defense to immunity evasion mechanisms. Arch Immunol Ther Exp 59(6):441–448

    Article  CAS  Google Scholar 

  16. Phaniendra A, Jestadi DB, Periyasami L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  17. Ferrari CK, França EL, Honorio-França AC (2009) Nitric oxide, health and disease. J Appl Biomed 7:163–173

    Article  CAS  Google Scholar 

  18. Novais FO, Santiago RC, Báfica A et al (2009) Neutrophils and macrophages cooperate in host defense against Leishmania braziliensis infection. J Immunol 183(12):8088–8098

    Article  CAS  PubMed  Google Scholar 

  19. Carmo EVS, Katz S, Barbiéri CL (2010) Neutrophils reduce the parasite burden in Leishmania (Leishmania) amazonensis-infected macrophages. PLoS One 5(11):e13815. https://doi.org/10.1371/journal.pone.0013815

    Article  CAS  PubMed Central  Google Scholar 

  20. Oliveira CI, Brodskyn CI (2012) The immunobiology of Leishmania braziliensis infection. Front Immunol 3:article 145. https://doi.org/10.3389/fimmu.2012.00145

    Article  CAS  PubMed  Google Scholar 

  21. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 2004 303(5663):1532–1535

    CAS  Google Scholar 

  22. Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trend Immunol 30(11):513–521

    Article  CAS  Google Scholar 

  23. von Köckritz-Blickwede M, Nizet V (2009) Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med 87:775–783

    Article  CAS  Google Scholar 

  24. Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M et al (2009) Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis 89:29–37

    Article  PubMed  Google Scholar 

  25. Guimarães-Costa AB, Nascimento MTC, Froment GS et al (2009) Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 106(16):6748–6753

    Article  PubMed  PubMed Central  Google Scholar 

  26. Horta MF, Mendes BP, Roma EH et al (2012) Reactive oxygen species and nitric oxide in cutaneous Leishmaniasis. J Parasitol Res Article ID 203818.:11 pages. https://doi.org/10.1155/2012/203818

  27. Silva MS, Segatto M, Pavani RS et al (2017) Consequences of acute oxidative stress in Leishmania amazonensis: from telomere shortening to the selection of the fittest parasites. Biochem Biophys Acta 1864:138–150

    Article  CAS  Google Scholar 

  28. Rochael NC, Guimarães-Costa AB, Nascimento MTC et al (2015) Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Sci Rep 5:18302. https://doi.org/10.1038/srep18302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parker H, Winterbourn CC (2013) Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 3:424

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carlsen ED, Hay C, Henard CA, Popov V, Garg NJ, Soong L (2013) Leishmania amazonensis amastigotes trigger neutrophil activation but resist neutrophil microbicidal mechanisms. Infect Immun 81(11):3966–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carlsen ED, Jie Z, Liang Y et al (2015) Interactions between neutrophils and Leishmania braziliensis amastigotes facilitate cell activation and parasite clearance. J Innate Immun 7(4):354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Falcão SA, Weinkopff T, Hurrell BP et al (2015) Exposure to Leishmania braziliensis triggers neutrophil activation and apoptosis. PLoS Negl Trop Dis 9(3):e0003601. https://doi.org/10.1371/journal.pntd.0003601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quintela-Carvalho G, Luz NF, Celes FS et al (2017) Heme drives oxidative stress-induced cell death in human neutrophils infected with Leishmania infantum. Front Immunol 8:1620. https://doi.org/10.3389/fimmu.2017.01620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conceição J, Davis R, Carneiro PP et al (2016) Characterization of neutrophil function in human cutaneous leishmaniasis caused by Leishmania braziliensis. PLoS Negl Trop Dis 10(5):e0004715. https://doi.org/10.1371/journal.pntd.0004715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Assche T, Deschacht M, da Luz RA, Maes L, Cos P (2011) Leishmania-macrophage interactions: insights into the redox biology. Free Rad Biol Med 51(2):337–351

    Article  CAS  PubMed  Google Scholar 

  36. Lázaro-Souza M, Matte C, Lima JB et al (2018) Leishmania infantum lipophosphoglycan-deficient mutants: a tool to study host cell-parasite interplay. Front Microbiol 9:626. https://doi.org/10.3389/fmicb.2018.00626

    Article  PubMed  PubMed Central  Google Scholar 

  37. Passwell JH, Shor R, Smolen J, Jaffe CL (1994) Infection of human monocytes by Leishmania results in a defective oxidative burst. Int J Exp Pathol 75(4):277–284

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar P, Pai K, Pandey HP, Sundar S (2002) NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of visceral leishmaniasis patients. J Med Microbiol 51:832–836

    Article  CAS  PubMed  Google Scholar 

  39. Vouldoukis I, Riveros-Moreno V, Dugas B et al (1995) The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci U S A 92(17):7804–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giudice A, Vendrame C, Bezerra C et al (2012) Macrophages participate in host protection and the disease pathology associated with Leishmania braziliensis infection. BMC Infect Dis 12:75. https://doi.org/10.1186/1471-2334-12-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carneiro PP, Conceição J, Macedo M, Magalhães V, Carvalho EM, Bacellar O (2016) The role of nitric oxide and reactive oxygen species in the killing of Leishmania braziliensis by monocytes from patients with cutaneous leishmaniasis. PLoS One 11(2):e0148084. https://doi.org/10.1371/journal.pone.0148084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Souza AS, Giudice A, Pereira JM et al (2010) Resistance of Leishmania (Viannia) braziliensis to nitric oxide: correlation with antimony therapy and TNF-alpha production. BMC Infect Dis 10:209. https://doi.org/10.1186/1471-2334-10-209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Novais FO, Nguyen BT, Beiting DP et al (2014) Human classical monocytes control the intracellular stage of Leishmania braziliensis by reactive oxygen species. J Infect Dis 209(8):1288–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gasparotto J, Kunzler A, Senger MR et al (2017) N-acetyl-cysteine inhibits liver oxidative stress markers in BALB/c mice infected with Leishmania amazonensis. Mem Inst Oswaldo Cruz 112(2):146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nahrevanian H, Jalalian M, Farahmand M, Assmar M, Rastaghi ARE, Sayyah M (2012) Inhibition of murine systemic leishmaniasis by acetyl salicylic acid via nitric oxide immunomodulation. Iran J Parasitol 7(2):21–28

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Murray HW, Xiang Z, Ma X (2006) Responses to Leishmania donovani in mice deficient in both phagocyte oxidase and inducible nitric oxide synthase. Am J Trop Med 74:1013–1015

    Article  CAS  Google Scholar 

  47. Yizengaw E, Getahun M, Tajebe F et al (2016) Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions. Front Immunol 7:517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iniesta V, Gómez-Nieto C, Corraliza I (2001) The inhibition of arginase by Nw-hydroxy-L-arginine controls the growth of Leishmania inside macrophages. J Exp Med 193(6):777–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Serarslan G, Yilmaz HR, Söğüt S (2005) Serum antioxidant activities, malondialdehyde and nitric oxide in human cutaneous leishmaniasis. Clin Exp Dermatol 30(3):267–271

    Article  CAS  PubMed  Google Scholar 

  50. Asmaa Q, Al-Shamerii S, Al-Tag M, Al-Shameni A, Li Y, Osman BH (2017) Parasitological and biochemical studies on cutaneous leishmaniasis in Shara’b district, Taiz, Yemen. Ann Clin Microbiol Antimicrob 16:47. https://doi.org/10.1186/s12941-017-0224-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kocyigit A, Keles H, Selek S, Guzel S, Celik H, Erel O (2005) Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. Mutat Res 585(1–2):71–78

    Article  CAS  PubMed  Google Scholar 

  52. Téllez J, Romero I, Soares MJ, Steindel M, Romanha AJ (2017) Knockdown of host antioxidant defense genes enhances the effect of glucantime on intracellular Leishmania braziliensis in human macrophages. Antimicrob Agent Chemother 61(7):e02099–e02016. https://doi.org/10.1128/AAC.02099-16

    Article  Google Scholar 

  53. Neupane DP, Majhi S, Chandra L, Rijal S, Baral N (2008) Erythrocyte glutathione status in human visceral leishmaniasis. Indian J Biochem 23(1):95–97

    Article  CAS  Google Scholar 

  54. Jasim BT, Al-Azzauy AAM (2009) Oxidative stress and antioxidant status in human infected with Kala-azar. AJPS 6(1):116–122

    Google Scholar 

  55. Oliveira MJC, Silva Junior GB, Sampaio AM et al (2014) Preliminary study of tubuloglomerular dysfunction and evidence of renal inflammation in patients with visceral Leishmaniasis. Am J Trop Med Hyg 91(5):908–911

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gatto M, Abreu MM, Tasca KI et al (2015) The involvment of TLR2 and TLR4 in cytokine and nitric oxide production in visceral leishmaniasis patients before and after treatment with anti-leishmanial drugs. PLoS One 10(2):e0117977. https://doi.org/10.1371/journal.pone.0117977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Basu JM, Mookerjee A, Sen P et al (2006) Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob Agent Chemother 50(5):1788–1797

    Article  CAS  Google Scholar 

  58. Sardar AH, Kumar S, Kumar A et al (2013) Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J Proteome 81:185–199

    Article  CAS  Google Scholar 

  59. Ghosh AK, Sardar AH, Mandal A et al (2015) Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. FASEB J 29(5):2081–2098

    Article  CAS  PubMed  Google Scholar 

  60. Ghosh AK, Saini S, Das S et al (2017) Glucose-6-phosphate dehydrogenase and trypanothione reductase interaction protects Leishmania donovani from metalloid mediated oxidative stress. Free Rad Biol Med 106:10–23

    Article  CAS  PubMed  Google Scholar 

  61. Vanaerschot M, Maes I, Ouakad M et al (2010) Linking in vitro and in vitro survival of clinical Leishmania donovani strains. PLoS One 5(8):e12211. https://doi.org/10.1371/journal.pone.0012211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mishra A, Khan MI, Jha PK et al (2018) Oxidative stress-mediated overexpression of uracil DNA glycosylase in Leishmania donovani confers tolerance against antileishmanial drugs. Oxidat Med Cel Longevit 2018:article ID 4074357. https://doi.org/10.1155/2018/4074357

  63. Magalhães LS, Bomfim LGS, Mota SG et al (2018) Increased thiol levels in antimony-resistant Leishmania infantum isolated from treatment-refractory visceral leishmaniasis in Brazil. Mem Inst Oswaldo Cruz 113(2):119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Menna-Barreto RFS, Castro SL (2014) The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics. Biomed Res Int 2014:Article ID 614014. https://doi.org/10.1155/2014/614014

    Article  CAS  Google Scholar 

  65. Ghosh S, Goswami S, Adhya S (2003) Role of superoxide dismutase in survival of Leishmania within the macrophage. Biochem J 369.(pt.3:447–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tessarollo NG, Andrade JM, Moreira DS, Murta SM (2015) Functional analysis of iron superoxide dismutase-A in wild-type and antimony-resistant Leishmania braziliensis and Leishmania infantum lines. Parasitol Int 64(2):125–129

    Article  CAS  PubMed  Google Scholar 

  67. Krauth-Siegel LR, Comini MA, Schlecker T (2007) The trypanothione system. Subcell Biochem 44:231–251

    Article  PubMed  Google Scholar 

  68. Beig M, Oellien F, Garoff L, Noack S, Krauth-Siegel RL, Selzer PM (2015) Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach. PLoS Negl Trop Dis 9(6):e0003773. https://doi.org/10.1371/journal.pntd.0003773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Suman SS, Equbal A, Zaidi A et al (2016) Up-regulation of cytosolic tryparedoxin in Amp B resistant isolates of Leishmania donovani and its interaction with cytosolic tryparedoxin peroxidase. Biochimie 121:312–325

    Article  CAS  PubMed  Google Scholar 

  70. Das S, Giri S, Sundar S, Shaha C (2018) Functional involvement of Leishmania donovani tryparedoxin peroxidases during infection and drug treatment. Antimicrob Agent Chemother 62(1):e00806–e00817

    Google Scholar 

  71. Iver JP, Kaprakkaden A, Choudhary ML, Shaha C (2008) Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence. Mol Microbiol 68(2):372–391. https://doi.org/10.1111/j.1365-2958.2008.06154.x

    Article  CAS  Google Scholar 

  72. Andrade JM, Murta SM (2014) Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and –susceptible Leishmania braziliensis and Leishmania infantum lines. Parasit Vectors 7:406. https://doi.org/10.1186/1756-3305-7-406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deep DK, Singh R, Bhandari V et al (2017) Increased miltefosine tolerance in clinical isolates of Leishmania donovani is associated with reduced drug accumulation, increased infectivity and resistance to oxidative stress. PLoS Negl Trop Dis 11(6):e0005641. https://doi.org/10.1371/journal.pntd.000564

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Kusano Bucalen Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrari, C.K.B. (2019). Oxidative Stress and Antioxidants in Host Defense in Leishmaniasis. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8763-0_13

Download citation

Publish with us

Policies and ethics