J. Oliverio, A survey of social media, big data, data mining, and analytics. J. Ind. Integr. Manag. 1850003 (2018)
CrossRef
Google Scholar
D. Borth, T. Chen, R. Ji, S.-F. Chang, SentiBank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content, in Proceedings of the 21st ACM international conference on Multimedia, 21–25 October 2013 (Barcelona, Spain, 2013), https://doi.org/10.1145/2502081.2502268
A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in Proceedings of the 25th International Conference on Neural Information Processing Systems, 03–06 December, 2012 (Lake Tahoe, Nevada, 2012), pp. 1097–1105
Google Scholar
J. Weston, S. Bengio, N. Usunier, Wsabie: scaling up to large vocabulary image annotation, in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, 16–22 July 2011 (Barcelona, Catalonia, Spain, 2011), pp. 2764–2770, https://doi.org/10.5591/978-1-57735-516-8/ijcai11-460
M. Wang, D. Cao, L. Li, S. Li, R. Ji, Microblog sentiment analysis based on cross-media bag-of-words model, in Proceedings of International Conference on Internet Multimedia Computing and Service, 10–12 July 2014 (Xiamen, China, 2014), https://doi.org/10.1145/2632856.2632912
A.B. Alencar, M.C.F. de Oliveira, F.V. Paulovich, Seeing beyond reading: a survey on visual text analytics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.2(6), 476–492 (2012)
Google Scholar
I.E. Fisher, et al., The role of text analytics and information retrieval in the accounting domain. J. Emerg. Technol. Account. 7(1), 1–24 (2010)
CrossRef
Google Scholar
X. Hu, H. Liu, Text analytics in social media, in Mining Text Data, (Springer, Boston, MA, 2012), pp. 385–414
CrossRef
Google Scholar
C.C. Aggarwal, H. Wang, Text mining in social networks, in Social Network Data Analytics (Springer, Boston, MA, 2011), pp. 353–378
MATH
CrossRef
Google Scholar
Tobias Schreck, Daniel Keim, Visual analysis of social media data. Computer 46(5), 68–75 (2013)
CrossRef
Google Scholar
K. O’Halloran, A. Chua, A. Podlasov, The role of images in social media analytics: a multimodal digital humanities approach, in Visual Communication (De Gruyter, 2014), pp. 565–588
Google Scholar
N. Diakopoulos, M. Naaman, F. Kivran-Swaine, Diamonds in the rough: social media visual analytics for journalistic inquiry. in 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST) (IEEE, 2010)
Google Scholar
Bogdan Batrinca, Philip C. Treleaven, Social media analytics: a survey of techniques, tools and platforms. AI Soc. 30(1), 89–116 (2015)
CrossRef
Google Scholar
Tobias Schreck, Daniel Keim, Visual analysis of social media data. Computer 46(5), 68–75 (2013)
CrossRef
Google Scholar
W. Mason, J.W. Vaughan, H. Wallach, Mach. Learn. 95, 257 (2014). https://doi.org/10.1007/s10994-013-5426-8
MathSciNet
CrossRef
Google Scholar
X. Wang, J. Yang, X. Teng et al., Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459–471 (2007)
CrossRef
Google Scholar
M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)
MathSciNet
MATH
CrossRef
Google Scholar
Mohammad Ahmadi, Parthasarati Dileepan, K. Wheatley Kathleen, A SWOT analysis of big data. J. Educ. Bus. 91, 1–6 (2016). https://doi.org/10.1080/08832323.2016.1181045
CrossRef
Google Scholar
R. Talib, M.K. Hanif, S. Ayesha, F. Fatima, Text mining: techniques, applications and issues. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 7(11) (2016)
Google Scholar
P. Vashisht, V. Gupta, (2015). Big data analytics techniques: a survey, pp. 264–269. https://doi.org/10.1109/icgciot.2015.7380470
R. Reka Dr, K. Saraswathi, K. Sujatha Dr, A review on big data analytics. Asian J. Appl. Sci. Technol. (AJAST) 1(1), 233–234 (2017)
Google Scholar
Carlos Castillo, Marcelo Mendoza, Barbara Poblete, Predicting information credibility in time-sensitive social media. Internet Res. 23(5), 560–588 (2013)
CrossRef
Google Scholar
A. Kumar, S.R. Sangwan, Rumour detection using machine learning techniques on social media, in International Conference on Innovative Computing and Communication. Lecture Notes in Networks and Systems (Springer, 2018)
Google Scholar
A. Zubiaga, M. Liakata, R. Procter, G.W.S. Hoi, P. Tolmie, Analysing how people orient to and spread rumours in social media by looking at conversational threads. PLoS One 11(3), 1–29 (2016)
CrossRef
Google Scholar
M.E. Jaeger, S. Anthony, R.L. Rosnow, Who hears what from whom and with what effect a study of rumor. Personal. Soc. Psychol. Bull. 6(3), 473–478 (1980)
CrossRef
Google Scholar
A. Zubiaga, et al., Detection and resolution of rumours in social media: a survey. ACM Comput. Surv. (CSUR) 51(2), 32 (2018)
CrossRef
Google Scholar
Z. Zhao, P. Resnick, Q. Mei, Enquiring minds: early detection of rumors in social media from enquiry posts, in Proceedings of the 24th International Conference on World Wide Web (International World Wide Web Conferences Steering Committee, 2015)
Google Scholar
A. Zubiaga, M. Liakata, R. Procter, Learning reporting dynamics during breaking news for rumour detection in social media (2016). arXiv:1610.07363
V. Qazvinian, et al., Rumor has it: identifying misinformation in microblogs, in Proceedings of the Conference on Empirical Methods in Natural Language Processing (Association for Computational Linguistics, 2011)
Google Scholar
M. Mendoza, B. Poblete, C. Castillo, Twitter under crisis: can we trust what we RT? in Proceedings of the first workshop on social media analytics (ACM, 2010)
Google Scholar
C. Castillo, M. Mendoza, B. Poblete, Information credibility on Twitter, in Proceedings of the 20th international conference on World wide web (ACM, 2011)
Google Scholar
S. Kwon, et al., Prominent features of rumor propagation in online social media, in 2013 IEEE 13th International Conference on Data Mining (IEEE, 2013)
Google Scholar
Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Rumor detection over varying time windows. PLoS One 12(1), e0168344 (2017)
CrossRef
Google Scholar
A. Kumar, T.M. Sebastian, Sentiment analysis on Twitter. IJCSI Int. J. Comput. Sci. 9(4), 372–378 (2012)
Google Scholar
K. Dave, S. Lawrence, D.M. Pennock, Mining the peanut gallery: opinion extraction and semantic classification of product reviews, in Proceedings of the 12th international conference on World Wide Web (ACM, 2003), pp. 519–528
Google Scholar
A. Kumar, A. Sharma, A. Socio-sentic framework for sustainable agricultural governance. Sustain. Comput. Inform. Syst. (2018)
Google Scholar
B. Pang, L. Lee, Opinion mining and sentiment analysis. Found. Trends Inf. Retr. J. 2(2), 1–135 (2008)
Google Scholar
A. Kumar, T. Sebastian, Sentiment analysis: A perspective on its past, present and future. Int. J. Intell. Syst. Appl. 10, 1–14 (2012)
Google Scholar
A. Kumar, A. Jaiswal, Empirical Study of Twitter and tumblr for sentiment analysis using soft computing techniques, in Proceedings of the World Congress on Engineering and Computer Science, vol. 1 (2017)
Google Scholar
B. Liu, Sentiment Analysis Mining Opinions, Sentiments, and Emotions (Cambridge University Press, Chicago, 2015)
CrossRef
Google Scholar
A. Kumar, V. Dabas, A social media complaint workflow automation tool using sentiment intelligence, in Proceedings of The World Congress on Engineering 2016. Lecture Notes in Engineering and Computer Science (2016), pp. 176–181
Google Scholar
A. Kumar, A. Joshi, Ontology Driven Sentiment Analysis on Social Web for Government Intelligence, in Special Collection on eGovernment Innovation in India (2017), pp. 134–139
Google Scholar
E. Cambria, B. Schuller, Y. Xia, C. Havasi, New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28, 15–21 (2013)
CrossRef
Google Scholar
R. Feldman, Techniques and applications for sentiment analysis. Commun. ACM 56, 82–89 (2013)
CrossRef
Google Scholar
A. Montoyo, P. Martínez-Barco, A. Balahur, An overview of the current state of the area and envisaged developments. Decis. Support Syst. 53, 675–679 (2012)
CrossRef
Google Scholar
S. Finn, E. Mustafaraj, Learning to discover political activism in the Twitter verse. KI-KünstlicheIntelligenz 27, 17–24 (2013)
Google Scholar
A. Trilla, F. Alias, Sentence-based sentiment analysis for expressive text-to-speech. IEEE Trans. Audio Speech Lang. Process. 21, 223–233 (2013)
CrossRef
Google Scholar
S. Tuarob, C.S. Tucker, M. Salathe, N. Ram, An ensemble heterogeneous classification methodology for discovering health-related knowledge in social media messages. J. Biomed. Inform. 49, 255–268 (2014)
CrossRef
Google Scholar
J. Brynielsson, F. Johansson, C. Jonsson, A. Westling, Emotion classification of social media posts for estimating people’s reactions to communicated alert messages during crises. Secur. Inform. 3, 1–11 (2014)
CrossRef
Google Scholar
P. Burnap, M.L. Williams, L. Sloan, O. Rana, W. Housley, A. Edwards, V. Knight, R. Procter, A. Voss, Tweeting the terror: modelling the social media reaction to the Woolwich terrorist attack. Soc. Netw. Anal. Min. 4, 1–14 (2014)
CrossRef
Google Scholar
A. Makazhanov, D. Rafiei, M. Waqar, Predicting political preference of Twitter users. Soc. Netw. Anal. Min. 4, 1–15 (2014)
CrossRef
Google Scholar
P. Bogdanov, M. Busch, J. Moehlis, A.K. Singh, B.K. Szymanski, Modeling individual topic-specific behavior and influence backbone networks in social media. Soc. Netw. Anal. Min. 4, 1–16 (2014)
CrossRef
Google Scholar
X. Fu, Y. Shen, Study of collective user behaviour in Twitter: a fuzzy approach. Neural Comput. Appl. 25, 1603–1614 (2014)
CrossRef
Google Scholar
X. Chen, M. Vorvoreanu, K. Madhavan, Mining social media data for understanding students’ learning experiences. IEEE Trans. Learn. Technol. 7, 246–259 (2014)
CrossRef
Google Scholar
P. Burnap, M.L. Williams, Cyber hate speech on Twitter: an application of machine classification and statistical modeling for policy and decision making. Policy Internet 7, 223–242 (2015)
CrossRef
Google Scholar
A. Zubiaga, D. Spina, R. Martinez, V. Fresno, Real-time classification of Twitter trends. J. Assoc. Inf. Sci. Technol. 66, 462–473 (2015)
CrossRef
Google Scholar
P. Andriotis, G. Oikonomou, T. Tryfonas, S. Li, Highlighting relationships of a smartphone’s social ecosystem in potentially large investigations. IEEE Trans. Cybern. 46, 1974–1985 (2016)
CrossRef
Google Scholar
P. Burnap, M.L. Williams, Us and them: identifying cyber hate on Twitter across multiple protected characteristics. EPJ Data Sci. 5, 1–15 (2016)
CrossRef
Google Scholar
N. Oliveira, P. Cortez, N. Areal, The impact of microblogging data for stock market prediction: using Twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Syst. Appl. 73, 125–144 (2017)
CrossRef
Google Scholar
A. Singh, N. Shukla, N. Mishra, Social media data analytics to improve supply chain management in food industries. Transp. Res. Part E Logist. Transp. Rev. 114, 398–415 (2018)
CrossRef
Google Scholar
H. Wang, D. Can, A. Kazemzadeh, F. Bar, S. Narayanan, A system for real-time Twitter sentiment analysis of 2012 us presidential election cycle, in Proceedings of the ACL 2012 System Demonstrations (Association for Computational Linguistics, 2012), pp. 115–120
Google Scholar
Understanding sentiment analysis: what it is & why it’s used, https://www.brandwatch.com/blog/understanding-sentiment-analysis/. Accessed 19 Oct 2018
E. Aboujaoude, M.W. Savage, V. Starcevic, W.O. Salame, Cyberbullying: review of an old problem gone viral. J. Adolesc. Health 57(1), 10–18 (2015). https://doi.org/10.1016/j.jadohealth.2015.04.011
CrossRef
Google Scholar
M.A. Campbell, Cyber bullying: an old problem in a new guise? J. Psychol. Couns. Sch. 15(1), 68–76 (2005)
Google Scholar
Tokunaga Following you home from school, A critical review and synthesis of research on cyberbullying victimization. Comput. Hum. Behav. 26, 277–287 (2010). https://doi.org/10.1016/j.chb.2009.11.014
CrossRef
Google Scholar
Centers for Disease Control and Prevention. Youth violence: technology and youth protecting your child from electronic aggression (2014), http://www.cdc.gov/violenceprevention/pdf/ea-tipsheet-a.pdf. Accessed 11 Sept 2017
P.K. Smith, J. Mahdavi, M. Carvalho, S. Fisher, S. Russell, N. Tippett, Cyberbullying: its nature and impact in secondary school pupils. J. Child Psychol. Psychiatry 49(4), 376–385 (2008). https://doi.org/10.1111/j.1469-7610.2007.01846
CrossRef
Google Scholar
G. Sarna, M.P. Bhatia, Content based approach to find the credibility of user in social networks: an application of cyberbullying. Int. J. Mach. Learn. Cybernet. 8(2), 677–689 (2017)
CrossRef
Google Scholar
All you need to know about anti-bullying laws in India, https://blog.ipleaders.in/anti-bullying-laws/ Accessed 14 July 2018
Qing Li, Cyberbullying in high schools: a study of students’ behaviors and beliefs about this new phenomenon. J. Aggress. Maltreatment Trauma 19(4), 372–392 (2010). https://doi.org/10.1080/10926771003788979
CrossRef
Google Scholar
Qing Li, Cyberbullying in high schools: a study of students’ behaviors and beliefs about this new phenomenon. J. Aggress. Maltreatment Trauma 19(4), 372–392 (2010). https://doi.org/10.1080/10926771003788979
CrossRef
Google Scholar
J. Wang, T.R. Nansel, R.J. Iannotti, Cyber bullying and traditional bullying: differential association with depression. J. Adolesc. Health 48(4), 415–417 (2011)
CrossRef
Google Scholar
M.P. Hamm, A.S. Newton, A. Chisholm, J. Shulhan, A. Milne, P. Sundar et al., Prevalence and effect of cyberbullying on children and young people: a scoping review of social media studies. JAMA Pediatr. 169(8), 770–777 (2015). https://doi.org/10.1001/jamapediatrics.2015.0944
CrossRef
Google Scholar
J.A. Casas, R. Del Rey, R. Ortega-Ruiz, Bullying and cyberbullying: convergent and divergent predictor variables. Comput. Hum. Behav. 29, 580–587 (2013). https://doi.org/10.1016/j.chb.2012.11.015
CrossRef
Google Scholar
Commissariato di PS, Una vita da social, https://www.commissariatodips.it/uploads/media/Comunicato_stampa_Una_vita_da_social_4__edizione_2017.pdf. Accessed 28 Nov 2017
Law n. 71/17 of 29/05/2017, GU n. 127 of 03/06/2017. Senatodella Repubblica, http://www.senato.it/leg/17/BGT/Schede/Ddliter/43814.htm. Accessed 11 Sept 2017
Bsecure, http://www.safesearchkids.com/BSecure.html
Cyber Patrol, http://www.cyberpatrol.com/cpparentalcontrols.asp
eBlaster, http://www.eblaster.com/