Skip to main content

Targeting Strategies

  • Chapter
  • First Online:
CPP, Cell-Penetrating Peptides

Abstract

Biological or therapeutic targeting could be defined as the mechanism(s) by which a biological cargo (drug) is transported to its proper destination, in case of a patient to specific parts of the body, such as diseased tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, N. J., Ronnback, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7, 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Acar, H., Ting, J. M., Srivastava, S., Labelle, J. L., & Tirrell, M. V. (2017). Molecular engineering solutions for therapeutic peptide delivery. Chem Soc Rev.

    Google Scholar 

  • Alexander-Bryant, A. A., Dumitriu, A., Attaway, C. C., Yu, H., & Jakymiw, A. (2015). Fusogenic-oligoarginine peptide-mediated silencing of the CIP2A oncogene suppresses oral cancer tumor growth in vivo. Journal of Control Release, 218, 72–81.

    Article  CAS  Google Scholar 

  • Alexander-Bryant, A. A., Zhang, H., Attaway, C. C., Pugh, W., Eggart, L., Sansevere, R. M., et al. (2017). Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo. Oral Oncology, 72, 123–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhakamy, N. A., Ishiguro, S., Uppalapati, D., Berkland, C. J., & Tamura, M. (2016). AT2R gene delivered by condensed polylysine complexes attenuates Lewis lung carcinoma after intravenous injection or intratracheal spray. Molecular Cancer Therapeutics, 15, 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Ali, N., Mattsson, K., Rissler, J., Karlsson, H. M., Svensson, C. R., Gudmundsson, A., et al. (2016). Analysis of nanoparticle-protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins. Nanotoxicology, 10, 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Almansour, K., Taverner, A., Turner, J. R., Eggleston, I. M., & Mrsny, R. J. (2018). An intestinal paracellular pathway biased toward positively-charged macromolecules. Journal of Control Release.

    Google Scholar 

  • Alta, R. Y. P., Vitorino, H. A., Goswami, D., Liria, C. W., Wisnovsky, S. P., Kelley, S. O., et al. (2017). Mitochondria-penetrating peptides conjugated to desferrioxamine as chelators for mitochondrial labile iron. PLoS ONE, 12, e0171729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Althuon, D., Ronicke, F., Furniss, D., Quan, J., Wellhofer, I., Jung, N., et al. (2015). Functionalized triazolopeptoids—a novel class for mitochondrial targeted delivery. Organic and Biomolecular Chemistry, 13, 4226–4230.

    Article  CAS  PubMed  Google Scholar 

  • Anchordoquy, T. J., Barenholz, Y., Boraschi, D., Chorny, M., Decuzzi, P., Dobrovolskaia, M. A., et al. (2017). Mechanisms and barriers in cancer nanomedicine: Addressing challenges, looking for solutions. ACS Nano, 11, 12–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appelqvist, H., Waster, P., Kagedal, K., & Ollinger, K. (2013). The lysosome: From waste bag to potential therapeutic target. Journal of Molecular Cell Biology, 5, 214–226.

    Article  CAS  PubMed  Google Scholar 

  • Apte, A., Koren, E., Koshkaryev, A., & Torchilin, V. P. (2014). Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biology and Therapy, 15, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Araujo, F., Shrestha, N., Shahbazi, M. A., Liu, D., Herranz-Blanco, B., Makila, E. M., et al. (2015). Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs. ACS Nano, 9, 8291–8302.

    Article  CAS  PubMed  Google Scholar 

  • Aronov, O., Horowitz, A. T., Gabizon, A., Fuertes, M. A., Perez, J. M., & Gibson, D. (2004). Nuclear localization signal-targeted poly(ethylene glycol) conjugates as potential carriers and nuclear localizing agents for carboplatin analogues. Bioconjugate Chemistry, 15, 814–823.

    Article  CAS  PubMed  Google Scholar 

  • Arosio, D., & Casagrande, C. (2016). Advancement in integrin facilitated drug delivery. Advanced Drug Delivery Reviews, 97, 111–143.

    Article  CAS  PubMed  Google Scholar 

  • Arroyo, J. D., Jourdain, A. A., Calvo, S. E., Ballarano, C. A., Doench, J. G., Root, D. E., et al. (2016). A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metabolism, 24, 875–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae, H. D., Lee, J., Jin, X. H., & Lee, K. (2016). Potential of translationally controlled tumor protein-derived protein transduction domains as antigen carriers for nasal vaccine delivery. Molecular Pharmaceutics, 13, 3196–3205.

    Article  CAS  PubMed  Google Scholar 

  • Bae, H. D., Lee, J., Jun, K. Y., Kwon, Y., & Lee, K. (2018). Modification of translationally controlled tumor protein-derived protein transduction domain for improved intranasal delivery of insulin. Drug Delivery, 25, 1025–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, R. D., Howl, J., & Nicholl, I. D. (2007). A sychnological cell penetrating peptide mimic of p21(WAF1/CIP1) is pro-apoptogenic. Peptides, 28, 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Banks, W. A. (2015). Peptides and the blood-brain barrier. Peptides, 72, 16–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks, W. A., Kastin, A. J., Huang, W., Jaspan, J. B., & Maness, L. M. (1996). Leptin enters the brain by a saturable system independent of insulin. Peptides, 17, 305–311.

    Article  CAS  PubMed  Google Scholar 

  • Barbari, G. R., Dorkoosh, F., Amini, M., Bahari Javan, N., Sharifzadeh, M., Atyabi, F., et al. (2018). Synthesis and characterization of a novel peptide-grafted Cs and evaluation of its nanoparticles for the oral delivery of insulin, in vitro, and in vivo study. International Journal of Nanomedicine, 13, 5127–5138.

    Article  Google Scholar 

  • Barnes, W. J., & Anderson, C. T. (2017). Release, recycle, rebuild: Cell wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Molecular Plant.

    Google Scholar 

  • Batista da Cunha, D., Pupo Silvestrini, A. V., Gomes da Silva, A. C., Maria de Paula Estevam, D., Pollettini, F. L., De Oliveira Navarro, J., et al. (2018). Mechanistic insights into functional characteristics of native crotamine. Toxicon, 146, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Begley, D. J., & Brightman, M. W. (2003). Structural and functional aspects of the blood-brain barrier. Progress in Drug Research, 61, 39–78.

    CAS  PubMed  Google Scholar 

  • Ben Djemaa, S., David, S., Herve-Aubert, K., Falanga, A., Galdiero, S., Allard-Vannier, E., et al. (2018). Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. European Journal of Pharmaceutics and Biopharmaceutics.

    Google Scholar 

  • Berry, C. C., de la Fuente, J. M., Mullin, M., Chu, S. W., & Curtis, A. S. (2007). Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Transactions on Nanobioscience, 6, 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand, N., & Leroux, J.-C. (2012). The journey of a drug-carrier in the body: An anatomo-physiological perspective. Journal of Controlled Release, 161, 152–163.

    Article  CAS  PubMed  Google Scholar 

  • Bhunia, D., Mondal, P., Das, G., Saha, A., Sengupta, P., Jana, J., et al. (2018). Spatial position regulates power of tryptophan: Discovery of a major-groove-specific nuclear-localizing, cell-penetrating tetrapeptide. Journal of the American Chemical Society.

    Google Scholar 

  • Bhutia, S. K., Mallick, S. K., Maiti, S., Mishra, D., & Maiti, T. K. (2009). Abrus abrin derived peptides induce apoptosis by targeting mitochondria in HeLa cells. Cell Biology International, 33, 720–727.

    Article  CAS  PubMed  Google Scholar 

  • Bidwell, G. L., III, Davis, A. N., & Raucher, D. (2009). Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides. Journal of Controlled Release, 135, 2–10.

    Article  CAS  PubMed  Google Scholar 

  • Bilichak, A., Luu, J., & Eudes, F. (2015). Intracellular delivery of fluorescent protein into viable wheat microspores using cationic peptides. Frontiers in Plant Science, 6.

    Google Scholar 

  • Biswas, S., Deshpande, P. P., Perche, F., Dodwadkar, N. S., Sane, S. D., & Torchilin, V. P. (2013). Octa-arginine-modified pegylated liposomal doxorubicin: An effective treatment strategy for non-small cell lung cancer. Cancer Letters, 335, 191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhassani, A. (2011). Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochimica et Biophysica Acta, 1816, 232–246.

    CAS  PubMed  Google Scholar 

  • Bolhassani, A., Jafarzade, B. S., & Mardani, G. (2017). In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides, 87, 50–63.

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino, J. S., & Dell’Angelica, E. C. (1999). Molecular bases for the recognition of tyrosine-based sorting signals. Journal of Cell Biology, 145, 923–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowerman, C. J., & Nilsson, B. L. (2010). A reductive trigger for peptide self-assembly and hydrogelation. Journal of the American Chemical Society, 132, 9526–9527.

    Article  CAS  PubMed  Google Scholar 

  • Brasnjevic, I., Steinbusch, H. W., Schmitz, C., & Martinez-Martinez, P. (2009). Delivery of peptide and protein drugs over the blood-brain barrier. Progress in Neurobiology, 87, 212–251.

    Article  CAS  PubMed  Google Scholar 

  • Brayden, D. J., & Mrsny, R. J. (2011). Oral peptide delivery: Prioritizing the leading technologies. Therapeutic Delivery, 2, 1567–1573.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, J., & Barton, J. K. (2006). Targeting DNA mismatches with rhodium intercalators functionalized with a cell-penetrating peptide. Biochemistry, 45, 12295–12302.

    Article  CAS  PubMed  Google Scholar 

  • Buckley, S. T., Hubalek, F., & Rahbek, U. L. (2016). Chemically modified peptides and proteins—Critical considerations for oral delivery. Tissue Barriers, 4, Apr–Jun.

    Google Scholar 

  • Cantini, L., Attaway, C. C., Butler, B., Andino, L. M., Sokolosky, M. L., & Jakymiw, A. (2013). Fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2A oncogene into oral cancer cells. PLoS ONE, 8, e73348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardo, L., Thomas, S. G., Mazharian, A., Pikramenou, Z., Rappoport, J. Z., Hannon, M. J., et al. (2015). Accessible synthetic probes for staining actin inside platelets and megakaryocytes by employing lifeact peptide. ChemBioChem, 16, 1680–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael, N. M., Dostrovsky, J. O., & Charlton, M. P. (2010). Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. Pain, 149, 316–324.

    Article  CAS  PubMed  Google Scholar 

  • Cerrato, C. P., Künnapuu, K., & Langel, Ü. (2017). Cell-penetrating peptides with intracellular organelle targeting. Expert Opinion on Drug Delivery, 14, 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Cerrato, C. P., & Langel, U. (2017). Effect of a fusion peptide by covalent conjugation of a mitochondrial cell-penetrating peptide and a glutathione analog peptide. Molecular Therapy-Methods and Clinical Development, 5, 221–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerrato, C. P., Pirisinu, M., Vlachos, E. N., & Langel, Ü. (2015). Novel cell-penetrating peptide targeting mitochondria. FASEB Journal, 29, 4589–4599.

    Article  CAS  PubMed  Google Scholar 

  • Chang, M., Chou, J.-C., & Lee, H.-J. (2005). Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant and Cell Physiology, 46, 482–488.

    Article  CAS  PubMed  Google Scholar 

  • Chang, M., Chou, J. C., Chen, C. P., Liu, B. R., & Lee, H. J. (2007). Noncovalent protein transduction in plant cells by macropinocytosis. New Phytologist, 174, 46–56.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B., Friedman, B., Whitney, M. A., Winkle, J. A., Lei, I. F., Olson, E. S., et al. (2012). Thrombin activity associated with neuronal damage during acute focal ischemia. Journal of Neuroscience, 32, 7622–7631.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.-P., Chou, J.-C., Liu, B. R., Chang, M., & Lee, H.-J. (2007). Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Letters, 581, 1891–1897.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H. C., Chiou, S. T., Zheng, J. Y., Yang, S. H., Lai, S. S., & Kuo, T. Y. (2011). The nuclear localization signal sequence of porcine circovirus type 2 ORF2 enhances intracellular delivery of plasmid DNA. Archives of Virology, 156, 803–815.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Kumar, S., Anselmo, A. C., Gupta, V., Slee, D. H., Muraski, J. A., et al. (2015). Topical delivery of Cyclosporine A into the skin using SPACE-peptide. Journal of Control Release, 199, 190–197.

    Article  CAS  Google Scholar 

  • Chen, M., Zakrewsky, M., Gupta, V., Anselmo, A. C., Slee, D. H., Muraski, J. A., et al. (2014a). Topical delivery of siRNA into skin using SPACE-peptide carriers. Journal of Control Release, 179, 33–41.

    Article  CAS  Google Scholar 

  • Chen, Q., & Lai, H. (2015). Gene delivery into plant cells for recombinant protein production. BioMed Research International, 2015, 932161.

    PubMed  PubMed Central  Google Scholar 

  • Chen, Q., Lai, H., Hurtado, J., Stahnke, J., Leuzinger, K., & Dent, M. (2013). Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Advanced Techniques in Biology & Medicine, 1.

    Google Scholar 

  • Chen, Y., & Liu, L. (2012). Modern methods for delivery of drugs across the blood-brain barrier. Advanced Drug Delivery Reviews, 64, 640–665.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Shen, Y., Guo, X., Zhang, C., Yang, W., Ma, M., et al. (2006). Transdermal protein delivery by a coadministered peptide identified via phage display. Nature Biotechnology, 24, 455–460.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Zhang, P., Cheetham, A. G., Moon, J. H., Moxley, J. W., Jr., Lin, Y. A. et al. (2014b). Controlled release of free doxorubicin from peptide-drug conjugates by drug loading. Journal of Control Release, 191, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, H., Zhu, J. Y., Xu, X. D., Qiu, W. X., Lei, Q., Han, K., et al. (2015). Activable cell-penetrating peptide conjugated prodrug for tumor targeted drug delivery. ACS Applied Materials and Interfaces, 7, 16061–16069.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Y., Huang, F., Min, X., Gao, P., Zhang, T., Li, X., et al. (2016). Protease-responsive prodrug with aggregation-induced emission probe for controlled drug delivery and drug release tracking in living cells. Analytical Chemistry, 88, 8913–8919.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D. K., Bae, J., Shin, S. M., Shin, J. Y., Kim, S., & Kim, Y. S. (2014). A general strategy for generating intact, full-length IgG antibodies that penetrate into the cytosol of living cells. MAbs, 6, 1402–1414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, S. W., Pangeni, R., Jung, D. H., Kim, S. J., & Park, J. W. (2018). Construction and characterization of cell-penetrating peptide-fused fibroblast growth factor and vascular endothelial growth factor for an enhanced percutaneous delivery system. Journal of Nanoscience and Nanotechnology, 18, 842–847.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y., Kim, K., Hong, S., Kim, H., Kwon, Y. J., & Song, R. (2011). Intracellular protein target detection by quantum dots optimized for live cell imaging. Bioconjugate Chemistry, 22, 1576–1586.

    Article  CAS  PubMed  Google Scholar 

  • Chuah, J. A., Horii, Y., & Numata, K. (2016a). Peptide-derived method to transport genes and proteins across cellular and organellar barriers in plants. Journal of Visualized Experiments.

    Google Scholar 

  • Chuah, J. A., Matsugami, A., Hayashi, F., & Numata, K. (2016b). Self-assembled peptide-based system for mitochondrial-targeted gene delivery: Functional and structural insights. Biomacromolecules, 17, 3547–3557.

    Article  CAS  PubMed  Google Scholar 

  • Chuah, J. A., & Numata, K. (2018). Stimulus-responsive peptide for effective delivery and release of DNA in plants. Biomacromolecules.

    Google Scholar 

  • Chuah, J. A., Yoshizumi, T., Kodama, Y., & Numata, K. (2015). Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Scientific Reports, 5, 7751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuard, N., Fujisawa, K., Morelli, P., Saarbach, J., Winssinger, N., Metrangolo, P., et al. (2016). Activation of cell-penetrating peptides with Ionpair-pi interactions and fluorophiles. Journal of the American Chemical Society, 138, 11264–11271.

    Article  CAS  PubMed  Google Scholar 

  • Chugh, A., Amundsen, E., & Eudes, F. (2009). Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Reports, 28, 801–810.

    Article  CAS  PubMed  Google Scholar 

  • Chugh, A., & Eudes, F. (2007). Translocation and nuclear accumulation of monomer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts. Biochimica et Biophysica Acta, 1768, 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Chugh, A., & Eudes, F. (2008a). Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. Journal of Peptide Science, 14, 477–481.

    Article  CAS  PubMed  Google Scholar 

  • Chugh, A., & Eudes, F. (2008b). Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos. FEBS Journal, 275, 2403–2414.

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Avrahami, M., Shames, A. I., Ottaviani, M. F., Aserin, A., & Garti, N. (2014). HIV-TAT enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases. The Journal of Physical Chemistry B, 118, 6277–6287.

    Article  CAS  PubMed  Google Scholar 

  • Collard, R., Majtan, T., Park, I., & Kraus, J. P. (2018). Import of TAT-conjugated propionyl-CoA carboxylase using models of propionic acidemia. Molecular and Cellular Biology.

    Google Scholar 

  • Collombet, J.-M., Wheeler, V. C., Vogel, F., & Coutelle, C. (1997). Introduction of plasmid DNA into isolated mitochondria by electroporation: A novel approach toward gene correction for mitochondrial disorders. Journal of Biological Chemistry, 272, 5342–5347.

    Article  CAS  PubMed  Google Scholar 

  • Colombo, M., Mizzotti, C., Masiero, S., Kater, M. M., & Pesaresi, P. (2015). Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology. Journal of Integrative Plant Biology, 57, 892–901.

    Article  CAS  PubMed  Google Scholar 

  • Craven, L., Alston, C. L., Taylor, R. W., & Turnbull, D. M. (2017). Recent advances in mitochondrial disease. Annual Review of Genomics and Human Genetics, 17, 091416-035426.

    Google Scholar 

  • Crisp, J. L., Savariar, E. N., Glasgow, H. L., Ellies, L. G., Whitney, M. A., & Tsien, R. Y. (2014). Dual targeting of integrin alphavbeta3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Molecular Cancer Therapeutics, 13, 1514–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielsen, E. M., & Hansen, G. H. (2018). Impact of cell-penetrating peptides (CPPs) melittin and Hiv-1 Tat on the enterocyte brush border using a mucosal explant system. Biochimica et Biophysica Acta, 1860, 1589–1599.

    Article  CAS  PubMed  Google Scholar 

  • de Boer, A. G., & Gaillard, P. J. (2007). Strategies to improve drug delivery across the blood-brain barrier. Clinical Pharmacokinetics, 46, 553–576.

    Article  PubMed  Google Scholar 

  • de Boer, A. G., van der Sandt, I. C., & Gaillard, P. J. (2003). The role of drug transporters at the blood-brain barrier. Annual Review of Pharmacology and Toxicology, 43, 629–656.

    Article  PubMed  CAS  Google Scholar 

  • de Kruijf, W., & Ehrhardt, C. (2017). Inhalation delivery of complex drugs-the next steps. Current Opinion in Pharmacology, 36, 52–57.

    Article  PubMed  CAS  Google Scholar 

  • Deb, R., & Nagotu, S. (2017). Versatility of peroxisomes: An evolving concept. Tissue and Cell, 49, 209–226.

    Article  CAS  PubMed  Google Scholar 

  • Dekiwadia, C. D., Lawrie, A. C., & Fecondo, J. V. (2012). Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. Journal of Peptide Science, 18, 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Demeule, M., Poirier, J., Jodoin, J., Bertrand, Y., Desrosiers, R. R., Dagenais, C., et al. (2002). High transcytosis of melanotransferrin (P97) across the blood-brain barrier. Journal of Neurochemistry, 83, 924–933.

    Article  CAS  PubMed  Google Scholar 

  • Demeule, M., Regina, A., Che, C., Poirier, J., Nguyen, T., Gabathuler, R., et al. (2008). Identification and design of peptides as a new drug delivery system for the brain. Journal of Pharmacology and Experimental Therapeutics, 324, 1064–1072.

    Article  CAS  PubMed  Google Scholar 

  • Desai, P. R., Cormier, A. R., Shah, P. P., Patlolla, R. R., Paravastu, A. K., & Singh, M. (2014). (31)P solid-state NMR based monitoring of permeation of cell penetrating peptides into skin. European Journal of Pharmaceutics and Biopharmaceutics, 86, 190–199.

    Article  CAS  PubMed  Google Scholar 

  • Dietz, G. P., Valbuena, P. C., Dietz, B., Meuer, K., Mueller, P., Weishaupt, J. H., et al. (2006). Application of a blood-brain-barrier-penetrating form of GDNF in a mouse model for Parkinson’s disease. Brain Research, 1082, 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Ding, Q., Markesbery, W. R., Chen, Q., Li, F., & Keller, J. N. (2005). Ribosome dysfunction is an early event in Alzheimer’s disease. Journal of Neuroscience, 25, 9171–9175.

    Article  CAS  PubMed  Google Scholar 

  • Doeppner, T. R., Nagel, F., Dietz, G. P., Weise, J., Tonges, L., Schwarting, S., et al. (2009). TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. Journal of Cerebral Blood Flow and Metabolism, 29, 1187–1196.

    Article  CAS  PubMed  Google Scholar 

  • Dominska, M., & Dykxhoorn, D. M. (2010). Breaking down the barriers: siRNA delivery and endosome escape. Journal of Cell Science, 123, 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  • Dondi, R., Yaghini, E., Tewari, K. M., Wang, L., Giuntini, F., Loizidou, M., et al. (2016). Flexible synthesis of cationic peptide-porphyrin derivatives for light-triggered drug delivery and photodynamic therapy. Organic and Biomolecular Chemistry, 14, 11488–11501.

    Article  CAS  PubMed  Google Scholar 

  • Doran, P. M. (2013). Therapeutically important proteins from in vitro plant tissue culture systems. Current Medicinal Chemistry, 20, 1047–1055.

    CAS  PubMed  Google Scholar 

  • Drin, G., Cottin, S., Blanc, E., Rees, A. R., & Temsamani, J. (2003). Studies on the internalization mechanism of cationic cell-penetrating peptides. Journal of Biological Chemistry, 278, 31192–31201.

    Article  CAS  PubMed  Google Scholar 

  • Drin, G., Rousselle, C., Scherrmann, J. M., Rees, A. R. & Temsamani, J. (2002). Peptide delivery to the brain via adsorptive-mediated endocytosis: Advances with SynB vectors. AAPS PharmSci, 4.

    Google Scholar 

  • Dube, T., Chibh, S., Mishra, J. & Panda, J. J. (2017). Receptor targeted polymeric nanostructures capable of navigating across the blood-brain barrier for effective delivery of neural therapeutics. ACS Chemical Neuroscience, 25.

    Google Scholar 

  • Eggenberger, K., Birtalan, E., Schroder, T., Brase, S., & Nick, P. (2009). Passage of Trojan peptoids into plant cells. ChemBioChem, 10, 2504–2512.

    Article  CAS  PubMed  Google Scholar 

  • Eriste, E., Kurrikoff, K., Suhorutsenko, J., Oskolkov, N., Copolovici, D. M., Jones, S., et al. (2013). Peptide-based glioma-targeted drug delivery vector gHoPe2. Bioconjugate Chemistry, 24, 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Erlich-Hadad, T., Hadad, R., Feldman, A., Greif, H., Lictenstein, M., & Lorberboum-Galski, H. (2018). TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells. Journal of Cellular and Molecular Medicine, 22, 1601–1613.

    Article  CAS  PubMed  Google Scholar 

  • Eudes, F., & Macmillan, T. (2014). Organelle targeting nanocarriers. Google Patents.

    Google Scholar 

  • Feng, X., Gao, X., Kang, T., Jiang, D., Yao, J., Jing, Y., et al. (2015). Mammary-derived growth inhibitor targeting peptide-modified PEG-PLA nanoparticles for enhanced targeted glioblastoma therapy. Bioconjugate Chemistry, 26, 1850–1861.

    Article  CAS  PubMed  Google Scholar 

  • Fillebeen, C., Descamps, L., Dehouck, M. P., Fenart, L., Benaissa, M., Spik, G., et al. (1999). Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. Journal of Biological Chemistry, 274, 7011–7017.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, R., Bachle, D., Fotin-Mleczek, M., Jung, G., Kalbacher, H., & Brock, R. (2006). A targeted protease substrate for a quantitative determination of protease activities in the endolysosomal pathway. ChemBioChem, 7, 1428–1434.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, R., Kohler, K., Fotin-Mleczek, M., & Brock, R. (2004). A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. Journal of Biological Chemistry, 279, 12625–12635.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, L., Samuelsson, M., Jiang, Y., Ramberg, V., Figueroa, R., Hallberg, E., et al. (2007). Targeting cytokine expression in glial cells by cellular delivery of an NF-kappaB decoy. Journal of Molecular Neuroscience, 31, 209–219.

    CAS  PubMed  Google Scholar 

  • Foger, F., Kopf, A., Loretz, B., Albrecht, K., & Bernkop-Schnurch, A. (2008). Correlation of in vitro and in vivo models for the oral absorption of peptide drugs. Amino Acids, 35, 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, S. B., Pereira, M. P., Mourtada, R., Gronda, M., Horton, K. L., Hurren, R., et al. (2011). Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chemistry and Biology, 18, 445–453.

    Article  CAS  PubMed  Google Scholar 

  • Fortin, D., Gendron, C., Boudrias, M., & Garant, M. P. (2007). Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in the treatment of cerebral metastasis. Cancer, 109, 751–760.

    Article  CAS  PubMed  Google Scholar 

  • Frankenburg, S., Grinberg, I., Bazak, Z., Fingerut, L., Pitcovski, J., Gorodetsky, R., et al. (2007). Immunological activation following transcutaneous delivery of HR-gp100 protein. Vaccine, 25, 4564–4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fretz, M. M., Penning, N. A., Al-Taei, S., Futaki, S., Takeuchi, T., Nakase, I., et al. (2007). Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochemical Journal, 403, 335–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friden, P. M., Walus, L. R., Musso, G. F., Taylor, M. A., Malfroy, B., & Starzyk, R. M. (1991). Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proceedings of the National Academy of Sciences, 88, 4771–4775.

    Article  CAS  Google Scholar 

  • Fu, A., Wang, Y., Zhan, L., & Zhou, R. (2012). Targeted delivery of proteins into the central nervous system mediated by rabies virus glycoprotein-derived peptide. Pharmaceutical Research, 29, 1562–1569.

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka, Y., Khafagy, E. S., Goto, T., Kamei, N., Takayama, K., Peppas, N. A., et al. (2018). Combination strategy with complexation hydrogels and cell-penetrating peptides for oral delivery of insulin. Biological &/and Pharmaceutical Bulletin, 41, 811–814.

    Article  CAS  Google Scholar 

  • Furukawa, R., Yamada, Y., Kawamura, E., & Harashima, H. (2015). Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials, 57, 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Gaillard, P. J., Visser, C. C., & de Boer, A. G. (2005). Targeted delivery across the blood-brain barrier. Expert Opinion on Drug Delivery, 2, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Gaizo, V. D., Mackenzie, J. A., & Payne, R. M. (2003). Targeting proteins to mitochondria using TAT. Molecular Genetics and Metabolism, 80, 170–180.

    Article  PubMed  CAS  Google Scholar 

  • Gan, H. K., van den Bent, M., Lassman, A. B., Reardon, D. A., & Scott, A. M. (2017). Antibody-drug conjugates in glioblastoma therapy: The right drugs to the right cells. Nature Reviews Clinical Oncology, 4, 95.

    Google Scholar 

  • Gao, C., Hong, M., Geng, J., Zhou, H., & Dong, J. (2015). Characterization of PI (breast cancer cell special peptide) in MDA-MB-231 breast cancer cells and its potential therapeutic applications. International Journal of Oncology, 47, 1371–1378.

    Article  CAS  PubMed  Google Scholar 

  • Gao, H., Zhang, S., Cao, S., Yang, Z., Pang, Z., & Jiang, X. (2014). Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Molecular Pharmaceutics, 11, 2755–2763.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Wang, L., Liu, J., Xie, F., Su, B., & Wang, X. (2017). Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants, 6.

    Google Scholar 

  • Gao, W., Xiang, B., Meng, T. T., Liu, F., & Qi, X. R. (2013). Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials, 34, 4137–4149.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lopez, V., Chen, F., Nilewski, L. G., Duret, G., Aliyan, A., Kolomeisky, A. B., et al. (2017). Molecular machines open cell membranes. Nature, 548, 567–572.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, J., Fernandez-Blanco, A., Teixido, M., Sanchez-Navarro, M., & Giralt, E. (2018). d-Polyarginine lipopeptides as intestinal permeation enhancers. ChemMedChem.

    Google Scholar 

  • Gautam, A., Nanda, J. S., Samuel, J. S., Kumari, M., Priyanka, P., Bedi, G., et al. (2016). Topical delivery of protein and peptide using novel cell penetrating peptide IMT-P8. Scientific Reports, 6.

    Google Scholar 

  • Gehrmann, M., Stangl, S., Foulds, G. A., Oellinger, R., Breuninger, S., Rad, R., et al. (2014). Tumor imaging and targeting potential of an Hsp70-derived 14-mer peptide. PLoS ONE, 9, e105344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geisler, I. M., & Chmielewski, J. (2011). Dimeric cationic amphiphilic polyproline helices for mitochondrial targeting. Pharmaceutical Research, 28, 2797–2807.

    Article  CAS  PubMed  Google Scholar 

  • Gennari, C. G., Franze, S., Pellegrino, S., Corsini, E., Vistoli, G., Montanari, L., et al. (2016). Skin penetrating peptide as a tool to enhance the permeation of heparin through human epidermis. Biomacromolecules, 17, 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Gerard, G. M. D. S., & Volkmar, W. (2004). Approaches to mitochondrial gene therapy. Current Gene Therapy, 4, 317–328.

    Article  Google Scholar 

  • Golestanipour, A., Nikkhah, M., Aalami, A., & Hosseinkhani, S. (2018). Gene delivery to tobacco root cells with single-walled carbon nanotubes and cell-penetrating fusogenic peptides. Molecular Biotechnology.

    Google Scholar 

  • Gonias, S. L., & Campana, W. M. (2014). LDL receptor-related protein-1: A regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. American Journal of Pathology, 184, 18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan, S., Pandey, N., Tamiz, A. P., Vere, J., Carrasco, R., Somerville, R., et al. (2009). Mechanism of action of ZOT-derived peptide AT-1002, a tight junction regulator and absorption enhancer. International Journal of Pharmaceutics, 365, 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Gorman, G. S., Chinnery, P. F., Dimauro, S., Hirano, M., Koga, Y., Mcfarland, R., et al. (2016). Nature Reviews Disease Primers, 2:16080 10.1038/nrdp.2016.80.

  • Gotanda, Y., Wei, F. Y., Harada, H., Ohta, K., Nakamura, K., Tomizawa, K., et al. (2014). Efficient transduction of 11 poly-arginine peptide in an ischemic lesion of mouse brain. Journal of Stroke and Cerebrovascular Diseases, 23, 2023–2030.

    Article  PubMed  Google Scholar 

  • Goun, E. A., Shinde, R., Dehnert, K. W., Adams-Bond, A., Wender, P. A., Contag, C. H., et al. (2006). Intracellular cargo delivery by an octaarginine transporter adapted to target prostate cancer cells through cell surface protease activation. Bioconjugate Chemistry, 17, 787–796.

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan, S., Sivakumar, J., Garimidi, P., Rangaraj, N., Kumar, J. M., Rao, N. M., et al. (2012). Targeting human epidermal growth factor receptor 2 by a cell-penetrating peptide-affibody bioconjugate. Biomaterials, 33, 2570–2582.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, J. I., Cheng, S. K. K., Hayashi, T., Carson, D., Saraswathy, M., Nair, D. P., et al. (2017). Cell-penetrating peptide CGKRK mediates efficient and widespread targeting of bladder mucosa following focal injury. Nanomedicine (Lond), 13, 1925–1932.

    Article  CAS  Google Scholar 

  • Gronewold, A., Horn, M., & Neundorf, I. (2018). Design and biological characterization of novel cell-penetrating peptides preferentially targeting cell nuclei and subnuclear regions. Beilstein Journal of Organic Chemistry, 14, 1378–1388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross, A., Alborzinia, H., Piantavigna, S., Martin, L. L., Wolfl, S., & Metzler-Nolte, N. (2015). Vesicular disruption of lysosomal targeting organometallic polyarginine bioconjugates. Metallomics, 7, 371–384.

    Article  CAS  PubMed  Google Scholar 

  • Gul, R., Ahmed, N., Shah, K. U., Khan, G. M., & Ur Rehman, A. (2017). Functionalized nanostructures for transdermal delivery of drug cargos. Journal of Drug Targeting, 31, 1–30.

    Google Scholar 

  • Gupta, S., Jain, A., Chakraborty, M., Sahni, J. K., Ali, J., & Dang, S. (2013). Oral delivery of therapeutic proteins and peptides: A review on recent developments. Drug Delivery, 20, 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, U., Kumar, H., Mishra, G., Kumar Sharma, A., Gothwal, A. & Kesharwani, P. (2017). Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics. Pharmaceutical Nanotechnology, 14, 2211738505666170515113936.

    Google Scholar 

  • Haeckel, A., Appler, F., Ariza de Schellenberger, A., & Schellenberger, E. (2016). XTEN as biological alternative to PEGylation allows complete expression of a protease-activatable killin-based cytostatic. PLoS One, 11.

    Google Scholar 

  • Han, S. S., Li, Z. Y., Zhu, J. Y., Han, K., Zeng, Z. Y., Hong, W., et al. (2015). Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small (Weinheim an der Bergstrasse, Germany), 11, 2543–2554.

    Article  CAS  Google Scholar 

  • Hansen, A., Schafer, I., Knappe, D., Seibel, P., & Hoffmann, R. (2012). Intracellular toxicity of proline-rich antimicrobial peptides shuttled into mammalian cells by the cell-penetrating peptide penetratin. Antimicrobial Agents and Chemotherapy, 56, 5194–5201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, M., Kilk, K., & Langel, Ü. (2008). Predicting cell-penetrating peptides. Advanced Drug Delivery Reviews, 60, 572–579.

    Article  CAS  PubMed  Google Scholar 

  • Harada, H., Hiraoka, M., & Kizaka-Kondoh, S. (2002). Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Research, 62, 2013–2018.

    CAS  PubMed  Google Scholar 

  • Hariton-Gazal, E., Rosenbluh, J., Graessmann, A., Gilon, C., & Loyter, A. (2003). Direct translocation of histone molecules across cell membranes. Journal of Cell Science, 116, 4577–4586.

    Article  CAS  PubMed  Google Scholar 

  • Harris, T. J., von Maltzahn, G., Lord, M. E., Park, J. H., Agrawal, A., Min, D. H., et al. (2008). Protease-triggered unveiling of bioactive nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 4, 1307–1312.

    Article  CAS  Google Scholar 

  • Hart, M. R., Su, H. Y., Broka, D., Goverdhan, A., & Schroeder, J. A. (2013). Inactive ERBB receptors cooperate with reactive oxygen species to suppress cancer progression. Molecular Therapy, 21, 1996–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama, H., Akita, H., Ito, E., Hayashi, Y., Oishi, M., Nagasaki, Y., et al. (2011). Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials, 32, 4306–4316.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y., Mizuno, R., Ikramy, K. A., Akita, H., & Harashima, H. (2012). Pretreatment of hepatocyte growth factor gene transfer mediated by octaarginine peptide-modified nanoparticles ameliorates LPS/D-galactosamine-induced hepatitis. Nucleic Acid Therapeutics, 22, 360–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi, Y., Yamauchi, J., Khalil, I. A., Kajimoto, K., Akita, H., & Harashima, H. (2011). Cell penetrating peptide-mediated systemic siRNA delivery to the liver. International Journal of Pharmaceutics, 419, 308–313.

    Article  CAS  PubMed  Google Scholar 

  • He, H., Sun, L., Ye, J., Liu, E., Chen, S., Liang, Q., et al. (2016). Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. Journal of Controlled Release, 240, 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Held, A., Glas, A., Dietrich, L., Bollmann, M., Brandstadter, K., Grossmann, T. N., et al. (2018). Targeting beta-catenin dependent Wnt signaling via peptidomimetic inhibitors in murine chondrocytes and OA cartilage. Osteoarthritis Cartilage.

    Article  CAS  PubMed  Google Scholar 

  • Herce, H. D., Schumacher, D., Schneider, A. F. L., Ludwig, A. K., Mann, F. A., Fillies, M., et al. (2017). Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nature Chemistry, 9, 762–771.

    Article  CAS  PubMed  Google Scholar 

  • Herve, F., Ghinea, N., & Scherrmann, J. M. (2008). CNS delivery via adsorptive transcytosis. American Association of Pharmaceutical Scientists Journal, 10, 455–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hida, K., Maishi, N., Sakurai, Y., Hida, Y., & Harashima, H. (2016). Heterogeneity of tumor endothelial cells and drug delivery. Advanced Drug Delivery Reviews, 99, 140–147.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani, D. V., Lemieux, A. J., Acevedo, J. R., Glasgow, H. L., Kedarisetty, S., Whitney, M. A., et al. (2017). Early detection of squamous cell carcinoma in carcinogen induced oral cancer rodent model by ratiometric activatable cell penetrating peptides. Oral Oncology, 71, 156–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofbauer, A., Peters, J., Arcalis, E., Rademacher, T., Lampel, J., Eudes, F., et al. (2014). The induction of recombinant protein bodies in different subcellular compartments reveals a cryptic plastid-targeting signal in the 27-kDa γ-Zein sequence. Frontiers in Bioengineering and Biotechnology, 2, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holm, T., Netzereab, S., Hansen, M., Langel, Ü., & Hällbrink, M. (2005). Uptake of cell-penetrating peptides in yeasts. FEBS Letters, 579, 5217–5222.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M. K., Cho, H. Y., Kim, K. J., & Choi, J. W. (2015). In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 71, 300–305.

    Article  CAS  PubMed  Google Scholar 

  • Hossen, M. N., Kajimoto, K., Akita, H., Hyodo, M., & Harashima, H. (2012). Vascular-targeted nanotherapy for obesity: Unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. Journal of Control Release, 163, 101–110.

    Article  CAS  Google Scholar 

  • Hsu, T., & Mitragotri, S. (2011). Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proceedings of the National Academy of Sciences USA, 108, 15816–15821.

    Article  CAS  Google Scholar 

  • Huang, R., Li, J., Kebebe, D., Wu, Y., Zhang, B., & Liu, Z. (2018). Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Delivery, 25, 757–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S., Shao, K., Kuang, Y., Liu, Y., Li, J., An, S., et al. (2013a). Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials, 34, 5294–5302.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Shao, K., Liu, Y., Kuang, Y., Li, J., An, S., et al. (2013b). Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano, 7, 2860–2871.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Park, Y. S., Wang, J., Moon, C., Kwon, Y. M., Chung, H. S., et al. (2010). ATTEMPTS system: A macromolecular prodrug strategy for cancer drug delivery. Current Pharmaceutical Design, 16, 2369–2376.

    Article  CAS  PubMed  Google Scholar 

  • Huber, J. D., Egleton, R. D., & Davis, T. P. (2001). Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends in Neurosciences, 24, 719–725.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, H., Simon-Gracia, L., Tobi, A., Kotamraju, V. R., Sharma, S., Nigul, M., et al. (2017). Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. Journal of Control Release, 260, 142–153.

    Article  CAS  Google Scholar 

  • Hussain, T., Mastrodimos, M. B., Raju, S. C., Glasgow, H. L., Whitney, M., Friedman, B., et al. (2015). Fluorescently labeled peptide increases identification of degenerated facial nerve branches during surgery and improves functional outcome. PLoS One, 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyman, J. M., Geihe, E. I., Trantow, B. M., Parvin, B., & Wender, P. A. (2012). A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters. Proceedings of the National Academy of Sciences USA, 109, 13225–13230.

    Article  CAS  Google Scholar 

  • Hyvonen, M., Enbäck, J., Huhtala, T., Lammi, J., Sihto, H., Weisell, J., et al. (2014). Novel target for peptide-based imaging and treatment of brain tumors. Molecular Cancer Therapeutics, 13, 996–1007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hällbrink, M., & Karelson, M. (2015). Prediction of cell-penetrating peptides. Methods Mol Biol, 1324, 39–58.

    Article  PubMed  Google Scholar 

  • Hällbrink, M., Kilk, K., Elmquist, A., Lundberg, P., Lindgren, M., Jiang, Y., et al. (2005). Prediction of cell-penetrating peptides. International Journal of Peptide Research and Therapeutics, 11, 249–259.

    Article  CAS  Google Scholar 

  • Hällbrink, M., Kilk, K., Lundberg, P., Soomets, U., Elmquist, A., Zorko, M., et al. (2002). Cell-penetrating peptides. PCT WO2003106491.

    Google Scholar 

  • Im, J., Das, S., Jeong, D., Kim, C. J., Lim, H. S., Kim, K. H., et al. (2017). Intracellular and transdermal protein delivery mediated by non-covalent interactions with a synthetic guanidine-rich molecular carrier. International Journal of Pharmaceutics, 528, 646–654.

    Article  CAS  PubMed  Google Scholar 

  • Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 1, 297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiguro, S., Alhakamy, N. A., Uppalapati, D., Delzeit, J., Berkland, C. J., & Tamura, M. (2017). Combined local pulmonary and systemic delivery of AT2R gene by modified TAT peptide nanoparticles attenuates both murine and human lung carcinoma xenografts in Mice. Journal of Pharmaceutical Sciences, 106, 385–394.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa, T., Somiya, K., Munechika, R., Harashima, H., & Yamada, Y. (2018). Mitochondrial transgene expression via an artificial mitochondrial DNA vector in cells from a patient with a mitochondrial disease. Journal of Controlled Release.

    Google Scholar 

  • Iwasaki, T., Tokuda, Y., Kotake, A., Okada, H., Takeda, S., Kawano, T., et al. (2015). Cellular uptake and in vivo distribution of polyhistidine peptides. Journal of Controlled Release, 210, 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Iwase, Y., Kamei, N., Khafagy el, S., Miyamoto, M., & Takeda-Morishita, M. (2016). Use of a non-covalent cell-penetrating peptide strategy to enhance the nasal delivery of interferon beta and its PEGylated form. International Journal of Pharmaceutics, 510, 304–310.

    Google Scholar 

  • Jacq, A., Burlat, V., & Jamet, E. (2017). Plant cell wall proteomics as a strategy to reveal candidate proteins involved in extracellular lipid metabolism. Current Protein and Peptide Science.

    Google Scholar 

  • Jagtap, U. B., Gurav, R. G., & Bapat, V. A. (2011). Role of RNA interference in plant improvement. Die Naturwissenschaften, 98, 473–492.

    Article  CAS  PubMed  Google Scholar 

  • Jain, A., & Chugh, A. (2016). Mitochondrial transit peptide exhibits cell penetration ability and efficiently delivers macromolecules to mitochondria. FEBS Letters, 590, 2896–2905.

    Article  CAS  PubMed  Google Scholar 

  • Jain, A., Yadav, B. K., & Chugh, A. (2015). Marine antimicrobial peptide tachyplesin as an efficient nanocarrier for macromolecule delivery in plant and mammalian cells. The FEBS Journal, 282, 732–745.

    Article  CAS  PubMed  Google Scholar 

  • Jain, M., Chauhan, S. C., Singh, A. P., Venkatraman, G., Colcher, D., & Batra, S. K. (2005). Penetratin improves tumor retention of single-chain antibodies: A novel step toward optimization of radioimmunotherapy of solid tumors. Cancer Research, 65, 7840–7846.

    Article  CAS  PubMed  Google Scholar 

  • Jarvinen, T. A., May, U., & Prince, S. (2015). Systemically administered, target organ-specific therapies for regenerative medicine. International Journal of Molecular Sciences, 16, 23556–23571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvinen, T. A. H., & Ruoslahti, E. (2018). Generation of multi-functional target organ specific anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. British Journal of Pharmacology.

    Google Scholar 

  • Jean, S. R., Ahmed, M., Lei, E. K., Wisnovsky, S. P., & Kelley, S. O. (2016). Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Accounts of Chemical Research, 49, 1893–1902.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, E. J., Choi, M., Lee, J., Rhim, T., & Lee, K. Y. (2015). The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment. Nanoscale, 7, 20095–20104.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, J. H., Kim, K., Lim, D., Jeong, K., Hong, Y., Nguyen, V. H., et al. (2014). Anti-tumoral effect of the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLoS One, 9, e80050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeyarajan, S., Xavier, J., Rao, N. M., & Gopal, V. (2010). Plasmid DNA delivery into MDA-MB-453 cells mediated by recombinant Her-NLS fusion protein. International Journal of Nanomedicine, 5, 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, T., Ding, Y., Zhao, Y., Wang, J., Qin, H., Liu, X., et al. (2015). Peptide assembly integration of fibroblast-targeting and cell-penetration features for enhanced antitumor drug delivery. Advanced Materials, 27, 1865–1873.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, T., Olson, E. S., Nguyen, Q. T., Roy, M., Jennings, P. A., & Tsien, R. Y. (2004). Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences USA, 101, 17867–17872.

    Article  CAS  Google Scholar 

  • Jiang, T., Wang, T., Li, T., Ma, Y., Shen, S., He, B., et al. (2018). Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano.

    Google Scholar 

  • Jiang, T., Zhang, Z., Zhang, Y., Lv, H., Zhou, J., Li, C., et al. (2012). Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials, 33, 9246–9258.

    Article  CAS  PubMed  Google Scholar 

  • Jin, E., Zhang, B., Sun, X., Zhou, Z., Ma, X., Sun, Q., et al. (2013). Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. Journal of the American Chemical Society, 135, 933–940.

    Article  CAS  PubMed  Google Scholar 

  • Jo, E., Heo, J. S., Lim, J. Y., Lee, B. R., Yoon, C. J., Kim, J., et al. (2018). Peptide ligand-mediated endocytosis of nanoparticles to cancer cells: Cell receptor-binding- versus cell membrane-penetrating peptides. Biotechnology and Bioengineering.

    Google Scholar 

  • Johnson, L. N., Cashman, S. M., Read, S. P., & Kumar-Singh, R. (2010). Cell penetrating peptide POD mediates delivery of recombinant proteins to retina, cornea and skin. Vision Research, 50, 686–697.

    Article  CAS  PubMed  Google Scholar 

  • Juks, C., Padari, K., Margus, H., Kriiska, A., Etverk, I., Arukuusk, P., et al. (2015). The role of endocytosis in the uptake and intracellular trafficking of PepFect14-nucleic acid nanocomplexes via class A scavenger receptors. Biochimica et Biophysica Acta (BBA)-Biomembranes, 12, 25.

    Google Scholar 

  • Jun, H. R., Pham, C. D., Lim, S. I., Lee, S. C., Kim, Y. S., Park, S., et al. (2010). An RNA-hydrolyzing recombinant antibody exhibits an antiviral activity against classical swine fever virus. Biochemical and Biophysical Research Communications, 395, 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Kagawa, Y., Inoki, Y., & Endo, H. (2001). Gene therapy by mitochondrial transfer. Advanced Drug Delivery Reviews, 49, 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Kalafut, D., Anderson, T. N., & Chmielewski, J. (2012). Mitochondrial targeting of a cationic amphiphilic polyproline helix. Bioorganic and Medicinal Chemistry Letters, 22, 561–563.

    Article  CAS  PubMed  Google Scholar 

  • Kamei, N., Khafagy, E. S., Hirose, J. & Takeda-Morishita, M. (2017a). Potential of single cationic amino acid molecule “Arginine” for stimulating oral absorption of insulin. International Journal of Pharmaceutics, 18, 30075-3.

    Google Scholar 

  • Kamei, N., Nielsen, E. J., Khafagy el, S., & Takeda-Morishita, M. (2013). Noninvasive insulin delivery: The great potential of cell-penetrating peptides. Therapeutic Delivery, 4, 315–326.

    Google Scholar 

  • Kamei, N., & Takeda-Morishita, M. (2015). Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. Journal of Controlled Release, 197, 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Kamei, N., Tanaka, M., Choi, H., Okada, N., Ikeda, T., Itokazu, R., et al. (2017b). Effect of an enhanced nose-to-brain delivery of insulin on mild and progressive memory loss in the senescence-accelerated mouse. Molecular Pharmaceutics, 14, 916–927.

    Article  CAS  PubMed  Google Scholar 

  • Kamei, N., Yamaoka, A., Fukuyama, Y., Itokazu, R., & Takeda-Morishita, M. (2018). Noncovalent strategy with cell-penetrating peptides to facilitate the brain delivery of insulin through the blood-brain barrier. Biological and Pharmaceutical Bulletin, 41, 546–554.

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa, T. (2015). Brain delivery of small interfering ribonucleic acid and drugs through intranasal administration with nano-sized polymer micelles. Medical devices (Auckland, NZ), 8, 57–64.

    CAS  Google Scholar 

  • Kanazawa, T., Akiyama, F., Kakizaki, S., Takashima, Y., & Seta, Y. (2013). Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials, 34, 9220–9226.

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa, T., Morisaki, K., Suzuki, S., & Takashima, Y. (2014). Prolongation of life in rats with malignant glioma by intranasal siRNA/drug codelivery to the brain with cell-penetrating peptide-modified micelles. Molecular Pharmaceutics, 11, 1471–1478.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Y. C., Son, M., Kang, S., Im, S., Piao, Y., Lim, K. S., et al. (2018). Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson’s disease models. Experimental & Molecular Medicine, 50, 105.

    Article  CAS  Google Scholar 

  • Kastin, A. J., & Pan, W. (2016). Involvement of the blood-brain barrier in metabolic regulation. CNS & Neurological Disorders-Drug Targets, 15, 1118–1128.

    Article  CAS  Google Scholar 

  • Kawabata, A., Baoum, A., Ohta, N., Jacquez, S., Seo, G. M., Berkland, C., et al. (2012). Intratracheal administration of a nanoparticle-based therapy with the angiotensin II type 2 receptor gene attenuates lung cancer growth. Cancer Research, 72, 2057–2067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke, A. Q., Liu, A. D., Gao, Y. N., Luo, D. N., Li, Z. F., Yu, Y. Q., et al. (2018). Development of novel affinity reagents for detecting protein tyrosine phosphorylation based on superbinder SH2 domain in tumor cells. Analytica Chimica Acta, 1032, 138–146.

    Article  CAS  PubMed  Google Scholar 

  • Ke, W., Shao, K., Huang, R., Han, L., Liu, Y., Li, J., et al. (2009). Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials, 30, 6976–6985.

    Article  CAS  PubMed  Google Scholar 

  • Khafagy el, S., Iwamae, R., Kamei, N., & Takeda-Morishita, M. (2015). Region-dependent role of cell-penetrating peptides in insulin absorption across the rat small intestinal membrane. The AAPS journal, 17, 1427–1437.

    Google Scholar 

  • Khafagy el, S., Morishita, M., Isowa, K., Imai, J., & Takayama, K. (2009). Effect of cell-penetrating peptides on the nasal absorption of insulin. Journal of Controlled Release, 133, 103–108.

    Google Scholar 

  • Khalil, I. A., Hayashi, Y., Mizuno, R., & Harashima, H. (2011). Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. Journal of Controlled Release, 156, 374–380.

    Article  CAS  PubMed  Google Scholar 

  • Khalily, M. P., Gerekci, S., Gulec, E. A., Ozen, C., & Ozcubukcu, S. (2018). Structure-based design, synthesis and anticancer effect of cyclic Smac-polyarginine peptides. Amino Acids.

    Google Scholar 

  • Khan, A. R., Liu, M., Khan, M. W., & Zhai, G. (2017). Progress in brain targeting drug delivery system by nasal route. Journal of Controlled Release, 5, 30825–30828.

    Google Scholar 

  • Kim, B. K., Kang, H., Doh, K. O., Lee, S. H., Park, J. W., Lee, S. J., et al. (2012). Homodimeric SV40 NLS peptide formed by disulfide bond as enhancer for gene delivery. Bioorganic & Medicinal Chemistry Letters, 22, 5415–5418.

    Article  CAS  Google Scholar 

  • Kim, G. C., Ahn, J. H., Oh, J. H., Nam, S., Hyun, S., Yu, J., et al. (2018a). Photoswitching of cell penetration of amphipathic peptides by control of alpha-helical conformation. Biomacromolecules.

    Google Scholar 

  • Kim, J. S., Park, J. Y., Shin, S. M., Park, S. W., Jun, S. Y., Hong, J. S., et al. (2018b). Engineering of a tumor cell-specific, cytosol-penetrating antibody with high endosomal escape efficacy. Biochemical and Biophysical Research Communications, 503, 2510–2516.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Lillo, A. M., Steiniger, S. C., Liu, Y., Ballatore, C., Anichini, A., et al. (2006). Targeting heat shock proteins on cancer cells: Selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry, 45, 9434–9444.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. H., Han, M. E., & Oh, S. O. (2017). The molecular mechanism for nuclear transport and its application. Anatomy & Cell Biology, 50, 77–85.

    Article  Google Scholar 

  • Kimura, S., Kawano, T., & Iwasaki, T. (2017). Short polyhistidine peptides penetrate effectively into Nicotiana tabacum-cultured cells and Saccharomyces cerevisiae cells. Bioscience, Biotechnology, and Biochemistry, 81, 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, N., Niwa, M., Hao, Y., & Yoshida, T. (2010). Nucleolar localization signals of LIM kinase 2 function as a cell-penetrating peptide. Protein and Peptide Letters, 17, 1480–1488.

    Article  CAS  PubMed  Google Scholar 

  • Kreuter, J., Hekmatara, T., Dreis, S., Vogel, T., Gelperina, S., & Langer, K. (2007). Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. Journal of Controlled Release, 118, 54–58.

    Article  CAS  PubMed  Google Scholar 

  • Kristensen, M., Birch, D., & Mörck Nielsen, H. (2016). Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. International Journal of Molecular Sciences, 17, pii: E185.

    Google Scholar 

  • Kumagai, A. K., Eisenberg, J. B., & Pardridge, W. M. (1987). Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. Journal of Biological Chemistry, 262, 15214–15219.

    CAS  PubMed  Google Scholar 

  • Kumar, P., Ban, H. S., Kim, S. S., Wu, H., Pearson, T., Greiner, D. L., et al. (2008). T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell, 134, 577–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, P., Wu, H., McBride, J. L., Jung, K. E., Kim, M. H., Davidson, B. L., et al. (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nature, 448, 39–43.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Narishetty, S. T., & Tummala, H. (2015a). Peptides as skin penetration enhancers for low molecular weight drugs and macromolecules. In N. Dragicevic & H. I. Maibach (Eds.) Percutaneous penetration enhancers chemical methods in penetration enhancement: Modification of the Stratum Corneum. Heidelberg: Springer.

    Google Scholar 

  • Kumar, S., Sahdev, P., Perumal, O., & Tummala, H. (2012). Identification of a novel skin penetration enhancement peptide by phage display peptide library screening. Molecular Pharmaceutics, 9, 1320–1330.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Zakrewsky, M., Chen, M., Menegatti, S., Muraski, J. A., & Mitragotri, S. (2015b). Peptides as skin penetration enhancers: Mechanisms of action. Journal of Controlled Release, 199, 168–178.

    Article  CAS  PubMed  Google Scholar 

  • Kumaraswamy, A., Mamidi, A., Desai, P., Sivagnanam, A., Revathi Perumalsamy, L., Ramakrishnan, C., Gromiha, M., et al. (2018). The non-enzymatic RAS effector RASSF7 inhibits oncogenic c-Myc function. Journal of Biological Chemistry.

    Google Scholar 

  • Kurzrock, R., Gabrail, N., Chandhasin, C., Moulder, S., Smith, C., Brenner, A., et al. (2012). Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Molecular Cancer Therapeutics, 11, 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto, K., Akita, H., Ishitsuka, T., Matsumoto, Y., Nomoto, T., Furukawa, R., et al. (2013). Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium. ACS Nano, 7, 7534–7541.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, K. C., & Daniell, H. (2016). Oral delivery of protein drugs bioencapsulated in plant cells. Molecular Therapy, 24, 1342–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laakkonen, P., Porkka, K., Hoffman, J. A., & Ruoslahti, E. (2002). A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nature Medicine, 8, 751–755.

    Article  CAS  PubMed  Google Scholar 

  • Lakkadwala, S., & Singh, J. (2018). Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. Journal of Pharmaceutical Sciences.

    Google Scholar 

  • Lakshmanan, M., Kodama, Y., Yoshizumi, T., Sudesh, K., & Numata, K. (2013). Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules, 14, 10–16.

    Article  CAS  PubMed  Google Scholar 

  • Lam, J. K., Liang, W., & Chan, H. K. (2012). Pulmonary delivery of therapeutic siRNA. Advanced Drug Delivery Reviews, 64, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Larue, B., Hogg, E., Sagare, A., Jovanovic, S., Maness, L., Maurer, C., et al. (2004). Method for measurement of the blood-brain barrier permeability in the perfused mouse brain: Application to amyloid-beta peptide in wild type and Alzheimer’s Tg2576 mice. Journal of Neuroscience Methods, 138, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Lee, E. S., Gao, Z., Kim, D., Park, K., Kwon, I. C., & Bae, Y. H. (2008a). Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. Journal of Controlled Release, 129, 228–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H. S., Park, C. B., Kim, J. M., Jang, S. A., Park, I. Y., Kim, M. S., et al. (2008b). Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Letters, 271, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. R., Jang, J. Y., Kim, J. S., Kwon, M. H., & Kim, Y. S. (2010). Gene silencing by cell-penetrating, sequence-selective and nucleic-acid hydrolyzing antibodies. Nucleic Acids Research, 38, 1596–1609.

    Article  CAS  PubMed  Google Scholar 

  • Lei, E. K., & Kelley, S. O. (2017). Delivery and release of small-molecule probes in mitochondria using traceless linkers. Journal of the American Chemical Society, 139, 9455–9458.

    Article  CAS  PubMed  Google Scholar 

  • Letoha, T., Kusz, E., Papai, G., Szabolcs, A., Kaszaki, J., Varga, I., et al. (2006). In vitro and in vivo nuclear factor-kappaB inhibitory effects of the cell-penetrating penetratin peptide. Molecular Pharmacology, 69, 2027–2036.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., He, J., Yi, H., Xiang, G., Chen, K., et al. (2015). siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells. Bioscience Reports, 35.

    Article  CAS  Google Scholar 

  • Li, L., Geisler, I., Chmielewski, J., & Cheng, J. X. (2010). Cationic amphiphilic polyproline helix P11LRR targets intracellular mitochondria. Journal of Controlled Release, 142, 259–266.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Bourgeois, J. P., Celli, S., Glacial, F., le Sourd, A. M., Mecheri, S., et al. (2012). Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: Application to brain imaging. The FASEB Journal, 26, 3969–3979.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Tsibouklis, J., Weng, T., Zhang, B., Yin, G., Feng, G., et al. (2017). Nano carriers for drug transport across the blood-brain barrier. Journal of Drug Targeting, 25, 17–28.

    Article  PubMed  CAS  Google Scholar 

  • Lightowlers, R. N., Taylor, R. W., & Turnbull, D. M. (2015). Mutations causing mitochondrial disease: What is new and what challenges remain? Science, 349, 1494–1499.

    Article  CAS  PubMed  Google Scholar 

  • Lim, K. J., Sung, B. H., Shin, J. R., Lee, Y. W., Kim DA, J., Yang, K. S., et al. (2013). A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One, 8, e66084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C. M., Huang, K., Zeng, Y., Chen, X. C., Wang, S., & Li, Y. (2012). A simple, noninvasive and efficient method for transdermal delivery of siRNA. Archives of Dermatological Research, 304, 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Lin, R., Zhang, P., Cheetham, A. G., Walston, J., Abadir, P., & Cui, H. (2015). Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjugate Chemistry, 26, 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. Y., Chen, N. T., Sum, S. P., Lo, L. W., & Yang, C. S. (2008). Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. Chemical Communications, 21, 4762–4764.

    Article  CAS  Google Scholar 

  • Lin, T., Liu, E., He, H., Shin, M. C., Moon, C., Yang, V. C., et al. (2016a). Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharmaceutica Sinica B, 6, 352–358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, T., Zhao, P., Jiang, Y., Tang, Y., Jin, H., Pan, Z., et al. (2016b). Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano, 10, 9999–10012.

    Article  CAS  PubMed  Google Scholar 

  • Lindgren, M. E., Hällbrink, M. M., Elmquist, A. M., & Langel, Ü. (2004). Passage of cell-penetrating peptides across a human epithelial cell layer in vitro. Biochemical Journal, 377, 69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippmann, E. S., Azarin, S. M., Kay, J. E., Nessler, R. A., Wilson, H. K., Al-Ahmad, A., et al. (2012). Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nature Biotechnology, 30, 783–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B. R., Chou, J. C., & Lee, H. J. (2008). Cell membrane diversity in noncovalent protein transduction. Journal of Membrane Biology, 222, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B. R., Huang, Y. W., Aronstam, R. S., & Lee, H. J. (2016). Identification of a short cell-penetrating peptide from bovine lactoferricin for intracellular delivery of DNA in human A549 cells. PLoS One, 11.

    Google Scholar 

  • Liu, C., Liu, X. N., Wang, G. L., Hei, Y., Meng, S., Yang, L. F., et al. (2017a). A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood-brain barrier, and the transporting mechanism to glioma cells. International Journal of Nanomedicine, 12, 2407–2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Yao, S., Li, X., Wang, F., & Jiang, Y. (2017b). iRGD-mediated core-shell nanoparticles loading carmustine and O6-benzylguanine for glioma therapy. Journal of Drug Targeting, 25, 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Zienkiewicz, J., Digiandomenico, A., & Hawiger, J. (2009a). Suppression of acute lung inflammation by intracellular peptide delivery of a nuclear import inhibitor. Molecular Therapy, 17, 796–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Zhang, B., Luo, Z., Ding, X., Li, J., Dai, L., et al. (2015). Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale, 7, 3614–3626.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M.-J., Chou, J.-C., & Lee, H.-J. (2013). A gene delivery method mediated by three arginine-rich cell-penetrating peptides in plant cells. Advanced Studies in Biology, 5, 71–88.

    Article  Google Scholar 

  • Liu, X., Jiang, J., Nel, A. E., & Meng, H. (2017c). Major effect of transcytosis on nano drug delivery to pancreatic cancer. Molecular & Cellular Oncology, 4.

    Google Scholar 

  • Liu, X., Wang, Y., & Hnatowich, D. J. (2011). A nanoparticle for tumor targeted delivery of oligomers. Methods Mol Biol, 764, 91–105.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Wang, Y., Nakamura, K., Kawauchi, S., Akalin, A., Cheng, D., et al. (2009b). Auger radiation-induced, antisense-mediated cytotoxicity of tumor cells using a 3-component streptavidin-delivery nanoparticle with 111In. Journal of Nuclear Medicine, 50, 582–590.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., He, X., Kuang, Y., An, S., Wang, C., Guo, Y., et al. (2014). A bacteria deriving peptide modified dendrigraft poly-l-lysines (DGL) self-assembling nanoplatform for targeted gene delivery. Molecular Pharmaceutics, 11, 3330–3341.

    Article  CAS  PubMed  Google Scholar 

  • Lodish, H., Berk, A., Kaiser, C., Krieger, M., Scott, M., Bretscher, A., et al. (2007). Molecular cell biology (6th ed.) New York: W. H. Freeman and Company.

    Google Scholar 

  • Lodish, H., Berk, A., & Zipursky, S. (2000). Overview of the secretory pathway. In Molecular cell biology (4th ed.) New York: W. H. Freeman; 2000 section 17.3. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21471/.

  • Lohcharoenkal, W., Manosaroi, A., Gotz, F., Werner, R. G., Manosroi, W., & Manosaroi, J. (2011). Potent enhancement of GFP uptake into HT-29 cells and rat skin permeation by coincubation with tat peptide. Journal of Pharmaceutical Sciences, 100, 4766–4773.

    Article  CAS  PubMed  Google Scholar 

  • Long, C., Amoasii, L., Mireault, A. A., McAnally, J. R., Li, H., Sanchez-Ortiz, E., et al. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 351, 400–403.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S. W., Hu, J. W., Liu, B. R., Lee, C. Y., Li, J. F., Chou, J. C., et al. (2010). Arginine-rich intracellular delivery peptides synchronously deliver covalently and noncovalently linked proteins into plant cells. Journal of Agricultural and Food Chemistry, 58, 2288–2294.

    Article  CAS  PubMed  Google Scholar 

  • Ludtke, J. J., Zhang, G., Sebestyen, M. G., & Wolff, J. A. (1999). A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. Journal of Cell Science, 112, 2033–2041.

    CAS  PubMed  Google Scholar 

  • Lukacs, G. L., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., & Verkman, A. S. (2000). Size-dependent DNA mobility in cytoplasm and nucleus. Journal of Biological Chemistry, 275, 1625–1629.

    Article  CAS  PubMed  Google Scholar 

  • Luque-Ortega, J. R., Van’t Hof, W., Veerman, E. C., Saugar, J. M., & Rivas, L. (2008). Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. The FASEB Journal, 22, 1817–1828.

    Google Scholar 

  • Lönn, P., Kacsinta, A. D., Cui, X. S., Hamil, A. S., Kaulich, M., Gogoi, K., et al. (2016). Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Scientific Reports, 6.

    Google Scholar 

  • Ma, X. C., Liu, P., Zhang, X. L., Jiang, W. H., Jia, M., Wang, C. X., et al. (2016). Intranasal delivery of recombinant AAV containing BDNF fused with HA2TAT: A potential promising therapy strategy for major depressive disorder. Scientific Reports, 6.

    Google Scholar 

  • Macdougall, G., Anderton, R. S., Edwards, A. B., Knuckey, N. W., & Meloni, B. P. (2017). The neuroprotective peptide poly-arginine-12 (R12) reduces cell surface levels of NMDA NR2B receptor subunit in cortical neurons; Investigation into the involvement of endocytic mechanisms. Journal of Molecular Neuroscience, 61, 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, A., & Bernkop-Schnurch, A. (2018). SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Advanced Drug Delivery Reviews.

    Google Scholar 

  • Mahmood, A., Prufert, F., Efiana, N. A., Ashraf, M. I., Hermann, M., Hussain, S., et al. (2016). Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert Opinion on Drug Delivery, 13, 1503–1512.

    Article  CAS  PubMed  Google Scholar 

  • Mallick, S., Thuy, L. T., Lee, S., Park, J. I., & Choi, J. S. (2018). Liposomes containing cholesterol and mitochondria-penetrating peptide (MPP) for targeted delivery of antimycin A to A549 cells. Colloids Surf B Biointerfaces, 161, 356–364.

    Article  CAS  PubMed  Google Scholar 

  • Manosroi, A., Tangjai, T., Sutthiwanjampa, C., Manosroi, W., Werner, R. G., Gotz, F., et al. (2016). Hypoglycemic activity and stability enhancement of human insulin-tat mixture loaded in elastic anionic niosomes. Drug Delivery, 23, 3157–3167.

    Article  CAS  PubMed  Google Scholar 

  • Manosroi, J., Lohcharoenkal, W., Gotz, F., Werner, R. G., Manosroi, W., & Manosroi, A. (2014). Novel application of polioviral capsid: development of a potent and prolonged oral calcitonin using polioviral binding ligand and Tat peptide. Drug Development and Industrial Pharmacy, 40, 1092–1100.

    Article  CAS  PubMed  Google Scholar 

  • Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., et al. (2005). Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. Journal of Biological Chemistry, 280, 26360–26370.

    Article  CAS  PubMed  Google Scholar 

  • Martin, R. M., Herce, H. D., Ludwig, A. K., & Cardoso, M. C. (2016). Visualization of the nucleolus in living cells with cell-penetrating fluorescent peptides. Methods Mol Biol, 3792-9_6.

    Google Scholar 

  • Martin, R. M., Tunnemann, G., Leonhardt, H., & Cardoso, M. C. (2007). Nucleolar marker for living cells. Histochemistry and Cell Biology, 127, 243–251.

    Article  CAS  PubMed  Google Scholar 

  • McCaffrey, J., McCrudden, C. M., Ali, A. A., Massey, A. S., McBride, J. W., McCrudden, M. T., et al. (2016). Transcending epithelial and intracellular biological barriers; a prototype DNA delivery device. Journal of Controlled Release, 226, 238–247.

    Article  CAS  PubMed  Google Scholar 

  • McCusker, C. T., Wang, Y., Shan, J., Kinyanjui, M. W., Villeneuve, A., Michael, H., et al. (2007). Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. The Journal of Immunology, 179, 2556–2564.

    Article  CAS  PubMed  Google Scholar 

  • McGowan, J. W., Shao, Q., Vig, P. J., & Bidwell, G. L., III (2016a). Intranasal administration of elastin-like polypeptide for therapeutic delivery to the central nervous system. Drug Design, Development and Therapy, 10, 2803–2813.

    Google Scholar 

  • McGowan, J. W., Shao, Q., Vig, P. J., & Bidwell, G. L., III (2016b). Intranasal administration of elastin-like polypeptide for therapeutic delivery to the central nervous system. Drug Design, Development and Therapy, 10, 2803–2813.

    Google Scholar 

  • Mecham, R. P. (1991). Receptors for laminin on mammalian cells. The FASEB Journal, 5, 2538–2546.

    Article  CAS  PubMed  Google Scholar 

  • Mei, L., Zhang, Q., Yang, Y., He, Q., & Gao, H. (2014). Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. International Journal of Pharmaceutics, 474, 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Meikle, P. J., Hopwood, J. J., Clague, A. E., & Carey, W. F. (1999). Prevalence of lysosomal storage disorders. JAMA, 281, 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Melnick, A. (2007). Targeting aggressive B-cell lymphomas with cell-penetrating peptides. Biochemical Society Transactions, 35, 802–806.

    Article  CAS  PubMed  Google Scholar 

  • Menegatti, S., Zakrewsky, M., Kumar, S., de Oliveira, J. S., Muraski, J. A., & Mitragotri, S. (2016). De Novo design of skin-penetrating peptides for enhanced transdermal delivery of peptide drugs. Advanced Healthcare Materials, 5, 602–609.

    Article  CAS  PubMed  Google Scholar 

  • Metildi, C. A., Felsen, C. N., Savariar, E. N., Nguyen, Q. T., Kaushal, S., Hoffman, R. M., et al. (2015). Ratiometric activatable cell-penetrating peptides label pancreatic cancer, enabling fluorescence-guided surgery, which reduces metastases and recurrence in orthotopic mouse models. Annals of Surgical Oncology, 22, 2082–2087.

    Article  PubMed  Google Scholar 

  • Miyata, K., Ukawa, M., Mohri, K., Fujii, K., Yamada, M., Tanishita, S., et al. (2018). Biocompatible polymers modified with d-octaarginine as an absorption enhancer for nasal peptide delivery. Bioconjugate Chemistry.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, T., Miyashita, M., & Miyagawa, H. (2009). Cellular internalization of arginine-rich peptides into tobacco suspension cells: A structure-activity relationship study. Journal of Peptide Science, 15, 259–263.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed, Y., Teixido, M., Namjoshi, S., Giralt, E., & Benson, H. (2016). Cyclic dipeptide shuttles as a novel skin penetration enhancement approach: Preliminary evaluation with diclofenac. PLoS One, 11.

    Google Scholar 

  • Mohri, K., Miyata, K., Egawa, T., Tanishita, S., Endo, R., Yagi, H., et al. (2018). Effects of the chemical structures of oligoarginines conjugated to biocompatible polymers as a mucosal adjuvant on antibody induction in nasal cavities. Chemical and Pharmaceutical Bulletin (Tokyo), 66, 375–381.

    Article  CAS  Google Scholar 

  • Mok, H., Bae, K. H., Ahn, C. H., & Park, T. G. (2009). PEGylated and MMP-2 specifically dePEGylated quantum dots: Comparative evaluation of cellular uptake. Langmuir, 25, 1645–1650.

    Article  CAS  PubMed  Google Scholar 

  • Moktan, S., Perkins, E., Kratz, F., & Raucher, D. (2012). Thermal targeting of an acid-sensitive doxorubicin conjugate of elastin-like polypeptide enhances the therapeutic efficacy compared with the parent compound in vivo. Molecular Cancer Therapeutics, 11, 1547–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moktan, S., & Raucher, D. (2012). Anticancer activity of proapoptotic peptides is highly improved by thermal targeting using elastin-like polypeptides. International Journal of Peptide Research and Therapeutics, 18, 227–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montrose, K., Yang, Y., & Krissansen, G. W. (2014). The tetrapeptide core of the carrier peptide Xentry is cell-penetrating: Novel activatable forms of Xentry. Scientific Reports, 4, 4900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montrose, K., Yang, Y., Sun, X., Wiles, S., & Krissansen, G. W. (2013). Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Scientific Reports, 3, 1661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales, J. O., Fathe, K. R., Brunaugh, A., Ferrati, S., Li, S., Montenegro-Nicolini, M., et al. (2017). Challenges and future prospects for the delivery of biologics: Oral mucosal, pulmonary, and transdermal routes. The AAPS Journal, 19, 652–668.

    Article  CAS  PubMed  Google Scholar 

  • Morishita, M., Kamei, N., Ehara, J., Isowa, K., & Takayama, K. (2007). A novel approach using functional peptides for efficient intestinal absorption of insulin. Journal of Controlled Release, 118, 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Research, 25, 2730–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moschos, S. A., Jones, S. W., Perry, M. M., Williams, A. E., Erjefalt, J. S., Turner, J. J., et al. (2007a). Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjugate Chemistry, 18, 1450–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moschos, S. A., Williams, A. E., & Lindsay, M. A. (2007b). Cell-penetrating-peptide-mediated siRNA lung delivery. Biochem Soc Trans, 35, 807–810.

    Article  CAS  PubMed  Google Scholar 

  • Mourtada, R., Fonseca, S. B., Wisnovsky, S. P., Pereira, M. P., Wang, X., Hurren, R., et al. (2013). Re-directing an alkylating agent to mitochondria alters drug target and cell death mechanism. PLoS One, 8.

    Google Scholar 

  • Muller, R., Misund, K., Holien, T., Bachke, S., Gilljam, K. M., Vatsveen, T. K., et al. (2013). Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells. PLoS One, 8, e70430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, S., Zhao, Y., Brown, T. L., Morgan, A. C., & Kohler, H. (2005). TransMabs: Cell-penetrating antibodies, the next generation. Expert Opinion on Biological Therapy, 5, 237–241.

    Article  CAS  PubMed  Google Scholar 

  • Muto, K., Kamei, N., Yoshida, M., Takayama, K., & Takeda-Morishita, M. (2016). Cell-penetrating peptide penetratin as a potential tool for developing effective nasal vaccination systems. Journal of Pharmaceutical Sciences, 105, 2014–2017.

    Article  CAS  PubMed  Google Scholar 

  • Myrberg, H., Lindgren, M., & Langel, Ü. (2007). Protein delivery by the cell-penetrating peptide YTA2. Bioconjugate Chemistry, 18, 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Myrberg, H., Zhang, L., Mäe, M., & Langel, Ü. (2008). Design of a tumor-homing cell-penetrating peptide. Bioconjugate Chemistry, 19, 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Mäe, M., Myrberg, H., Jiang, Y., Paves, H., Valkna, A., & Langel, Ü. (2005). Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochimica et Biophysica Acta, 1669, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Mäe, M., Rautsi, O., Enbäck, J., Hällbrink, M., Rosenthal-Aizman, K., Lindgren, M., et al. (2012). Tumour targeting with rationally modified cell-penetrating peptides. International Journal of Peptide Research and Therapeutics, 18, 361–371.

    Article  CAS  Google Scholar 

  • Nain, V., Sahi, S., & Verma, A. (2010). CPP-ZFN: a potential DNA-targeting anti-malarial drug. Malaria Journal, 9, 258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narla, A., Hurst, S. N., & Ebert, B. L. (2011). Ribosome defects in disorders of erythropoiesis. International Journal of Hematology, 93, 144–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nativo, P., Prior, I. A., & Brust, M. (2008). Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano, 2, 1639–1644.

    Article  CAS  PubMed  Google Scholar 

  • Nekhotiaeva, N., Elmquist, A., Rajarao, G. K., Hällbrink, M., Langel, Ü., & Good, L. (2004). Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. The FASEB Journal, 18, 394–396.

    Article  CAS  PubMed  Google Scholar 

  • Neo, S. H., Lew, Q. J., Koh, S. M., Zheng, L., Bi, X., & Chao, S. H. (2016). Use of a novel cytotoxic HEXIM1 peptide in the directed breast cancer therapy. Oncotarget, 7, 5483–5494.

    Article  PubMed  Google Scholar 

  • Neves-Coelho, S., Eleuterio, R. P., Enguita, F. J., Neves, V., & Castanho, M. (2017). A new noncanonical anionic peptide that translocates a cellular blood-brain barrier model. Molecules, 22.

    Google Scholar 

  • Nguyen, J., Xie, X., Neu, M., Dumitrascu, R., Reul, R., Sitterberg, J., et al. (2008). Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. The Journal of Gene Medicine, 10, 1236–1246.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, Q. T., Olson, E. S., Aguilera, T. A., Jiang, T., Scadeng, M., Ellies, L. G., et al. (2010). Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences USA, 107, 4317–4322.

    Article  CAS  Google Scholar 

  • Nguyen, Q. T., & Tsien, R. Y. (2013). Fluorescence-guided surgery with live molecular navigation—A new cutting edge. Nature Reviews Cancer, 13, 653–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niazi, A. K., Mileshina, D., Cosset, A., Val, R., Weber-Lotfi, F., & Dietrich, A. (2013). Targeting nucleic acids into mitochondria: Progress and prospects. Mitochondrion, 13, 548–558.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, E. J., Kamei, N., & Takeda-Morishita, M. (2015). Safety of the cell-penetrating peptide penetratin as an oral absorption enhancer. Biological and Pharmaceutical Bulletin, 38, 144–146.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, E. J., Yoshida, S., Kamei, N., Iwamae, R., Khafagy el, S., Olsen, J., et al. (2014). In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. Journal of Controlled Release, 189, 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Niu, J., Chu, Y., Huang, Y. F., Chong, Y. S., Jiang, Z. H., Mao, Z. W., et al. (2017). Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Applied Materials & Interfaces, 9, 9388–9401.

    Article  CAS  Google Scholar 

  • Niu, Z., Samaridou, E., Jaumain, E., Coene, J., Ullio, G., Shrestha, N., et al. (2018). PEG-PGA enveloped octaarginine-peptide nanocomplexes: An oral peptide delivery strategy. Journal of controlled release, 276, 125–139.

    Article  CAS  PubMed  Google Scholar 

  • Nori, A., & Kopecek, J. (2005). Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Advanced Drug Delivery Reviews, 57, 609–636.

    Article  CAS  PubMed  Google Scholar 

  • Numata, K., Horii, Y., Oikawa, K., Miyagi, Y., Demura, T., & Ohtani, M. (2018). Library screening of cell-penetrating peptide for BY-2 cells, leaves of Arabidopsis, tobacco, tomato, poplar, and rice callus. Scientific Reports, 8, 10966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Numata, K., Ohtani, M., Yoshizumi, T., Demura, T., & Kodama, Y. (2014). Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnology Journal, 12, 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  • Oller-Salvia, B., Sanchez-Navarro, M., Giralt, E., & Teixido, M. (2016). Blood-brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chemical Society Reviews, 45, 4690–4707.

    Article  CAS  PubMed  Google Scholar 

  • Oller-Salvia, B., Teixido, M., & Giralt, E. (2013). From venoms to BBB shuttles: Synthesis and blood-brain barrier transport assessment of apamin and a nontoxic analog. Biopolymers, 100, 675–686.

    Article  CAS  PubMed  Google Scholar 

  • Olson, E. S., Aguilera, T. A., Jiang, T., Ellies, L. G., Nguyen, Q. T., Wong, E. H., et al. (2009). In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integrative Biology (Camb), 1, 382–393.

    Article  CAS  PubMed Central  Google Scholar 

  • Olson, E. S., Jiang, T., Aguilera, T. A., Nguyen, Q. T., Ellies, L. G., Scadeng, M., et al. (2010). Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proceedings of the National Academy of Sciences USA, 107, 4311–4316.

    Article  CAS  Google Scholar 

  • Olson, E. S., Whitney, M. A., Friedman, B., Aguilera, T. A., Crisp, J. L., Baik, F. M., et al. (2012). In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity. Integrative Biology (Camb), 4, 595–605.

    Article  CAS  PubMed Central  Google Scholar 

  • Orange, J. S., & May, M. J. (2008). Cell penetrating peptide inhibitors of nuclear factor-kappa B. Cellular and Molecular Life Sciences, 65, 3564–3591.

    Article  CAS  PubMed  Google Scholar 

  • Orihuela, C. J., Mahdavi, J., Thornton, J., Mann, B., Wooldridge, K. G., Abouseada, N., et al. (2009). Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. The Journal of Clinical Investigation, 119, 1638–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osman, G., Rodriguez, J., Chan, S. Y., Chisholm, J., Duncan, G., Kim, N., et al. (2018). PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. Journal of Controlled Release, 285, 35–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palm, C., Netzereab, S., & Hallbrink, M. (2006). Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides, 27, 1710–1716.

    Article  CAS  PubMed  Google Scholar 

  • Pan, W., & Kastin, A. J. (2016). The blood-brain barrier: regulatory roles in wakefulness and sleep. Neuroscientist, 11, 1073858416639005.

    Google Scholar 

  • Pan, W., Kastin, A. J., Zankel, T. C., van Kerkhof, P., Terasaki, T., & Bu, G. (2004). Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. Journal of Cell Science, 117, 5071–5078.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Z. Z., Wang, H. Y., Zhang, M., Lin, T. T., Zhang, W. Y., Zhao, P. F., et al. (2016). Nuclear-targeting TAT-PEG-Asp8-doxorubicin polymeric nanoassembly to overcome drug-resistant colon cancer. Acta Pharmacologica Sinica, 37, 1110–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardridge, W. M. (1986). Receptor-mediated peptide transport through the blood-brain barrier. Endocrine Reviews, 7, 314–330.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge, W. M. (1994). New approaches to drug delivery through the blood-brain barrier. Trends in Biotechnology, 12, 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge, W. M. (2001). Crossing the blood-brain barrier: Are we getting it right? Drug Discovery Today, 6, 1–2.

    Article  PubMed  Google Scholar 

  • Pardridge, W. M. (2005). The blood-brain barrier: bottleneck in brain drug development. NeuroRx, 2, 3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardridge, W. M. (2006). Molecular Trojan horses for blood-brain barrier drug delivery. Discovery Medicine, 6, 139–143.

    PubMed  Google Scholar 

  • Pardridge, W. M. (2007). Blood-brain barrier delivery. Drug Discovery Today, 12, 54–61.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge, W. M. (2010). Biologic TNFalpha-inhibitors that cross the human blood-brain barrier. Bioengineered Bugs, 1, 231–234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardridge, W. M. (2012). Drug transport across the blood-brain barrier. Journal of Cerebral Blood Flow & Metabolism, 32, 1959–1972.

    Article  CAS  Google Scholar 

  • Pardridge, W. M., Kumagai, A. K., & Eisenberg, J. B. (1987). Chimeric peptides as a vehicle for peptide pharmaceutical delivery through the blood-brain barrier. Biochemical and Biophysical Research Communications, 146, 307–313.

    Article  CAS  PubMed  Google Scholar 

  • Parenteau, J., Klinck, R., Good, L., Langel, Ü., Wellinger, R. J., & Elela, S. A. (2005). Free uptake of cell-penetrating peptides by fission yeast. FEBS Letters, 579, 4873–4878.

    Article  CAS  PubMed  Google Scholar 

  • Park, D., Lee, J. Y., Cho, H. K., Hong, W. J., Kim, J., Seo, H., et al. (2018a). Cell-penetrating peptide-patchy deformable polymeric nanovehicles with enhanced cellular uptake and transdermal delivery. Biomacromolecules.

    Google Scholar 

  • Park, J., Han, J. H., Myung, S. H., Seo, Y. W., & Kim, T. H. (2018b). MTD-like motif of a BH3-only protein, BNIP1, induces necrosis accompanied by an intracellular calcium spike. Biochemical and Biophysical Research Communications, 495, 1661–1667.

    Article  CAS  PubMed  Google Scholar 

  • Patel, M. M., & Patel, B. M. (2017). Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 31, 109–133.

    Article  CAS  PubMed  Google Scholar 

  • Patel, R. R., Sundin, G. W., Yang, C. H., Wang, J., Huntley, R. B., Yuan, X., et al. (2017). Exploration of using antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a novel bactericide against fire blight pathogen Erwinia amylovora. Frontiers in Microbiology, 8, 687.

    PubMed  PubMed Central  Google Scholar 

  • Patra, S., Roy, E., Madhuri, R., & Sharma, P. K. (2016). The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomaterials Science, 4, 418–429.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J., Rao, Y., Yang, X., Jia, J., Wu, Y., Lu, J., et al. (2017). Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate. Neuroscience Letters, 650, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Pepper, J. T., Maheshwari, P., & Eudes, F. (2017a). Adsorption of cell-penetrating peptide Tat2 and polycation luviquat FC-370 to triticale microspore exine. Colloids and Surfaces B: Biointerfaces, 157, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Pepper, J. T., Maheshwari, P., Ziemienowicz, A., Hazendonk, P., Kovalchuk, I., & Eudes, F. (2017b). Tetrabutylphosphonium bromide reduces size and polydispersity index of Tat2:siRNA nano-complexes for triticale RNAi. Frontiers in Molecular Biosciences, 4, 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perera, Y., Costales, H. C., Diaz, Y., Reyes, O., Farina, H. G., Mendez, L., et al. (2012). Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization. Journal of Peptide Science, 18, 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Pero, S. C., Shukla, G. S., Cookson, M. M., Flemer, S., Jr., & Krag, D. N. (2007). Combination treatment with Grb7 peptide and Doxorubicin or Trastuzumab (Herceptin) results in cooperative cell growth inhibition in breast cancer cells. British Journal of Cancer, 96, 1520–1525.

    Google Scholar 

  • Petrescu, A. D., Vespa, A., Huang, H., McIntosh, A. L., Schroeder, F., & Kier, A. B. (2009). Fluorescent sterols monitor cell penetrating peptide Pep-1 mediated uptake and intracellular targeting of cargo protein in living cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788, 425–441.

    Article  CAS  Google Scholar 

  • Petrilli, R., Eloy, J. O., Praca, F. S., del Ciampo, J. O., Fantini, M. A., Fonseca, M. J., et al. (2016). Liquid crystalline nanodispersions functionalized with cell-penetrating peptides for topical delivery of short-interfering RNAs: A proposal for silencing a pro-inflammatory cytokine in cutaneous diseases. Journal of Biomedical Nanotechnology, 12, 1063–1075.

    Article  CAS  PubMed  Google Scholar 

  • Poduslo, J. F., & Curran, G. L. (1994). Glycation increases the permeability of proteins across the blood-nerve and blood-brain barriers. Molecular Brain Research, 23, 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Ponnappan, N., Budagavi, D. P., & Chugh, A. (2017). CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1859, 167–176.

    Article  CAS  Google Scholar 

  • Pooga, M., Hällbrink, M., Zorko, M., & Langel, Ü. (1998). Cell penetration by transportan. The FASEB Journal, 12, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Pouniotis, D., Tang, C. K., Apostolopoulos, V., & Pietersz, G. (2016). Vaccine delivery by penetratin: Mechanism of antigen presentation by dendritic cells. Immunologic Research, 64, 887–900.

    Article  CAS  PubMed  Google Scholar 

  • Puckett, C. A., & Barton, J. K. (2010). Targeting a ruthenium complex to the nucleus with short peptides. Bioorganic & Medicinal Chemistry, 18, 3564–3569.

    Article  CAS  Google Scholar 

  • Puria, R., Sahi, S., & Nain, V. (2012). HER2+ breast cancer therapy: By CPP-ZFN mediated targeting of mTOR? Technology in Cancer Research & Treatment, 11, 175–180.

    Article  CAS  Google Scholar 

  • Qi, X., Droste, T., & Kao, C. C. (2011). Cell-penetrating peptides derived from viral capsid proteins. Molecular Plant-Microbe Interactions, 24, 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Qian, Z. M., Li, H., Sun, H., & Ho, K. (2002). Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacological Reviews, 54, 561–587.

    Article  CAS  PubMed  Google Scholar 

  • Qifan, W., Fen, N., Ying, X., Xinwei, F., Jun, D., & Ge, Z. (2016). iRGD-targeted delivery of a pro-apoptotic peptide activated by cathepsin B inhibits tumor growth and metastasis in mice. Tumor Biology, 11, 11.

    Google Scholar 

  • Raagel, H., Lust, M., Uri, A., & Pooga, M. (2008). Adenosine-oligoarginine conjugate, a novel bisubstrate inhibitor, effectively dissociates the actin cytoskeleton. The FEBS Journal, 275, 3608–3624.

    Article  CAS  PubMed  Google Scholar 

  • Radis-Baptista, G., de la Torre, B. G., & Andreu, D. (2008). A novel cell-penetrating peptide sequence derived by structural minimization of a snake toxin exhibits preferential nucleolar localization. Journal of Medicinal Chemistry, 51, 7041–7044.

    Article  CAS  PubMed  Google Scholar 

  • Radis-Baptista, G., de la Torre, B. G., & Andreu, D. (2012). Insights into the uptake mechanism of NrTP, a cell-penetrating peptide preferentially targeting the nucleolus of tumour cells. Chemical Biology & Drug Design, 79, 907–915.

    Article  CAS  Google Scholar 

  • Radis-Baptista, G., & Kerkis, I. (2011). Crotamine, a small basic polypeptide myotoxin from rattlesnake venom with cell-penetrating properties. Current Pharmaceutical Design, 17, 4351–4361.

    Article  CAS  PubMed  Google Scholar 

  • Ran, R., Wang, H., Liu, Y., Hui, Y., Sun, Q., & Seth, A., et al. (2018). Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting. European Journal of Pharmaceutics and Biopharmaceutics.

    Google Scholar 

  • Ran, Y., Liang, Z., & Gao, C. (2017). Current and future editing reagent delivery systems for plant genome editing. Science China Life Sciences, 60, 490–505.

    Article  CAS  PubMed  Google Scholar 

  • Rao, K. S., Reddy, M. K., Horning, J. L., & Labhasetwar, V. (2008). TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials, 29, 4429–4438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassu, G., Soddu, E., Posadino, A. M., Pintus, G., Sarmento, B., Giunchedi, P., et al. (2017). Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids and Surfaces B: Biointerfaces, 152, 296–301.

    Article  CAS  PubMed  Google Scholar 

  • Regberg, J., Vasconcelos, L., Madani, F., Langel, Ü., & Hällbrink, M. (2016). pH-responsive PepFect cell-penetrating peptides. International Journal of Pharmaceutics, 501, 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J., Shen, S., Wang, D., Xi, Z., Guo, L., Pang, Z., et al. (2012a). The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials, 33, 3324–3333.

    Article  CAS  PubMed  Google Scholar 

  • Ren, Y., Cheung, H. W., Von Maltzhan, G., Agrawal, A., Cowley, G. S., Weir, B. A., et al. (2012b). Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Science Translational Medicine, 4, 147ra112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Resina, S., Abes, S., Turner, J. J., Prevot, P., Travo, A., Clair, P., et al. (2007). Lipoplex and peptide-based strategies for the delivery of steric-block oligonucleotides. International Journal of Pharmaceutics, 344, 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, M., & Davis, P. (2006). Mechanism of uptake of C105Y, a novel cell-penetrating peptide. Journal of Biological Chemistry, 281, 1233–1240.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, A., Muir, L., Mousdell, S., Sexton, D., Jones, S., Howl, J., et al. (2018). Modulation of mitochondrial activity in HaCaT keratinocytes by the cell penetrating peptide Z-Gly-RGD(DPhe)-mitoparan. BMC Research Notes, 11, 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rip, J., Schenk, G. J., & de Boer, A. G. (2009). Differential receptor-mediated drug targeting to the diseased brain. Expert Opinion on Drug Delivery, 6, 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Robbins, J., Dilworth, S. M., Laskey, R. A., & Dingwall, C. (1991). Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell, 64, 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, M., Andreu, D., & Santos, N. C. (2015). Uptake and cellular distribution of nucleolar targeting peptides (NrTPs) in different cell types. Biopolymers, 104, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Moreno, L., Song, Y., & Thomma, B. P. (2017). Transfer and engineering of immune receptors to improve recognition capacities in crops. Current Opinion in Plant Biology, 38, 42–49.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, F. A., Manoharan, M., Rabinovitch, P., Ward, D. C., & Glazer, P. M. (2004). Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Research, 32, 6595–6604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbluh, J., Singh, S. K., Gafni, Y., Graessmann, A., & Loyter, A. (2004). Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: A novel mechanism for the introduction of macromolecules into plant cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1664, 230–240.

    Article  CAS  Google Scholar 

  • Ross, M. F., Filipovska, A., Smith, R. A., Gait, M. J., & Murphy, M. P. (2004). Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: Evidence against direct passage through phospholipid bilayers. Biochemical Journal, 383, 457–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothbard, J. B., Garlington, S., Lin, Q., Kirschberg, T., Kreider, E., McGrane, P. L., et al. (2000). Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nature Medicine, 6, 1253–1257.

    Article  CAS  PubMed  Google Scholar 

  • Roy, R. N., Lomakin, I. B., Gagnon, M. G., & Steitz, T. A. (2015). The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nature Structural & Molecular Biology, 22, 466–469.

    Article  CAS  Google Scholar 

  • Ruan, S., Yuan, M., Zhang, L., Hu, G., Chen, J., Cun, X., et al. (2015). Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 37, 425–435.

    Article  CAS  PubMed  Google Scholar 

  • Ruge, C. A., Kirch, J., & Lehr, C. M. (2013). Pulmonary drug delivery: From generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. The Lancet Respiratory Medicine, 1, 402–413.

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti, E. (2017). Tumor penetrating peptides for improved drug delivery. Advanced Drug Delivery Reviews, 111, 3–12.

    Article  CAS  Google Scholar 

  • Räägel, H., Säälik, P., Langel, Ü., & Pooga, M. (2011). Mapping of protein transduction pathways with fluorescent microscopy. Methods Mol Biol, 683, 165–179.

    Article  PubMed  CAS  Google Scholar 

  • Sakhrani, N. M., & Padh, H. (2013). Organelle targeting: third level of drug targeting. Drug Design, Development and Therapy, 7, 585–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai, Y., Mizumura, W., Murata, M., Hada, T., Yamamoto, S., Ito, K., et al. (2017). Efficient siRNA delivery by lipid nanoparticles modified with a non-standard macrocyclic peptide for EpCAM-targeting. Molecular Pharmaceutics, 8.

    Google Scholar 

  • Sallevelt, S. C., De Die-Smulders, C. E., Hendrickx, A. T., Hellebrekers, D. M., de Coo, I. F., Alston, C. L., et al. (2017). De novo mtDNA point mutations are common and have a low recurrence risk. Journal of Medical Genetics, 54, 73–83.

    Article  PubMed  Google Scholar 

  • Samuel, J. P., Samboju, N. C., Yau, K. Y., Lin, G., Webb, S. R., & Burroughs, F. (2013). Quantum dot carrier peptide conjugates suitable for imaging and delivery applications in plants. Google Patents.

    Google Scholar 

  • Santra, S., Yang, H., Stanley, J. T., Holloway, P. H., Moudgil, B. M., Walter, G., et al. (2005). Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chemical Communications (Camb), 3144–3146.

    Google Scholar 

  • Sato, Y., Nakamura, T., Yamada, Y., Akita, H., & Harashima, H. (2014). Multifunctional enveloped nanodevices (MENDs). Advances in Genetics, 88, 139–204.

    Article  CAS  PubMed  Google Scholar 

  • Sawahel, W. A. (2001). Stable genetic transformation of cotton plants using polybrene-spermidine treatment. Plant Molecular Biology Reporter, 19, 377.

    Article  Google Scholar 

  • Savariar, E. N., Felsen, C. N., Nashi, N., Jiang, T., Ellies, L. G., Steinbach, P., et al. (2013). Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides. Cancer Research, 73, 855–864.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, R., Yamamoto, K., Klossek, A., Flesch, R., Honzke, S., Rancan, F., et al. (2017). Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles. Proceedings of the National Academy of Sciences USA, 114, 3631–3636.

    Article  CAS  Google Scholar 

  • Schwarze, S. R., Ho, A., Vocero-Akbani, A., & Dowdy, S. F. (1999). In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science, 285, 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  • Selmin, F., Magri, G., Gennari, C. G., Marchiano, S., Ferri, N., & Pellegrino, S. (2017). Development of poly(lactide-co-glycolide) nanoparticles functionalized with a mitochondria penetrating peptide. Journal of Peptide Science, 23, 182–188.

    Article  CAS  PubMed  Google Scholar 

  • Shabanpoor, F., Hammond, S. M., Abendroth, F., Hazell, G., Wood, M. J. A., & Gait, M. J. (2017). Identification of a peptide for systemic brain delivery of a morpholino oligonucleotide in mouse models of spinal muscular atrophy. Nucleic Acid Therapeutics, 27, 130–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamay, Y., Shpirt, L., Ashkenasy, G., & David, A. (2014). Complexation of cell-penetrating peptide-polymer conjugates with polyanions controls cells uptake of HPMA copolymers and anti-tumor activity. Pharmaceutical Research, 31, 768–779.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, G., Modgil, A., Zhong, T., Sun, C., & Singh, J. (2014). Influence of short-chain cell-penetrating peptides on transport of doxorubicin encapsulating receptor-targeted liposomes across brain endothelial barrier. Pharmaceutical Research, 31, 1194–1209.

    Article  CAS  PubMed  Google Scholar 

  • Shearer, A. M., Rana, R., Austin, K., Baleja, J. D., Nguyen, N., Bohm, A., et al. (2016). Targeting liver fibrosis with a cell-penetrating Protease-activated Receptor-2 (PAR2) pepducin. Journal of Biological Chemistry, 291, 23188–23198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy, N., Kessel, R., Bhagat, T. D., Bhattacharyya, S., Yu, Y., McMahon, C., et al. (2012). Alterations in the ribosomal machinery in cancer and hematologic disorders. Journal of Hematology & Oncology, 5, 1756–8722.

    Article  CAS  Google Scholar 

  • Shi, K., Long, Y., Xu, C., Wang, Y., Qiu, Y., Yu, Q., et al. (2015). Liposomes combined an integrin alphabeta-specific vector with pH-responsible cell-penetrating property for highly effective antiglioma therapy through the blood-brain barrier. ACS Applied Materials & Interfaces.

    Google Scholar 

  • Shi, N. Q., Gao, W., Xiang, B., & Qi, X. R. (2012). Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage. International Journal of Nanomedicine, 7, 1613–1621.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, N. Q., Qi, X. R., Xiang, B., & Zhang, Y. (2014). A survey on “Trojan Horse” peptides: Opportunities, issues and controlled entry to “Troy”. Journal of Controlled Release, 194, 53–70.

    Article  CAS  PubMed  Google Scholar 

  • Shim, Y.-S., Eudes, F., & Kovalchuk, I. (2013). dsDNA and protein co-delivery in triticale microspores. Vitro Cellular & Developmental Biology - Plant, 49, 156–165.

    Article  CAS  Google Scholar 

  • Shin, M. C., Zhang, J., Min, K. A., Lee, K., Moon, C., Balthasar, J. P., et al. (2014a). Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy. Journal of Controlled Release, 194, 197–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, T. H., Sung, E. S., Kim, Y. J., Kim, K. S., Kim, S. H., Kim, S. K., et al. (2014b). Enhancement of the tumor penetration of monoclonal antibody by fusion of a neuropilin-targeting peptide improves the antitumor efficacy. Molecular Cancer Therapeutics, 13, 651–661.

    Article  CAS  PubMed  Google Scholar 

  • Shteinfer-Kuzmine, A., Arif, T., Krelin, Y., Tripathi, S. S., Paul, A., & Shoshan-Barmatz, V. (2017). Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma. Oncotarget, 8, 31329–31346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibrian-Vazquez, M., Jensen, T. J., & Vicente, M. G. (2008). Synthesis, characterization, and metabolic stability of porphyrin-peptide conjugates bearing bifunctional signaling sequences. Journal of Medicinal Chemistry, 51, 2915–2923.

    Article  CAS  PubMed  Google Scholar 

  • Simon, M. J., Kang, W. H., Gao, S., Banta, S., & Morrison, B., III. (2011). TAT is not capable of transcellular delivery across an intact endothelial monolayer in vitro. Annals of Biomedical Engineering, 39, 394–401.

    Google Scholar 

  • Skarlatos, S., Yoshikawa, T., & Pardridge, W. M. (1995). Transport of [125I]transferrin through the rat blood-brain barrier. Brain Research, 683, 164–171.

    Article  CAS  PubMed  Google Scholar 

  • Skrlj, N., & Dolinar, M. (2014). New engineered antibodies against prions. Bioengineered, 5, 10–14.

    Article  PubMed  Google Scholar 

  • Skrlj, N., Drevensek, G., Hudoklin, S., Romih, R., Curin Serbec, V., & Dolinar, M. (2013). Recombinant single-chain antibody with the Trojan peptide penetratin positioned in the linker region enables cargo transfer across the blood-brain barrier. Applied Biochemistry and Biotechnology, 169, 159–169.

    Google Scholar 

  • Smilansky, A., Dangoor, L., Nakdimon, I., Ben-Hail, D., Mizrachi, D., & Shoshan-Barmatz, V. (2015). The voltage-dependent anion channel 1 mediates amyloid beta toxicity and represents a potential target for alzheimer disease therapy. Journal of Biological Chemistry, 290, 30670–30683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder, E. L., Meade, B. R., Saenz, C. C., & Dowdy, S. F. (2004). Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biology, 2, 17.

    Article  CAS  Google Scholar 

  • Snyder, E. L., Saenz, C. C., Denicourt, C., Meade, B. R., Cui, X. S., Kaplan, I. M., et al. (2005). Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides. Cancer Research, 65, 10646–10650.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, M., & Muro, S. (2017). Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Advanced Drug Delivery Reviews, 11, 30060–30061.

    Google Scholar 

  • Song, H., Zhang, J., Wang, W., Huang, P., Zhang, Y., Liu, J., et al. (2015). Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery. Colloids and Surfaces B: Biointerfaces, 136, 365–374.

    Article  CAS  PubMed  Google Scholar 

  • Sosnowski, T. R. (2016). Selected engineering and physicochemical aspects of systemic drug delivery by inhalation. Current Pharmaceutical Design, 22, 2453–2462.

    Article  CAS  PubMed  Google Scholar 

  • Sousa, F., Castro, P., Fonte, P., Kennedy, P. J., Neves-Petersen, M. T., & Sarmento, B. (2016). Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy? Expert Opinion on Drug Delivery, 29, 1–14.

    Google Scholar 

  • Spencer, B., Williams, S., Rockenstein, E., Valera, E., Xin, W., Mante, M., et al. (2016). Alpha-synuclein conformational antibodies fused to penetratin are effective in models of Lewy body disease. Annals of Clinical and Translational Neurology, 3, 588–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer, B. J., & Verma, I. M. (2007). Targeted delivery of proteins across the blood-brain barrier. Proceedings of the National Academy of Sciences USA, 104, 7594–7599.

    Article  CAS  Google Scholar 

  • Srimanee, A., Arvanitidou, M., Kim, K., Hallbrink, M., & Langel, U. (2018). Cell-penetrating peptides for siRNA delivery to glioblastomas. Peptides, 104, 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Srimanee, A., Regberg, J., Hallbrink, M., Vajragupta, O., & Langel, U. (2016). Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood-brain barrier model. International Journal of Pharmaceutics, 500, 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Srimanee, A., Regberg, J., Hällbrink, M., Kurrikoff, K., Veiman, K.-L., Vajragupta, O., et al. (2014). Peptide based delivery of oligonucleotides across blood-brain barrier model. Journal of Peptide Research and Therapeutics, 20, 169–178.

    Article  CAS  Google Scholar 

  • Stalmans, S., Bracke, N., Wynendaele, E., Gevaert, B., Peremans, K., Burvenich, C., et al. (2015). Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One, 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suda, K., Murakami, T., Gotoh, N., Fukuda, R., Hashida, Y., Hashida, M., et al. (2017). High-density lipoprotein mutant eye drops for the treatment of posterior eye diseases. Journal of Controlled Release, 266, 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Sugahara, K. N., Teesalu, T., Karmali, P. P., Kotamraju, V. R., Agemy, L., Greenwald, D. R., et al. (2010). Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 328, 1031–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suk, J. S., Kim, A. J., Trehan, K., Schneider, C. S., Cebotaru, L., Woodward, O. M., et al. (2014). Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. Journal of Controlled Release, 178, 8–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumbria, R. K., Boado, R. J., & Pardridge, W. M. (2013). Combination stroke therapy in the mouse with blood-brain barrier penetrating IgG-GDNF and IgG-TNF decoy receptor fusion proteins. Brain Research, 24, 91–96.

    Article  CAS  Google Scholar 

  • Sun, L., Xie, S., Ji, X., Zhang, J., Wang, D., Lee, S. J., et al. (2018). MMP-2-responsive fluorescent nanoprobes for enhanced selectivity of tumor cell uptake and imaging. Biomaterials Science.

    Google Scholar 

  • Sun, Y., Xian, L., Xing, H., Yu, J., Yang, Z., Yang, T., et al. (2016). Factors influencing the nuclear targeting ability of nuclear localization signals. Journal of Drug Targeting, 24, 927–933.

    Article  CAS  PubMed  Google Scholar 

  • Suresh, A., & Kim, Y. C. (2013). Translocation of cell penetrating peptides on Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 110, 2795–2801.

    Article  CAS  PubMed  Google Scholar 

  • Swiecicki, J. M., di Pisa, M., Lippi, F., Chwetzoff, S., Mansuy, C., Trugnan, G., et al. (2015). Unsaturated acyl chains dramatically enhanced cellular uptake by direct translocation of a minimalist oligo-arginine lipopeptide. Chemical Communications (Camb), 51, 14656–14659.

    Article  CAS  Google Scholar 

  • Szeto, H. H. (2006a). Cell-permeable, mitochondrial-targeted, peptide antioxidants. The AAPS Journal, 8, E277–E283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto, H. H. (2006b). Mitochondria-targeted peptide antioxidants: Novel neuroprotective agents. The AAPS Journal, 8, E521–E531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacken, P. J., Joosten, B., Reddy, A., Wu, D., Eek, A., Laverman, P., et al. (2008). No advantage of cell-penetrating peptides over receptor-specific antibodies in targeting antigen to human dendritic cells for cross-presentation. The Journal of Immunology, 180, 7687–7696.

    Article  CAS  PubMed  Google Scholar 

  • Takara, K., Hatakeyama, H., Kibria, G., Ohga, N., Hida, K., & Harashima, H. (2012). Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. Journal of Controlled Release, 162, 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Taki, H., Kanazawa, T., Akiyama, F., Takashima, Y., & Okada, H. (2012). Intranasal delivery of camptothecin-loaded tat-modified nanomicells for treatment of intracranial brain tumors. Pharmaceuticals (Basel), 5, 1092–1102.

    Article  CAS  Google Scholar 

  • Talvensaari-Mattila, A., Paakko, P., & Turpeenniemi-Hujanen, T. (2003). Matrix metalloproteinase-2 (MMP-2) is associated with survival in breast carcinoma. British Journal of Cancer, 89, 1270–1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, M., Lan, K. H., Yao, J., Lu, C. H., Sun, M., Neal, C. L., et al. (2006). Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Research, 66, 3764–3772.

    Article  CAS  PubMed  Google Scholar 

  • Tan, R. S., Naruchi, K., Amano, M., Hinou, H., & Nishimura, S. (2015). Rapid endolysosomal escape and controlled intracellular trafficking of cell surface mimetic quantum-dots-anchored peptides and glycopeptides. ACS Chemical Biology, 10, 2073–2086.

    Article  CAS  PubMed  Google Scholar 

  • Tashima, T. (2018). Effective cancer therapy based on selective drug delivery into cells across their membrane using receptor-mediated endocytosis. Bioorganic & Medicinal Chemistry Letters.

    Google Scholar 

  • Taylor, B. N., Mehta, R. R., Yamada, T., Lekmine, F., Christov, K., Chakrabarty, A. M., et al. (2009). Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Research, 69, 537–546.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, F. C., Taskar, K., Rudraraju, V., Goda, S., Thorsheim, H. R., Gaasch, J. A., et al. (2009). Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharmaceutical Research, 26, 2486–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tkachenko, A. G., Xie, H., Coleman, D., Glomm, W., Ryan, J., Anderson, M. F., et al. (2003). Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. Journal of the American Chemical Society, 125, 4700–4701.

    Article  CAS  PubMed  Google Scholar 

  • Toba, M., Alzoubi, A., O’Neill, K., Abe, K., Urakami, T., Komatsu, M., et al. (2014). A novel vascular homing peptide strategy to selectively enhance pulmonary drug efficacy in pulmonary arterial hypertension. The American Journal of Pathology, 184, 369–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchilin, V. P. (2006). Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng, 8, 343–375.

    Article  CAS  PubMed  Google Scholar 

  • Tünnemann, G., Martin, R. M., Haupt, S., Patsch, C., Edenhofer, F., & Cardoso, M. C. (2006). Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. The FASEB Journal, 20, 1775–1784.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, T., Kanazawa, T., Takashima, Y., & Okada, H. (2011). Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002. Chemical and Pharmaceutical Bulletin (Tokyo), 59, 196–201.

    Article  Google Scholar 

  • Urgard, E., Lorents, A., Klaas, M., Padari, K., Viil, J., Runnel, T., et al. (2016). Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. Journal of Controlled Release, 235, 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Wada, S. I., Iwata, M., Ozaki, Y., Ozaki, T., Hayashi, J., & Urata, H. (2016). Design of cyclic RGD-conjugated Aib-containing amphipathic helical peptides for targeted delivery of small interfering RNA. Bioorganic & Medicinal Chemistry, 24, 4478–4485.

    Article  CAS  Google Scholar 

  • Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine, 10, 310–315.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, S., Zensi, A., Wien, S. L., Tschickardt, S. E., Maier, W., Vogel, T., et al. (2012). Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS One, 7, 1.

    Google Scholar 

  • Wagstaff, K. M., Glover, D. J., Tremethick, D. J., & Jans, D. A. (2007). Histone-mediated transduction as an efficient means for gene delivery. Molecular Therapy, 15, 721–731.

    Article  CAS  PubMed  Google Scholar 

  • Wahlmuller, F. C., Yang, H., Furtmuller, M., & Geiger, M. (2017). Regulation of the extracellular SERPINA5 (Protein C Inhibitor) penetration through cellular membranes. Adv Exp Med Biol, 22.

    Google Scholar 

  • Wallbrecher, R., Chene, P., Ruetz, S., Stachyra, T., Vorherr, T., & Brock, R. (2017). A critical assessment of the synthesis and biological activity of p53/human double minute 2-stapled peptide inhibitors. British Journal of Pharmacology, 174, 2613–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther, R., Rautio, J., & Zelikin, A. N. (2017). Prodrugs in medicinal chemistry and enzyme prodrug therapies. Advanced Drug Delivery Reviews, 1, 30097-2.

    Google Scholar 

  • van Duijnhoven, S. M., Robillard, M. S., Nicolay, K., & Grull, H. (2011). Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. Journal of Nuclear Medicine, 52, 279–286.

    Article  CAS  PubMed  Google Scholar 

  • van Duijnhoven, S. M., Robillard, M. S., Nicolay, K., & Grull, H. (2015). In vivo biodistribution of radiolabeled MMP-2/9 activatable cell-penetrating peptide probes in tumor-bearing mice. Contrast Media & Molecular Imaging, 10, 59–66.

    Article  CAS  Google Scholar 

  • van Lith, S. A. M., Van Den Brand, D., Wallbrecher, R., Wubbeke, L., van Duijnhoven, S. M. J., Makinen, P. I., et al. (2017). The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. European Journal of Pharmaceutics and Biopharmaceutics.

    Google Scholar 

  • Wang, H. Y., Chen, J. X., Sun, Y. X., Deng, J. Z., Li, C., Zhang, X. Z., et al. (2011). Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. Journal of Controlled Release, 155, 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Hao, Y., Li, H., Zhao, Y., Meng, D., Li, D., et al. (2015a). Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. Journal of Drug Targeting, 1–15.

    Google Scholar 

  • Wang, S., Huttmann, G., Zhang, Z., Vogel, A., Birngruber, R., Tangutoori, S., et al. (2015b). Light-controlled delivery of monoclonal antibodies for targeted photoinactivation of Ki-67. Molecular Pharmaceutics, 12, 3272–3281.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Liu, J. Y., Yang, C. B., Malampati, S., Huang, Y. Y., Li, M. X., et al. (2017). Neuroprotective natural products for the treatment of Parkinson’s disease by targeting the autophagy-lysosome pathway: A systematic review. Phytotherapy Research, 31, 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  • Watkins, G. A., Jones, E. F., Scott Shell, M., Vanbrocklin, H. F., Pan, M. H., Hanrahan, S. M., et al. (2009). Development of an optimized activatable MMP-14 targeted SPECT imaging probe. Bioorganic & Medicinal Chemistry, 17, 653–659.

    Article  CAS  Google Scholar 

  • Watson, V. G., Drake, K. M., Peng, Y., & Napper, A. D. (2013). Development of a high-throughput screening-compatible assay for the discovery of inhibitors of the AF4-AF9 interaction using AlphaScreen technology. Assay and Drug Development Technologies, 11, 253–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez, O., Blanco-Canosa, J. B., Vazquez, M. E., Martinez-Costas, J., Castedo, L., & Mascarenas, J. L. (2008). Efficient DNA binding and nuclear uptake by distamycin derivatives conjugated to octa-arginine sequences. Chembiochem, 9, 2822–2829.

    Article  CAS  PubMed  Google Scholar 

  • Veiman, K. L., Kunnapuu, K., Lehto, T., Kiisholts, K., Pärn, K., Langel, Ü., et al. (2015). PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. Journal of Controlled Release, 209, 238–247.

    Article  CAS  PubMed  Google Scholar 

  • Veiman, K. L., Mäger, I., Ezzat, K., Margus, H., Lehto, T., Langel, K., et al. (2013). PepFect14 peptide vector for efficient gene delivery in cell cultures. Molecular Pharmaceutics, 10, 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Weinstain, R., Savariar, E. N., Felsen, C. N., & Tsien, R. Y. (2014). In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. Journal of the American Chemical Society, 136, 874–877.

    Article  CAS  PubMed  Google Scholar 

  • Weisbart, R. H., Chan, G., Jordaan, G., Noble, P. W., Liu, Y., Glazer, P. M., et al. (2015). DNA-dependent targeting of cell nuclei by a lupus autoantibody. Scientific Reports, 5.

    Google Scholar 

  • Weissig, V., & Torchilin, V. P. (2001). Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Advanced Drug Delivery Reviews, 49, 127–149.

    Article  CAS  PubMed  Google Scholar 

  • Welch, J. J., Swanekamp, R. J., King, C., Dean, D. A., & Nilsson, B. L. (2016). Functional delivery of siRNA by disulfide-constrained cyclic amphipathic peptides. ACS Medicinal Chemistry Letters, 7, 584–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam, A., Wood, C., Hu, Q., & Alwayn, I. (2015). Delivery of Heme Oxygenase-1-Cell Penetrating Peptide (HO-1-CPP) into hepatocytes, Kupffer and Islet cells in in vitro and ex vivo models of cold ischemia. American Journal of Transplantation, 15.

    Google Scholar 

  • Verheij, M. M., Vendruscolo, L. F., Caffino, L., Giannotti, G., Cazorla, M., Fumagalli, F., et al. (2016). Systemic delivery of a brain-penetrant TrkB antagonist reduces cocaine self-administration and normalizes TrkB signaling in the nucleus accumbens and prefrontal cortex. Journal of Neuroscience, 36, 8149–8159.

    Article  CAS  PubMed  Google Scholar 

  • Whitney, M., Crisp, J. L., Olson, E. S., Aguilera, T. A., Gross, L. A., Ellies, L. G., et al. (2010). Parallel in vivo and in vitro selection using phage display identifies protease-dependent tumor-targeting peptides. Journal of Biological Chemistry, 285, 22532–22541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney, M., Savariar, E. N., Friedman, B., Levin, R. A., Crisp, J. L., Glasgow, H. L., et al. (2013). Ratiometric activatable cell-penetrating peptides provide rapid in vivo readout of thrombin activation. Angewandte Chemie International Edition, 52, 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Viht, K., Padari, K., Raidaru, G., Subbi, J., Tammiste, I., Pooga, M., et al. (2003). Liquid-phase synthesis of a pegylated adenosine-oligoarginine conjugate, cell-permeable inhibitor of cAMP-dependent protein kinase. Bioorganic & Medicinal Chemistry Letters, 13, 3035–3039.

    Article  CAS  Google Scholar 

  • Vij, M., Alam, S., Gupta, N., Gotherwal, V., Gautam, H., Ansari, K. M., et al. (2017). Non-invasive oil-based method to increase topical delivery of nucleic acids to skin. Molecular Therapy, 25, 1342–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vij, M., Natarajan, P., Pattnaik, B. R., Alam, S., Gupta, N., Santhiya, D., et al. (2016a). Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. Journal of Controlled Release, 222, 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Vij, M., Natarajan, P., Yadav, A. K., Patil, K. M., Pandey, T., Gupta, N., et al. (2016b). Efficient cellular entry of (r-x-r)-type carbamate-plasmid DNA complexes and its implication for noninvasive topical DNA delivery to skin. Molecular Pharmaceutics, 13, 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  • Wlodkowic, D., Skommer, J., McGuinness, D., Hillier, C., & Darzynkiewicz, Z. (2009). ER-Golgi network–a future target for anti-cancer therapy. Leukemia Research, 33, 1440–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woldetsadik, A. D., Vogel, M. C., Rabeh, W. M., & Magzoub, M. (2017). Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. The FASEB Journal, 9.

    Google Scholar 

  • Wonder, E., Simon-Gracia, L., Scodeller, P., Majzoub, R. N., Kotamraju, V. R., Ewert, K. K., et al. (2018). Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials, 166, 52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J., Han, H., Jin, Q., Li, Z., Li, H., & Ji, J. (2017). Design and proof of programmed 5-Aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Applied Materials & Interfaces, 9, 14596–14605.

    Article  CAS  Google Scholar 

  • Wu, J., Zheng, Y., Liu, M., Shan, W., Zhang, Z., & Huang, Y. (2018). Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Applied Materials & Interfaces, 10, 9916–9928.

    Article  CAS  Google Scholar 

  • Wyatt, L. C., Moshnikova, A., Crawford, T., Engelman, D. M., Andreev, O. A., & Reshetnyak, Y. K. (2018). Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors. Proceedings of the National Academy of Sciences USA, 115, E2811–E2818.

    Article  CAS  Google Scholar 

  • Xia, H., Gao, X., Gu, G., Liu, Z., Hu, Q., Tu, Y., et al. (2012). Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. International Journal of Pharmaceutics, 436, 840–850.

    Article  CAS  PubMed  Google Scholar 

  • Xia, H., Gao, X., Gu, G., Liu, Z., Zeng, N., Hu, Q., et al. (2011). Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials, 32, 9888–9898.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, B., Dong, D. W., Shi, N. Q., Gao, W., Yang, Z. Z., Cui, Y., et al. (2013). PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials, 34, 6976–6991.

    Article  CAS  PubMed  Google Scholar 

  • Xin, H., Sha, X., Jiang, X., Zhang, W., Chen, L., & Fang, X. (2012). Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials, 33, 8167–8176.

    Article  CAS  PubMed  Google Scholar 

  • Yaghini, E., Dondi, R., Tewari, K. M., Loizidou, M., Eggleston, I. M., & Macrobert, A. J. (2017). Endolysosomal targeting of a clinical chlorin photosensitiser for light-triggered delivery of nano-sized medicines. Scientific Reports, 7, 6059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada, Y., Furukawa, R., & Harashima, H. (2016). A dual-ligand liposomal system composed of a cell-penetrating peptide and a mitochondrial RNA aptamer synergistically facilitates cellular uptake and mitochondrial targeting. Journal of Pharmaceutical Sciences, 4, 00402.

    Google Scholar 

  • Yamada, Y., Perez, S. M., Tabata, M., Abe, J., Yasuzaki, Y., & Harashima, H. (2015). Efficient and high-speed transduction of an antibody into living cells using a multifunctional nanocarrier system to control intracellular trafficking. Journal of Pharmaceutical Sciences, 104, 2845–2854.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, S., Kato, A., Sakurai, Y., Hada, T., & Harashima, H. (2017). Modality of tumor endothelial VEGFR2 silencing-mediated improvement in intratumoral distribution of lipid nanoparticles. Journal of Controlled Release, 251, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Yameen, B., Choi, W. I., Vilos, C., Swami, A., Shi, J., & Farokhzad, O. C. (2014). Insight into nanoparticle cellular uptake and intracellular targeting. Journal of Controlled Release, 190, 485–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, H., Wang, J., Yi, P., Lei, H., Zhan, C., Xie, C., et al. (2011). Imaging brain tumor by dendrimer-based optical/paramagnetic nanoprobe across the blood-brain barrier. Chemical Communications, 47, 8130–8132.

    Article  CAS  PubMed  Google Scholar 

  • Yanez, R. J. R., Lamprecht, R., Granadillo, M., Torrens, I., Arcalis, E., Stoger, E., et al. (2017a). LALF32-51 -E7, a HPV-16 therapeutic vaccine candidate, forms protein body-like structures when expressed in Nicotiana benthamiana leaves. Plant Biotechnology Journal.

    Google Scholar 

  • Yanez, R. J. R., Lamprecht, R., Granadillo, M., Weber, B., Torrens, I., Rybicki, E. P., et al. (2017b). Expression optimization of a cell membrane-penetrating human papillomavirus type 16 therapeutic vaccine candidate in Nicotiana benthamiana. PLoS One, 12, e0183177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, J., Li, Q., Yang, X., Feng, Y., Ren, X., Shi, C., et al. (2016). Multitargeting gene delivery systems for enhancing the transfection of endothelial cells. Macromolecular Rapid Communications, 37, 1926–1931.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Xie, X., Cai, X., Wang, Z., Gong, W., Zhang, H., et al. (2015). A near-infrared two-photon-sensitive peptide-mediated liposomal delivery system. Colloids and Surfaces B: Biointerfaces, 128, 427–438.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. Z., Li, J. Q., Wang, Z. Z., Dong, D. W., & Qi, X. R. (2014). Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials, 35, 5226–5239.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Shin, M. C., Liang, Q., He, H., & Yang, V. C. (2015). 15 years of ATTEMPTS: A macromolecular drug delivery system based on the CPP-mediated intracellular drug delivery and antibody targeting. Journal of Controlled Release, 205, 58–69.

    Article  CAS  PubMed  Google Scholar 

  • Yoneda, Y., Semba, T., Kaneda, Y., Noble, R. L., Matsuoka, Y., Kurihara, T., et al. (1992). A long synthetic peptide containing a nuclear localization signal and its flanking sequences of SV40 T-antigen directs the transport of IgM into the nucleus efficiently. Experimental Cell Research, 201, 313–320.

    Article  CAS  PubMed  Google Scholar 

  • Yoneda, Y., Steiniger, S. C., Capkova, K., Mee, J. M., Liu, Y., Kaufmann, G. F., et al. (2008). A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorganic & Medicinal Chemistry Letters, 18, 1632–1636.

    Article  CAS  Google Scholar 

  • Youn, P., Chen, Y., & Furgeson, D. Y. (2014). A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Molecular Pharmaceutics, 11, 486–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younis, A., Siddique, M. I., Kim, C. K., & Lim, K. B. (2014). RNA Interference (RNAi) induced gene silencing: A promising approach of hi-tech plant breeding. International Journal of Biological Sciences, 10, 1150–1158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, Y. J., Zhang, Y., Kenrick, M., Hoyte, K., Luk, W., Lu, Y., et al. (2011). Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Science Translational Medicine, 3, 3002230.

    Article  CAS  Google Scholar 

  • Yuan, X., Lin, X., Manorek, G., & Howell, S. B. (2011). Challenges associated with the targeted delivery of gelonin to claudin-expressing cancer cells with the use of activatable cell penetrating peptides to enhance potency. BMC Cancer, 11, 1471–2407.

    Google Scholar 

  • Yurlova, L., Derks, M., Buchfellner, A., Hickson, I., Janssen, M., Morrison, D., et al. (2014). The fluorescent two-hybrid assay to screen for protein-protein interaction inhibitors in live cells: targeting the interaction of p53 with Mdm2 and Mdm4. Journal of Biomolecular Screening, 19, 516–525.

    Article  CAS  PubMed  Google Scholar 

  • Zannikou, M., Bellou, S., Eliades, P., Hatzioannou, A., Mantzaris, M. D., Carayanniotis, G., et al. (2016). DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms. Immunology, 147, 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Zaro, J. L., Vekich, J. E., Tran, T., & Shen, W. C. (2009). Nuclear localization of cell-penetrating peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells. Molecular Pharmaceutics, 6, 337–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan, C., Li, B., Hu, L., Wei, X., Feng, L., Fu, W., et al. (2011). Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angewandte Chemie International Edition, 50, 5482–5485.

    Article  CAS  PubMed  Google Scholar 

  • Zhan, C., Yan, Z., Xie, C., & Lu, W. (2010). Loop 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery. Molecular Pharmaceutics, 7, 1940–1947.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Tang, J., Fu, L., Ran, R., Liu, Y., Yuan, M., et al. (2013). A pH-responsive alpha-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials, 34, 7980–7993.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Qu, H., Li, X., Zhao, B., Zhou, J., Li, Q., et al. (2010). Transmembrane delivery and biological effect of human growth hormone via a phage displayed peptide in vivo and in vitro. Journal of Pharmaceutical Science, 99, 4880–4891.

    Article  CAS  Google Scholar 

  • Zhao, B. Q., Guo, Y. R., Li, X. L., Zang, T., Qu, H. Y., Zhou, J. P., et al. (2011). Amelioration of dementia induced by Abeta 22-35 through rectal delivery of undecapeptide-hEGF to mouse brain. International Journal of Pharmaceutics, 405, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, B. X., Zhao, Y., Huang, Y., Luo, L. M., Song, P., Wang, X., et al. (2012). The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials, 33, 2508–2520.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K., Luo, G., Giannelli, S., & Szeto, H. H. (2005). Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochemical Pharmacology, 70, 1796–1806.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K., Luo, G., Zhao, G. M., Schiller, P. W., & Szeto, H. H. (2003). Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. Journal of Pharmacology and Experimental Therapeutics, 304, 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Shang, T., Zhang, X., Ye, T., Wang, D., & Rei, L. (2016). Passage of Magnetic Tat-Conjugated Fe3O4@SiO2 nanoparticles across in vitro blood-brain barrier. Nanoscale Research Letters, 11, 451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, Y., Lou, D., Burkett, J., & Kohler, H. (2001). Chemical engineering of cell penetrating antibodies. Journal of Immunological Methods, 254, 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q. H., Hui, E. K., Lu, J. Z., Boado, R. J., & Pardridge, W. M. (2011a). Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson’s disease in the mouse. Brain Research, 25, 315–320.

    Article  CAS  Google Scholar 

  • Zhou, Q. H., Lu, J. Z., Hui, E. K., Boado, R. J., & Pardridge, W. M. (2011b). Delivery of a peptide radiopharmaceutical to brain with an IgG-avidin fusion protein. Bioconjugate Chemistry, 22, 1611–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, L., Kate, P., & Torchilin, V. P. (2012). Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano, 6, 3491–3498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, L., Wang, T., Perche, F., Taigind, A., & Torchilin, V. P. (2013). Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proceedings of the National Academy of Sciences USA, 110, 17047–17052.

    Article  CAS  Google Scholar 

  • Ziemienowicz, A., Pepper, J., & Eudes, F. (2015). Applications of CPPs in genome modulation of plants. Methods Mol Biol, 1324, 417–434.

    Article  PubMed  Google Scholar 

  • Ziemienowicz, A., Shim, Y. S., Matsuoka, A., Eudes, F., & Kovalchuk, I. (2012). A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex. Plant Physiology, 158, 1503–1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonin, E., Moscatiello, R., Miuzzo, M., Cavallarin, N., di Paolo, M. L., Sandona, D., et al. (2011). TAT-mediated aequorin transduction: An alternative approach for effective calcium measurements in plant cells. Plant and Cell Physiology, 52, 2225–2235.

    Article  CAS  PubMed  Google Scholar 

  • Zou, Z., Sun, Z., Li, P., Feng, T., & Wu, S. (2016). Cre fused with RVG peptide mediates targeted genome editing in mouse brain cells in vivo. International Journal of Molecular Sciences, 17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Langel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langel, Ü. (2019). Targeting Strategies. In: CPP, Cell-Penetrating Peptides. Springer, Singapore. https://doi.org/10.1007/978-981-13-8747-0_5

Download citation

Publish with us

Policies and ethics