Advertisement

Toxicity and Immune Response

  • Ülo Langel
Chapter

Abstract

The study of cytotoxicity and immunogenic activities of CPPs in vitro and in vivo is a necessary step in a way to achieve the potential of all possibilities offered by CPPs.

Keywords

Toxic Immunogenic Methods 

References

  1. Afridi, S., Hoessli, D. C., & Hameed, M. W. (2016). Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications. Immunological Reviews, 272, 151–168.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aguilera, T. A., Olson, E. S., Timmers, M. M., Jiang, T., & Tsien, R. Y. (2009). Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integrative Biology, 1, 371–381.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahn, D. G., Lee, W., Choi, J. K., Kim, S. J., Plant, E. P., Almazan, F., et al. (2011). Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Research, 91, 1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akkarawongsa, R., Cullinan, A. E., Zinkel, A., Clarin, J., & Brandt, C. R. (2006). Corneal toxicity of cell-penetrating peptides that inhibit Herpes simplex virus entry. Journal of Ocular Pharmacology and Therapeutics, 22, 279–289.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., et al. (1996). Human ICE/CED-3 protease nomenclature. Cell, 87, 171.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Amantana, A., Moulton, H. M., Cate, M. L., Reddy, M. T., Whitehead, T., Hassinger, J. N., et al. (2007). Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjugate Chemistry, 18, 1325–1331.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aslam, R., Atindehou, M., Lavaux, T., Haikel, Y., Schneider, F., & Metz-Boutigue, M. H. (2012). Chromogranin A-derived peptides are involved in innate immunity. Current Medicinal Chemistry, 19, 4115–4123.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aslantürk, Ö. S. (2017). In vitro cytotoxicity and cell viability assays: Principles, Advantages, and Disadvantages.Google Scholar
  9. Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4–15.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bahnsen, J. S., Franzyk, H., Sayers, E. J., Jones, A. T., & Nielsen, H. M. (2015). Cell-penetrating antimicrobial peptides—prospectives for targeting intracellular infections. Pharmaceutical Research, 32, 1546–1556.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Barany-Wallje, E., Gaur, J., Lundberg, P., Langel, Ü., & Gräslund, A. (2007). Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo. FEBS Letters, 581, 2389–2393.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 11, 127–152.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Birch, D., Christensen, M. V., Staerk, D., Franzyk, H. & Nielsen, H. M. (2018). Stereochemistry as a determining factor for the effect of a cell-penetrating peptide on cellular viability and epithelial integrity. Biochemical JournalGoogle Scholar
  14. Blazevic, V., Ranki, A., Mattinen, S., Valle, S. L., Koskimies, S., Jung, G., et al. (1993). Helper T-cell recognition of HIV-1 Tat synthetic peptides. Journal of Acquired Immune Deficiency Syndromes, 6, 881–890.PubMedPubMedCentralGoogle Scholar
  15. Bolton, S. J., Jones, D. N., Darker, J. G., Eggleston, D. S., Hunter, A. J., & Walsh, F. S. (2000). Cellular uptake and spread of the cell-permeable peptide penetratin in adult rat brain. European Journal of Neuroscience, 12, 2847–2855.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brayden, D. J., Cryan, S. A., Dawson, K. A., O’Brien, P. J., & Simpson, J. C. (2015). High-content analysis for drug delivery and nanoparticle applications. Drug Discovery Today, 20, 942–957.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brooks, N., Hsu, J., Esparon, S., Pouniotis, D. & Pietersz, G. A. (2018). Immunogenicity of a tripartite cell penetrating peptide containing a MUC1 variable number of tandem repeat (VNTR) and A T Helper Epitope. Molecules, 23.Google Scholar
  18. Brooks, N. A., Pouniotis, D. S., Sheng, K. C., Apostolopoulos, V., & Pietersz, G. A. (2010). A membrane penetrating multiple antigen peptide (MAP) incorporating ovalbumin CD8 epitope induces potent immune responses in mice. Biochimica et Biophysica Acta, 1798, 2286–2295.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cajal, Y., Rabanal, F., Alsina, M. A., & Reig, F. (1996). A fluorescence and CD study on the interaction of synthetic lipophilic hepatitis B virus preS(120-145) peptide analogues with phospholipid vesicles. Biopolymers, 38, 607–618.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Candia, M., Kratzer, B., & Pickl, W. F. (2016). On peptides and altered peptide ligands: From origin, mode of action and design to clinical application (Immunotherapy). International Archives of Allergy and Immunology, 170, 211–233.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cardozo, A. K., Buchillier, V., Mathieu, M., Chen, J., Ortis, F., Ladriere, L., et al. (2007). Cell-permeable peptides induce dose- and length-dependent cytotoxic effects. Biochimica et Biophysica Acta, 1768, 2222–2234.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Carter, E., Lau, C. Y., Tosh, D., Ward, S. G., & Mrsny, R. J. (2013). Cell penetrating peptides fail to induce an innate immune response in epithelial cells in vitro: Implications for continued therapeutic use. European Journal of Pharmaceutics and Biopharmaceutics, 85, 12–19.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chaubey, B., Tripathi, S., & Pandey, V. N. (2008). Single acute-dose and repeat-doses toxicity of anti-HIV-1 PNA TAR-penetratin conjugate after intraperitoneal administration to mice. Oligonucleotides, 18, 9–20.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cho, J. H., Sung, B. H., & Kim, S. C. (2009). Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochimica et Biophysica Acta, 1788, 1564–1569.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chollet, P., Favrot, M. C., Hurbin, A., & Coll, J. L. (2002). Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. The Journal of Gene Medicine, 4, 84–91.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chopra, A. (2012). LTVSPWY peptide-modified PEGylated chitosan magnetic nanoparticles. In Molecular imaging and contrast agent database (MICAD). Bethesda (MD).Google Scholar
  27. Cohen, L., & Walt, D. R. (2017). Single-molecule arrays for protein and nucleic acid analysis. Annual Review of Analytical Chemistry, 15, 061516–045340.Google Scholar
  28. Colombo, M., Mizzotti, C., Masiero, S., Kater, M. M., & Pesaresi, P. (2015). Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology. Journal of Integrative Plant Biology, 57, 892–901.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Conlon, J. M., Mechkarska, M., Prajeep, M., Arafat, K., Zaric, M., Lukic, M. L., et al. (2013). Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids, 44, 715–723.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Danial, N. N., & Korsmeyer, S. J. (2004). Cell death: Critical control points. Cell, 116, 205–219.PubMedPubMedCentralCrossRefGoogle Scholar
  31. De Araujo, C. B., Russo, L. C., Castro, L. M., Forti, F. L., Do Monte, E. R., Rioli, V., et al. (2014). A novel intracellular peptide derived from g1/s cyclin d2 induces cell death. Journal of Biological Chemistry, 289, 16711–16726.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Deng, C., Jia, M., Wei, G., Tan, T., Fu, Y., Gao, H., et al. (2017). Inducing optimal antitumor immune response through coadministering iRGD with pirarubicin loaded nanostructured lipid carriers for breast cancer therapy. Molecular Pharmaceutics, 14, 296–309.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Derouazi, M., Di Berardino-Besson, W., Belnoue, E., Hoepner, S., Walther, R., Benkhoucha, M., et al. (2015). Novel cell-penetrating peptide-based vaccine induces robust CD4 + and CD8 + T cell-mediated antitumor immunity. Cancer Research, 75, 3020–3031.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Deshayes, S., Plenat, T., Charnet, P., Divita, G., Molle, G. & Heitz, F. (2006). Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochim Biophys Acta, 11, 22.Google Scholar
  35. Do, N., Weindl, G., Grohmann, L., Salwiczek, M., Koksch, B., Korting, H. C., et al. (2014). Cationic membrane-active peptides—anticancer and antifungal activity as well as penetration into human skin. Experimental Dermatology, 23, 326–331.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dowaidar, M., Gestin, M., Cerrato, C. P., Jafferali, M. H., Margus, H., Kivistik, P. A., et al. (2017). Role of autophagy in cell-penetrating peptide transfection model. Scientific Reports, 7, 12635.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dupont, E., Prochiantz, A., & Joliot, A. (2007). Identification of a signal peptide for unconventional secretion. The Journal of Biological Chemistry, 282, 8994–9000.PubMedCrossRefGoogle Scholar
  38. El-Andaloussi, S., Järver, P., Johansson, H. J., & Langel, Ü. (2007a). Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. Biochemical Journal, 407, 285–292.PubMedPubMedCentralCrossRefGoogle Scholar
  39. El-Andaloussi, S., Järver, P., Johansson, H. J., & Langel, Ü. (2007b). Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. The Biochemical Journal, 407, 285–292.PubMedPubMedCentralCrossRefGoogle Scholar
  40. El-Andaloussi, S., Lehto, T., Mäger, I., Rosenthal-Aizman, K., Oprea, I. I., Simonson, O. E., et al. (2011). Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 39, 3972–3987.PubMedCentralCrossRefGoogle Scholar
  41. Evans, B. C., Nelson, C. E., Yu, S. S., Beavers, K. R., Kim, A. J., LI, H., et al. (2013). Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp, e50166.Google Scholar
  42. Fenton, M., Bone, N., & Sinclair, A. J. (1998). The efficient and rapid import of a peptide into primary B and T lymphocytes and a lymphoblastoid cell line. Journal of Immunological Methods, 212, 41–48.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fletcher, T. C., Digiandomenico, A., & Hawiger, J. (2010). Extended anti-inflammatory action of a degradation-resistant mutant of cell-penetrating suppressor of cytokine signaling 3. Journal of Biological Chemistry, 285, 18727–18736.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., & Thornberry, N. A. (1998). Inhibition of human caspases by peptide-based and macromolecular inhibitors. The Journal of biological chemistry, 273, 32608–32613.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Grabowski, B., Schmidt, M. A., & Ruter, C. (2017). Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence, 8, 1124–1147.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Grela, E., Kozlowska, J., & Grabowiecka, A. (2018). Current methodology of MTT assay in bacteria—A review. Acta Histochemica, 120, 303–311.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Guimond, D. M., Cam, N. R., Hirve, N., Duan, W., Lambris, J. D., Croft, M., et al. (2013). Regulation of immune responsiveness in vivo by disrupting an early T-cell signaling event using a cell-permeable peptide. PLoS ONE, 8, e63645.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hancock, R. E. W., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24, 1551–1557.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hayashi, Y., Yamauchi, J., Khalil, I. A., Kajimoto, K., Akita, H., & Harashima, H. (2011). Cell penetrating peptide-mediated systemic siRNA delivery to the liver. International Journal of Pharmaceutics, 419, 308–313.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hedegaard, S. F., Derbas, M. S., Lind, T. K., Kasimova, M. R., Christensen, M. V., Michaelsen, M. H., et al. (2018). Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Sci Rep, 8, 6327.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Heilborn, J. D., Nilsson, M. F., Kratz, G., Weber, G., Sorensen, O., Borregaard, N., et al. (2003). The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. Journal of Investigative Dermatology, 120, 379–389.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hoffmann, J. M., Schmitt, M., Ni, M., & Schmitt, A. (2017). Next-generation dendritic cell-based vaccines for leukemia patients. Immunotherapy, 9, 173–181.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Holm, T., Räägel, H., el Andaloussi, S., Hein, M., Mäe, M., Pooga, M., et al. (2011). Retro-inversion of certain cell-penetrating peptides causes severe cellular toxicity. Biochimica et Biophysica Acta, 1808, 1544–1551.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huang, Y., Li, X., Sha, H., Zhang, L., Bian, X., Han, X., et al. (2017). Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy. Oncology Reports, 37, 2063–2070.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ildefonso, C. J., Jaime, H., Rahman, M. M., Li, Q., Boye, S. E., Hauswirth, W. W., et al. (2015). Gene delivery of a viral anti-inflammatory protein to combat ocular inflammation. Human Gene Therapy, 26, 59–68.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jittavisutthikul, S., Thanongsaksrikul, J., Thueng-In, K., Chulanetra, M., Srimanote, P., Seesuay, W., et al. (2015). Humanized-VHH transbodies that inhibit HCV protease and replication. Viruses, 7, 2030–2056.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jo, D., Liu, D., Yao, S., Collins, R. D., & Hawiger, J. (2005). Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nature Medicine, 11, 892–898.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Jones, S. W., Christison, R., Bundell, K., Voyce, C. J., Brockbank, S. M., Newham, P., et al. (2005). Characterisation of cell-penetrating peptide-mediated peptide delivery. British Journal of Pharmacology, 145, 1093–1102.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Joshi, M. D., Unger, W. J., Storm, G., van Kooyk, Y., & Mastrobattista, E. (2012). Targeting tumor antigens to dendritic cells using particulate carriers. Journal of Controlled Release, 161, 25–37.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Julien, O., & Wells, J. A. (2017). Caspases and their substrates. Cell Death and Differentiation, 12, 44.Google Scholar
  61. Kanazawa, T., Takashima, Y., Shibata, Y., Tsuchiya, M., Tamura, T., & Okada, H. (2009). Effective vaginal DNA delivery with high transfection efficiency is a good system for induction of higher local vaginal immune responses. Journal of Pharmacy and Pharmacology, 61, 1457–1463.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kanekura, K., Harada, Y., Fujimoto, M., Yagi, T., Hayamizu, Y., Nagaoka, K., et al. (2018). Characterization of membrane penetration and cytotoxicity of C9orf72-encoding arginine-rich dipeptides. Scientific Reports, 8, 12740.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Khafagy El, S., Kamei, N., Nielsen, E. J., Nishio, R., & Takeda-Morishita, M. (2013). One-month subchronic toxicity study of cell-penetrating peptides for insulin nasal delivery in rats. European Journal of Pharmaceutics and Biopharmaceutics, 85, 736–743.CrossRefGoogle Scholar
  64. Kilk, K., Mahlapuu, R., Soomets, U., & Langel, Ü. (2009). Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling. Toxicology, 265, 87–95.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kim, M. J., Hwang, Y. H., Kim, Y. H., & Lee, D. Y. (2017). Immunomodulation of cell-penetrating tat-metallothionein for successful outcome of xenotransplanted pancreatic islet. Journal of Drug Targeting, 25, 350–359.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kim, S., Hyun, S., Lee, Y., Lee, Y., & Yu, J. (2016a). Nonhemolytic cell-penetrating peptides: Site specific introduction of glutamine and lysine residues into the alpha-helical peptide causes deletion of its direct membrane disrupting ability but retention of its cell penetrating ability. Biomacromolecules, 17, 3007–3015.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kim, H., Seo, E. H., Lee, S. H. & Kim, B. J. (2016a). The telomerase-derived anticancer peptide vaccine GV1001 as an extracellular heat shock protein-mediated cell-penetrating peptide. International Journal of Molecular Sciences, 17.Google Scholar
  68. Kronenberg, K., Brosch, S., Butsch, F., Tada, Y., Shibagaki, N., Udey, M. C., et al. (2010). Vaccination with TAT-antigen fusion protein induces protective, CD8(+) T cell-mediated immunity against Leishmania major. Journal of Investigative Dermatology, 130, 2602–2610.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kuo, J. H., Jan, M. S., Lin, Y. L., & Lin, C. (2009). Interactions between octaarginine and U-937 human macrophages: Global gene expression profiling, superoxide anion content, and cytokine production. Journal of Controlled Release, 139, 197–204.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kurrikoff, K., Gestin, M., & Langel, Ü. (2016). Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opinion on Drug Delivery, 13, 373–387.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y.-H., Homey, B., et al. (2007). Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 449, 564–569.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Law, B., Quinti, L., Choi, Y., Weissleder, R., & Tung, C. H. (2006). A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Molecular Cancer Therapeutics, 5, 1944–1949.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lee, J., Jung, E., Park, J., & Park, D. (2005). Transdermal delivery of interferon-gamma (IFN-gamma) mediated by penetratin, a cell-permeable peptide. Biotechnology and Applied Biochemistry, 42, 169–173.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lee, T. Y., Park, Y. S., Garcia, G. A., Sunahara, R. K., Woods, J. H., & Yang, V. C. (2012). Cell permeable cocaine esterases constructed by chemical conjugation and genetic recombination. Molecular Pharmaceutics, 9, 1361–1373.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lehto, T., Vasconcelos, L., Margus, H., Figueroa, R., Pooga, M., Hällbrink, M., et al. (2017). Saturated fatty acid analogues of cell-penetrating peptide PepFect14: Role of fatty acid modification in complexation and delivery of splice-correcting oligonucleotides. Bioconjugate Chemistry, 28, 782–792.CrossRefGoogle Scholar
  76. Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines, 2, 515–536.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lim, S., Koo, J. H., & Choi, J. M. (2016). Use of cell-penetrating peptides in dendritic cell-based vaccination. Immune Network, 16, 33–43.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Limoli, D. H., & Wozniak, D. J. (2014). Mutagenesis by host antimicrobial peptides: Insights into microbial evolution during chronic infections. Microb Cell, 1, 247–249.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lin’Kova, N. S., Kuznik, B. I., & Khavinson, V. (2012). Peptide Ala-Glu-Asp-Gly and interferon gamma: Their role in immune response during aging. Adv Gerontology, 25, 478–482.Google Scholar
  80. Lomakina, G. Y., Modestova, Y. A., & Ugarova, N. N. (2015). Bioluminescence assay for cell viability. Biochemistry, 80, 701–713.PubMedPubMedCentralGoogle Scholar
  81. Lundin, P., el Andaloussi, S., & Langel, Ü. (2011). Toxicity methods for CPPs. Methods in Molecular Biology, 683, 195–205.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Madge, L. A., & May, M. J. (2009). Inhibiting proinflammatory NF-kappaB signaling using cell-penetrating NEMO binding domain peptides. Methods in Molecular Biology, 512, 209–232.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Magzoub, M., Oglecka, K., Pramanik, A., Eriksson, G., & Gräslund, A. (2005). Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins. Biochimica et Biophysica Acta, 1716, 126–136.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Mardani, G., Bolhassani, A., Agi, E., Shahbazi, S., & MEHDI SADAT, S. (2016). Protein vaccination with HPV16 E7/Pep-1 nanoparticles elicits a protective T-helper cell-mediated immune response. IUBMB Life, 68, 459–467.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Marie, E., Sagan, S., Cribier, S., & Tribet, C. (2014). Amphiphilic macromolecules on cell membranes: From protective layers to controlled permeabilization. Journal of Membrane Biology, 247, 861–881.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Martin, T. L., Mufson, E. J., & Mesulam, M. M. (1984). The light side of horseradish peroxidase histochemistry. Journal of Histochemistry and Cytochemistry, 32, 793.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Martinez De Tejada, G., Sanchez-Gomez, S., Razquin-Olazaran, I., Kowalski, I., Kaconis, Y., Heinbockel, L., et al. (2012). Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Current Drug Targets, 13, 1121–1130.PubMedCrossRefPubMedCentralGoogle Scholar
  88. McLean, J. W., Fox, E. A., Baluk, P., Bolton, P. B., Haskell, A., Pearlman, R., et al. (1997). Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice. American Journal of Physiology, 273, H387–H404.PubMedPubMedCentralGoogle Scholar
  89. Mehrlatifan, S., Mirnurollahi, S. M., Motevalli, F., Rahimi, P., Soleymani, S., & Bolhassani, A. (2016). The structural HCV genes delivered by MPG cell penetrating peptide are directed to enhance immune responses in mice model. Drug Deliv, 23, 2852–2859.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Meloni, B. P., Craig, A. J., Milech, N., Hopkins, R. M., Watt, P. M., & Knuckey, N. W. (2014). The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. Cellular and Molecular Neurobiology, 34, 173–181.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Michl, J., Scharf, B., Schmidt, A., Huynh, C., Hannan, R., von Gizycki, H., et al. (2006). PNC-28, a p53-derived peptide that is cytotoxic to cancer cells, blocks pancreatic cancer cell growth in vivo. International Journal of Cancer, 119, 1577–1585.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mitsui, H., Inozume, T., Kitamura, R., Shibagaki, N., & Shimada, S. (2006). Polyarginine-mediated protein delivery to dendritic cells presents antigen more efficiently onto MHC class I and class II and elicits superior antitumor immunity. J Invest Dermatol, 126, 1804–1812.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Monte, E. R., Rossato, C., Llanos, R. P., Russo, L. C., de Castro, L. M., Gozzo, F. C., et al. (2017). Interferon-gamma activity is potentiated by an intracellular peptide derived from the human 19S ATPase regulatory subunit 4 of the proteasome. Journal of Proteomics, 151, 74–82.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Research, 25, 2730–2736.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Moschos, S. A., Jones, S. W., Perry, M. M., Williams, A. E., Erjefalt, J. S., Turner, J. J., et al. (2007). Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjugate Chemistry, 18, 1450–1459.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Muto, K., Kamei, N., Yoshida, M., Takayama, K., & Takeda-Morishita, M. (2016). Cell-Penetrating Peptide Penetratin as a Potential Tool for Developing Effective Nasal Vaccination Systems. Journal of Pharmaceutical Sciences, 105, 2014–2017.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Myrberg, H., Zhang, L., Mäe, M., & Langel, Ü. (2008). Design of a tumor-homing cell-penetrating peptide. Bioconjugate Chemistry, 19, 70–75.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Nakamura, T., Yamazaki, D., Yamauchi, J., & Harashima, H. (2013). The nanoparticulation by octaarginine-modified liposome improves alpha-galactosylceramide-mediated antitumor therapy via systemic administration. Journal of Controlled Release, 171, 216–224.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Negahdaripour, M., Golkar, N., Hajighahramani, N., Kianpour, S., Nezafat, N., & Ghasemi, Y. (2017). Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnology Advances, 15, 002.Google Scholar
  100. Neo, S. H., Lew, Q. J., Koh, S. M., Zheng, L., Bi, X., & Chao, S. H. (2016). Use of a novel cytotoxic HEXIM1 peptide in the directed breast cancer therapy. Oncotarget, 7, 5483–5494.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature, 376, 37–43.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Niles, A. L., Moravec, R. A., Eric Hesselberth, P., Scurria, M. A., Daily, W. J., & Riss, T. L. (2007). A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Analytical Biochemistry, 366, 197–206.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nishikawa, M., Otsuki, T., Ota, A., Guan, X., Takemoto, S., Takahashi, Y., et al. (2010). Induction of tumor-specific immune response by gene transfer of Hsp70-cell-penetrating peptide fusion protein to tumors in mice. Molecular Therapy, 18, 421–428.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Oho, M., Nakano, R., Nakayama, R., Sakurai, W., Miyamoto, A., Masuhiro, Y., et al. (2016). TIPE2 (Tumor Necrosis Factor alpha-induced Protein 8-like 2) Is a Novel Negative Regulator of TAK1 Signal. Journal of Biological Chemistry, 291, 22650–22660.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Pappalardo, J. S., Quattrocchi, V., Langellotti, C., di Giacomo, S., Gnazzo, V., Olivera, V., et al. (2009). Improved transfection of spleen-derived antigen-presenting cells in culture using TATp-liposomes. Journal of Controlled Release, 134, 41–46.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Pouniotis, D. S., Esparon, S., Apostolopoulos, V., & Pietersz, G. A. (2011). Whole protein and defined CD8(+) and CD4(+) peptides linked to penetratin targets both MHC class I and II antigen presentation pathways. Immunology and Cell Biology, 89, 904–913.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Pujals, S., Sabido, E., Tarrago, T., & Giralt, E. (2007). all-D proline-rich cell-penetrating peptides: A preliminary in vivo internalization study. Biochemical Society Transactions, 35, 794–796.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Qiao, H., Liu, Y., Veach, R. A., Wylezinski, L., & Hawiger, J. (2014). The adaptor CRADD/RAIDD controls activation of endothelial cells by proinflammatory stimuli. Journal of Biological Chemistry, 289, 21973–21983.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Regberg, J., Vasconcelos, L., Madani, F., Langel, Ü., & Hällbrink, M. (2016). pH-responsive PepFect cell-penetrating peptides. International Journal of Pharmaceutics, 501, 32–38.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rittner, K., Benavente, A., Bompard-Sorlet, A., Heitz, F., Divita, G., Brasseur, R., et al. (2002). New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Molecular Therapy, 5, 104–114.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Saar, K., Lindgren, M., Hansen, M., Eiriksdottir, E., Jiang, Y., Rosenthal-Aizman, K., et al. (2005). Cell-penetrating peptides: A comparative membrane toxicity study. Analytical Biochemistry, 345, 55–65.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Sakuma, S., Suita, M., Inoue, S., Marui, Y., Nishida, K., Masaoka, Y., et al. (2012). Cell-penetrating peptide-linked polymers as carriers for mucosal vaccine delivery. Molecular Pharmaceutics, 9, 2933–2941.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Saleh, T., Bolhassani, A., Shojaosadati, S. A., & Aghasadeghi, M. R. (2015). MPG-based nanoparticle: An efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine, 33, 3164–3170.PubMedCrossRefGoogle Scholar
  114. Shen, Z. G., He, W., Zhang, J., He, H. Y., Yang, X., Chen, Z. Q., et al. (2011). Induction of specific immune response and suppression of fertility by B-cell-epitope-based mimovirus vaccine. Reproduction, 142, 659–666.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Shibagaki, N., & Udey, M. C. (2002). Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. Journal of Immunology, 168, 2393–2401.CrossRefGoogle Scholar
  116. Shim, B. S., Cheon, I. S., Lee, E., Park, S. M., Choi, Y., Jung, D. I., et al. (2018). Development of Safe and Non-Self-Immunogenic Mucosal Adjuvant by Recombinant Fusion of Cholera Toxin A1 Subunit with Protein Transduction Domain. Journal of immunology research, 2018, 9830701.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 21, 10644–10654.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Srinivasa, B. T., Fixman, E. D., & Ward, B. J. (2014). Inhibition of STAT6 during vaccination with formalin-inactivated RSV prevents induction of Th2-cell-biased airway disease. European Journal of Immunology, 44, 2349–2359.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Suhorutsenko, J., Oskolkov, N., Arukuusk, P., Kurrikoff, K., Eriste, E., Copolovici, D. M., et al. (2011). Cell-penetrating peptides, PepFects, show no evidence of toxicity and immunogenicity in vitro and in vivo. Bioconjugate Chemistry, 22, 2255–2262.CrossRefGoogle Scholar
  120. Sun, Y. & Hu, Y. H. (2015). Cell-penetrating peptide-mediated subunit vaccine generates a potent immune response and protection against Streptococcus iniae in Japanese flounder (Paralichthys olivaceus). Vet Immunol Immunopathol.Google Scholar
  121. Tang, J., Yin, R., Tian, Y., Huang, Z., Shi, J., Fu, X., et al. (2012). A novel self-assembled nanoparticle vaccine with HIV-1 Tat(4)(9)(-)(5)(7)/HPV16 E7(4)(9)(-)(5)(7) fusion peptide and GM-CSF DNA elicits potent and prolonged CD8(+) T cell-dependent anti-tumor immunity in mice. Vaccine, 30, 1071–1082.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Thueng-In, K., Thanongsaksrikul, J., Jittavisutthikul, S., Seesuay, W., Chulanetra, M., Sakolvaree, Y., et al. (2014). Interference of HCV replication by cell penetrable human monoclonal scFv specific to NS5B polymerase. MAbs, 6, 1327–1339.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Tinega, A. N., Pelle, R., Kang’A, S., Gicheru, M. M., Taracha, E. L., Nene, V., et al. (2009). Fusion of a cell penetrating peptide from HIV-1 TAT to the Theileria parva antigen Tp2 enhances the stimulation of bovine CD8 + T cell responses. Veterinary Immunology and Immunopathology, 130, 107–113.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Torgerson, T. R., Colosia, A. D., Donahue, J. P., Lin, Y. Z., & Hawiger, J. (1998). Regulation of NF-kappa B, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NF-kappa B p50. Journal of Immunology, 161, 6084–6092.Google Scholar
  125. Trehin, R., Krauss, U., Muff, R., Meinecke, M., Beck-Sickinger, A. G., & Merkle, H. P. (2004). Cellular internalization of human calcitonin derived peptides in MDCK monolayers: A comparative study with Tat(47–57) and penetratin(43–58). Pharmaceutical Research, 21, 33–42.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Tünnemann, G., Ter-Avetisyan, G., Martin, R. M., Stockl, M., Herrmann, A., & Cardoso, M. C. (2008). Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. Journal of Peptide Science, 14, 469–476.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Upadhyay, A., Ponzio, N. M., & Pandey, V. N. (2008). Immunological response to peptide nucleic acid and its peptide conjugate targeted to transactivation response (TAR) region of HIV-1 RNA genome. Oligonucleotides, 18, 329–335.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Uusna, J., Langel, K., & Langel, Ü. (2015). Toxicity, Immunogenicity, Uptake, and Kinetics Methods for CPPs. Methods in Molecular Biology, 1324, 133–148.CrossRefGoogle Scholar
  129. Vasconcelos, L., Madani, F., Arukuusk, P., Pärnaste, L., Gräslund, A., & Langel, Ü. (2014). Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. Biochimica et Biophysica Acta, 1838, 3118–3129.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Veach, R. A., Zienkiewicz, J., Collins, R. D., & Hawiger, J. (2012). Lethality in a murine model of pulmonary anthrax is reduced by combining nuclear transport modifier with antimicrobial therapy. PLoS ONE, 7, e30527.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Veiman, K. L., Kunnapuu, K., Lehto, T., Kiisholts, K., Pärn, K., Langel, Ü., et al. (2015). PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. Journal of Controlled Release, 209, 238–247.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Veitch, N. C. (2004). Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry, 65, 249–259.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Viehl, C. T., Becker-Hapak, M., Lewis, J. S., Tanaka, Y., Liyanage, U. K., Linehan, D. C., et al. (2005). A tat fusion protein-based tumor vaccine for breast cancer. Annals of Surgical Oncology, 12, 517–525.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Walker, P. R., Belnoue, E., Dietrich, P. Y. & Derouazi, M. (2015). Cell-penetrating peptides-the Swiss Army knife of cancer vaccines. Oncoimmunology, 5.Google Scholar
  135. Walum, E., & Peterson, A. (1982). Tritiated 2-deoxy-D-glucose as a probe for cell membrane permeability studies. Analytical Biochemistry, 120, 8–11.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Wang, H. Y., & Wang, R. F. (2012). Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Advances in Immunology, 114, 151–176.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wang, Y. F., Xu, X., Fan, X., Zhang, C., Wei, Q., Wang, X., et al. (2011). A cell-penetrating peptide suppresses inflammation by inhibiting NF-kappaB signaling. Molecular Therapy, 19, 1849–1857.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wu, B., Moulton, H. M., Iversen, P. L., Jiang, J., Li, J., Spurney, C. F., et al. (2008). Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proceedings of the National Academy of Sciences of the U S A, 105, 14814–14819.CrossRefGoogle Scholar
  139. Yen, H. J., Hsu, S. H., & Tsai, C. L. (2009). Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small (Weinheim an der Bergstrasse, Germany), 5, 1553–1561.CrossRefGoogle Scholar
  140. Yildiz, S., Alpdundar, E., Gungor, B., Kahraman, T., Bayyurt, B., Gursel, I., et al. (2015). Enhanced immunostimulatory activity of cyclic dinucleotides on mouse cells when complexed with a cell-penetrating peptide or combined with CpG. European Journal of Immunology, 45, 1170–1179.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Yin, H., Moulton, H. M., Betts, C., Merritt, T., Seow, Y., Ashraf, S., et al. (2010). Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO. Molecular Therapy, 18, 1822–1829.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yu, X., Wang, Y., Xia, Y., Zhang, L., Yang, Q., & Lei, J. (2016). A DNA vaccine encoding VP22 of herpes simplex virus type I (HSV-1) and OprF confers enhanced protection from Pseudomonas aeruginosa in mice. Vaccine, 34, 4399–4405.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Zhang, T. T., Kang, T. H., Ma, B., Xu, Y., Hung, C. F., & Wu, T. C. (2012). LAH4 enhances CD8 + T cell immunity of protein/peptide-based vaccines. Vaccine, 30, 784–793.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Zhou, Q. H., Sumbria, R., Hui, E. K., Lu, J. Z., Boado, R. J., & Pardridge, W. M. (2011). Neuroprotection with a brain-penetrating biologic tumor necrosis factor inhibitor. Journal of Pharmacology and Experimental Therapeutics, 339, 618–623.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Ziegler, A. (2008). Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Advanced Drug Delivery Reviews, 60, 580–597.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ülo Langel
    • 1
    • 2
  1. 1.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
  2. 2.Institute of TechnologyUniversity of TartuTartuEstonia

Personalised recommendations