Skip to main content

An Architecture for the Real-Time Data Stream Monitoring in IoT

  • Chapter
  • First Online:
Multimedia Big Data Computing for IoT Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 163))

Abstract

The IoT allows a new kind of monitoring strategy based on the heterogeneity of the devices and its lower cost. It implies a challenge in terms of the data interoperability and the associated semantic when they must support the real-time decision making. In this chapter, an integrated and interdisciplinary view of the data processing in the heterogeneous contexts is presented at the light of the Processing Architecture based on Measurement Metadata (PAbMM). The processing architecture gathers the data stream processing with the batch processing related to the Big Data repositories under the umbrella of the measurement projects. Thus, the integration between the measurement and evaluation (M&E) framework and the real-time processing is detailed. Followed, the interoperability is addressed from the M&E project definitions and the data interchanging related to PAbMM. The decision-making support is strengthened by a similarity mechanism which allows looking for similar experiences when a given situation lack of a specific knowledge. Finally, an application of the processing architecture based on Arduino technology for the “Bajo Giuliani” (La Pampa, Argentina) lagoon monitoring is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.bpmn.org.

  2. 2.

    https://github.com/mjdivan/cincamipd.

  3. 3.

    https://www.w3.org/XML/.

  4. 4.

    https://www.json.org.

  5. 5.

    http://www.opengeospatial.org/standards/gml.

  6. 6.

    https://github.com/mjdivan/cincamimis.

  7. 7.

    https://github.com/google/gson.

  8. 8.

    https://kafka.apache.org.

  9. 9.

    https://www.raspberrypi.org.

  10. 10.

    https://www.arduino.cc.

  11. 11.

    https://kafka.apache.org.

  12. 12.

    https://spark.apache.org/streaming/.

References

  1. J. Zapater, From Web 1.0 to Web 4.0: the evolution of the web, in 7th Euro American Conference on Telematics and Information Systems (ACM, New York, 2014), pp. 2:1–2:1

    Google Scholar 

  2. G. Nedeltcheva, E. Shoikova, Models for innovative IoT ecosystems, in International Conference on Big Data and Internet of Thing (ACM, New York, 2017), pp. 164–168

    Google Scholar 

  3. N. Chaudhry, Introduction to stream data management, in Stream Data Management. Advances in Database Systems, vol. 30, ed. by N. Chaudhry, K. Shaw, M. Abdelguerfi (Springer-Verlag, New York, 2005), pp. 1–13

    Google Scholar 

  4. S. Chakravarthy, Q. Jiang, Stream Data Processing: A Quality of Service Perspective, Advances in Database Systems, vol. 36 (Springer Science + Business Media, New York, 2009)

    MATH  Google Scholar 

  5. D. Laney, Infonomics. How to Monetize, Manage, and Measure Information as an Asset for Competitive Advantage (Routledge, New York, 2018)

    Google Scholar 

  6. N. Khan, M. Alsaqer, H. Shah, G. Badsha, A. Abbasi, S. Salehian, The 10 Vs, issues and challenges of big data, in International Conference on Big Data and Education (ACM, New York, 2018), pp. 52–56

    Google Scholar 

  7. A. Davoudian, L. Chen, M. Liu, A survey on NoSQL stores. ACM Comput. Surv. (CSUR) 51, 40:1–40:43 (2018)

    Article  Google Scholar 

  8. T. Ivanov, R. Singhal, Abench: big data architecture stack benchmark, in ACM/SPEC International Conference on Performance Engineering (ACM, New York, 2018), pp. 13–16

    Google Scholar 

  9. F. Gessert, W. Wingerath, S. Friedrich, N. Ritter, NoSQL database systems: a survey and decision guidance. Comput. Sci. Res. Dev. 32, 353–365 (2017)

    Article  Google Scholar 

  10. M. Garofalakis, J. Gehrke, R. Rastogi, Data stream management: a brave new world, in Data Stream Management. Processing High-Speed Data Streams, Data-Centric Systems and Applications, edited by M. Garofalakis, J. Gehrke, R. Rastogi (Springer-Verlag, Heidelberg, 2016), pp. 1–9

    Google Scholar 

  11. T. De Matteis, G. Mencagli, Proactive elasticity and energy awareness in data stream processing. J. Syst. Softw. 127, 302–319 (2017)

    Article  Google Scholar 

  12. I. Flouris, N. Giatrakos, A. Deligiannakis, M. Garofalakisa, M. Kamp, M. Mock, Issues in complex event processing: status and prospects in the Big Data era. J. Syst. Softw. 127, 217–236 (2017)

    Article  Google Scholar 

  13. N. Hidalgo, D. Wladdimiro, E. Rosas, Self-adaptive processing graph with operator fission for elastic stream processing. J. Syst. Softw. 127, 205–216 (2017)

    Article  Google Scholar 

  14. P. Tsiachri Renta, S. Sotiriadis, E. Petrakis, Healthcare sensor data management on the cloud, in Workshop on Adaptive Resource Management and Scheduling for Cloud Computing (ACM, New York, 2017), pp. 25–30

    Google Scholar 

  15. T. Bennett, N. Gans, R. Jafari, Data-driven synchronization for internet-of-things systems. ACM Trans. Embed. Comput. Syst. (TECS) 16, 69:1–69:24 (2017). Special Issue on Embedded Computing for IoT, Special Issue on Big Data and Regular Papers

    Article  Google Scholar 

  16. A. Meidan, J. Garcia-Garcia, I. Ramos, M. Escalona, Measuring software process: a systematic mapping study. ACM Comput. Surv. (CSUR) 51, 58:1–58:32 (2018)

    Article  Google Scholar 

  17. Y. Zhou, O. Alipourfard, M. Yu, T. Yang, Accelerating network measurement in software. ACM SIGCOMM Comput. Commun. Rev. 48, 2–12 (2018)

    Article  Google Scholar 

  18. V. Mandic, V. Basili, L. Harjumaa, M. Oivo, J. Markkula, Utilizing GQM + strategies for business value analysis: an approach for evaluating business goals, in ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ACM, New York, 2010), pp. 20:1–20:10

    Google Scholar 

  19. L. Olsina, F. Papa, H. Molina, How to measure and evaluate web applications in a consistent way, in Web Engineering: Modelling and Implementing Web Applications, ed. by G. Rossi, O. Pastor, D. Schwabe, L. Olsina (Springer-Verlag, London, 2008), pp. 385–420

    Chapter  Google Scholar 

  20. H. Molina, L. Olsina, Towards the support of contextual information to a measurement and evaluation framework, in Quality of Information and Communications Technology (QUATIC) (IEEE Press, New York, 2007), pp. 154–166

    Google Scholar 

  21. M. Diván, M. Martín, Towards a consistent measurement stream processing from heterogeneous data sources. Int. J. Electric. Comput. Eng. (IJECE) 7, 3164–3175 (2017)

    Article  Google Scholar 

  22. P. Becker, Process view of the quality measurement and evaluation integrated strategies. Ph.D. Thesis, National University of La Plata, La Plata, Argentina (2014)

    Google Scholar 

  23. M. Diván, M. Sánchez Reynoso, Fostering the interoperability of the measurement and evaluation project definitions in PAbMM, in 7th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (IEEE Press, New York, 2018), pp. 228–234

    Google Scholar 

  24. M. Diván, Data-driven decision making., in 1st International Conference on Infocom Technologies and Unmanned Systems (ICTUS) (IEEE Press, New York, 2017), pp. 50–56

    Google Scholar 

  25. L. Dalton, Optimal ROC-based classification and performance analysis under bayesian uncertainty models. IEEE/ACM Trans. Comput. Biol. Bioinformatics 13, 719–729 (2016)

    Article  Google Scholar 

  26. N. Razali, Y. Wah, Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2, 21–33 (2011)

    Google Scholar 

  27. G. Morales, A. Bifet, SAMOA: scalable advanced massive online analysis. J. Mach. Learn. Res. 16, 149–153 (2015)

    Google Scholar 

  28. M. Diván, M. Sánchez Reynoso, Behavioural similarity analysis for supporting the recommendation in PAbMM. in 1st International Conference on Infocom Technologies and Unmanned Systems (ICTUS) (IEEE Press, New York, 2017), pp. 133–139

    Google Scholar 

  29. B. Dillon, A view of the flood from a flight of the UNLPam’s Geography Institute (original title in Spanish: La Inundación vista desde un vuelo del Instituto de Geografía de la UNLPam). La Arena Daily. http://www.laarena.com.ar/la_ciudad-no-podemos-hacer-cargo-a-la-fatalidad-o-la-naturaleza-1128851-115.html

  30. S. Ferdoush, X. Li, System design using Raspberry Pi and Arduino for environmental monitoring applications. Proc. Comput. Sci. 34, 103–110 (2014)

    Article  Google Scholar 

  31. V. Vujović, M. Maksimović, k Raspberry Pi as a Sensor Web node for home automation. Comput. Electric. Eng. 44, 153–171 (2015)

    Article  Google Scholar 

  32. J. Stephen, S. Savvides, V. Sundaram, M. Ardekani, P. Eugster, STYX: stream processing with trustworthy cloud-based execution, in Seventh ACM Symposium on Cloud Computing (ACM, California, 2016), pp. 348–360

    Google Scholar 

  33. S. Ghayyur, Y. Chen, R. Yus, A. Machanavajjhala, M. Hay, G. Miklau, S. Mehrotra, IoT-detective: analyzing IoT data under differential privacy, in ACM International Conference on Management of Data (ACM, Texas, 2018), pp. 1725–1728

    Google Scholar 

  34. C. Andrade, S. Byers, V. Gopalakrishnan, E. Halepovic, D. Poole, L. Tran, C. Volinsky, Connected cars in cellular network: a measurement study, in Internet Measurement Conference (ACM, London, 2017), pp. 1725–1728

    Google Scholar 

  35. O. Carvalho, E. Roloff, P. Navaux, A distributed stream processing based architecture for IoT smart grids monitoring, in 10th International Conference on Utility and Cloud Computing (ACM, Texas, 2017), pp. 9–14

    Google Scholar 

  36. A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, Fog computing for healthcare 4.0 environment: opportunities and challenges. Comput. Electr. Eng. 72, 1–13 (2018)

    Article  Google Scholar 

  37. S. Tanwar, S. Tyagi, S. Kumar, The Role of internet of things and smart grid for the development of a smart city, in Intelligent Communication and Computational Technologies, LNNS, vol. 19, ed. by Y. Hu, S. Tiwari, K. Mishra, M. Trivedi (Springer, Singapore, 2018), pp. 23–33

    Chapter  Google Scholar 

  38. S. Tanwar, P. Patel, K. Patel, S. Tyagi, N. Kumar, M. Obaidat, An advanced internet of thing based security alert system for smart home, in IEEE International Conference on Computer, Information and Telecommunication Systems (CITS) (IEEE Press, Dalian 2017), pp. 25–29

    Google Scholar 

  39. S. Pal, A. Ghosh, V. Sethi, Vehicle air pollution monitoring using IoTs, in 16th ACM Conference on Embedded Networked Sensor Systems (ACM, Shenzhen 2018), pp. 400–401

    Google Scholar 

  40. J. Teh, V. Choudhary, H. Lim, A smart ontology-driven IoT platform, in 16th ACM Conference on Embedded Networked Sensor Systems (ACM, Shenzhen 2018), pp. 424–425

    Google Scholar 

  41. A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, M. Maasberg, K. Choo, Multimedia big data computing and Internet of Things applications: a taxonomy and process model. J. Netw. Comput. Appl. 124, 169–195 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario José Diván .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diván, M.J., Sánchez Reynoso, M.L. (2020). An Architecture for the Real-Time Data Stream Monitoring in IoT. In: Tanwar, S., Tyagi, S., Kumar, N. (eds) Multimedia Big Data Computing for IoT Applications. Intelligent Systems Reference Library, vol 163. Springer, Singapore. https://doi.org/10.1007/978-981-13-8759-3_3

Download citation

Publish with us

Policies and ethics