Skip to main content

Methods for CPP Functionalization

  • Chapter
  • First Online:

Abstract

This chapter will summarize the methods for functionalization used in CPP research. Due to the very wide field of CPP applications as well as the involvement of CPPs in multiple biochemical pathways, the methods are also multiple. Basically, most of the methods of chemistry, biophysics, biochemistry, cell signaling , molecular biology, imaging etc., has been used to understand the action of CPPs. Hence, here we try to describe briefly the most widely used methods with highest impact for CPP research. It seems that it is reasonable to classify the CPP methods into non-functional and functional, based on the raised questions when applied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbate, V., Reelfs, O., Hider, R. C., & Pourzand, C. (2015). Design of novel fluorescent mitochondria-targeted peptides with iron-selective sensing activity. Biochemical Journal, 469, 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Abes, S., Moulton, H. M., Clair, P., Prevot, P., Youngblood, D. S., Wu, R. P., et al. (2006). Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. Journal of Controlled Release, 116, 304–313.

    Article  CAS  PubMed  Google Scholar 

  • Abes, S., Moulton, H., Turner, J., Clair, P., Richard, J. P., Iversen, P., et al. (2007). Peptide-based delivery of nucleic acids: Design, mechanism of uptake and applications to splice-correcting oligonucleotides. Biochemical Society Transactions, 35, 53–55.

    Article  CAS  PubMed  Google Scholar 

  • Abushahba, M. F., Mohammad, H., & Seleem, M. N. (2016). Targeting Multidrug-resistant Staphylococci with an anti-rpoA peptide nucleic acid conjugated to the HIV-1 TAT Cell Penetrating Peptide. Molecular Therapy—Nucleic Acids, 5, e339.

    Article  PubMed  PubMed Central  Google Scholar 

  • Afsari, H. S., Cardoso dos Santos, M., Linden, S., Chen, T., Qiu, X., Van Bergen En Henegouwen, et al. (2016). Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Science Advances 2, e1600265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aksoy, I., Jauch, R., Eras, V., Chng, W. B., Chen, J., Divakar, U., et al. (2013). Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming. Stem Cells, 31, 2632–2646.

    Article  CAS  PubMed  Google Scholar 

  • Alberici, L., Roth, L., Sugahara, K. N., Agemy, L., Kotamraju, V. R., Teesalu, T., et al. (2013). De novo design of a tumor-penetrating peptide. Cancer Research, 73, 804–812.

    Article  CAS  PubMed  Google Scholar 

  • Aldrian, G., Vaissiere, A., Konate, K., Seisel, Q., Vives, E., Fernandez, F., et al. (2017). PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. Journal of Controlled Release, 256, 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Aldrian-Herrada, G., Desarmenien, M. G., Orcel, H., Boissin-Agasse, L., Mery, J., Brugidou, J., et al. (1998). A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Research, 26, 4910–4916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., & Prochiantz, A. (1995). Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. Journal of Cell Biology, 128, 919–927.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez, M. J., Subramaniam, P. S., Tang, L. H., Grunn, A., Aburi, M., Rieckhof, G., et al. (2018). A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nature Genetics.

    Google Scholar 

  • Arukuusk, P., Pärnaste, L., Hällbrink, M., & Langel, Ü. (2015). PepFects and NickFects for the Intracellular delivery of nucleic acids. Methods in Molecular Biology, 1324, 303–315.

    Article  PubMed  Google Scholar 

  • Arukuusk, P., Pärnaste, L., Oskolkov, N., Copolovici, D. M., Margus, H., Padari, K., et al. (2013). New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochimica et Biophysica Acta, 1828, 1365–1373.

    CAS  PubMed  Google Scholar 

  • Ashwanikumar, N., Plaut, J. S., Mostofian, B., Patel, S., Kwak, P., Sun, C. (2018). Supramolecular self assembly of nanodrill-like structures for intracellular delivery. Journal of Controlled Release.

    Google Scholar 

  • Astriab-Fisher, A., Sergueev, D., Fisher, M., Shaw, B. R., & Juliano, R. L. (2002). Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharmaceutical Research, 19, 744–754.

    Article  CAS  PubMed  Google Scholar 

  • Barnett, E. M., Zhang, X., Maxwell, D., Chang, Q., & Piwnica-Worms, D. (2009). Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proceedings of the National Academy of Sciences USA, 106, 9391–9396.

    Article  CAS  Google Scholar 

  • Basu, S., & Wickstrom, E. (1997). Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjugate Chemistry, 8, 481–488.

    Article  CAS  PubMed  Google Scholar 

  • Bell, T. J., & Eberwine, J. (2015a). Live cell genomics: Cell-specific transcriptome capture in live tissues and cells. Methods in Molecular Biology, 1324, 447–456.

    Article  PubMed  Google Scholar 

  • Bell, T. J., & Eberwine, J. (2015b). Live cell genomics: RNA exon-specific RNA-binding protein isolation. Methods in Molecular Biology, 1324, 457–468.

    Article  PubMed  Google Scholar 

  • Bell, T. J., Eiriksdottir, E., Langel, Ü., & Eberwine, J. (2011). PAIR technology: exon-specific RNA-binding protein isolation in live cells. Methods in Molecular Biology, 683, 473–486.

    Article  CAS  PubMed  Google Scholar 

  • Bell, G. D., Yang, Y., Leung, E., & Krissansen, G. W. (2018). mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PLoS ONE, 13, e0201464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bendifallah, N., Rasmussen, F. W., Zachar, V., Ebbesen, P., Nielsen, P. E., & Koppelhus, U. (2006). Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA). Bioconjugate Chemistry, 17, 750–758.

    Article  CAS  PubMed  Google Scholar 

  • Benner, N. L., Zang, X., Buehler, D. C., Kickhoefer, V. A., Rome, M. E., Rome, L. H., et al. (2017). Vault nanoparticles: Chemical modifications for imaging and enhanced delivery. ACS Nano, 11, 872–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, C. F., Baker, B. F., Pham, N., Swayze, E., & Geary, R. S. (2016). Pharmacology of antisense drugs. Annual Review of Pharmacology and Toxicology, 10, 10.

    Google Scholar 

  • Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals. Nature Reviews Genetics, 12, 846–860.

    Article  CAS  PubMed  Google Scholar 

  • Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41, 7429–7437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilan, R., Nabiev, I., & Sukhanova, A. (2016). Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem, 18, 201600357.

    Google Scholar 

  • Birch, D., Christensen, M. V., Staerk, D., Franzyk, H., & Nielsen, H. M. (2017). Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. Biochimica et Biophysica Acta, 1859, 2483–2494.

    Article  CAS  PubMed  Google Scholar 

  • Borgatti, M., Finotti, A., Romanelli, A., Saviano, M., Bianchi, N., Lampronti, I., et al. (2004). Peptide nucleic acids (PNA)-DNA chimeras targeting transcription factors as a tool to modify gene expression. Current Drug Targets, 5, 735–744.

    Article  CAS  PubMed  Google Scholar 

  • Brandén, L. J., Mohamed, A. J., & Smith, C. I. E. (1999). A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nature Biotechnology, 17, 784–787.

    Article  PubMed  Google Scholar 

  • Breger, J. C., Muttenthaler, M., Delehanty, J. B., Thompson, D. A., Oh, E., Susumu, K., et al. (2017). Nanoparticle cellular uptake by dendritic wedge peptides: achieving single peptide facilitated delivery. Nanoscale, 9, 10447–10464.

    Article  CAS  PubMed  Google Scholar 

  • Brognara, E., Fabbri, E., Aimi, F., Manicardi, A., Bianchi, N., Finotti, A., et al. (2012). Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. International Journal of Oncology, 41, 2119–2127.

    Article  CAS  PubMed  Google Scholar 

  • Brognara, E., Fabbri, E., Bazzoli, E., Montagner, G., Ghimenton, C., Eccher, A., et al. (2014). Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. Journal of Neuro-oncology, 118, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Brognara, E., Fabbri, E., Montagner, G., Gasparello, J., Manicardi, A., Corradini, R., et al. (2016). High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. International Journal of Oncology, 48, 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, H., Lebleu, B., & Vives, E. (2005). Tat peptide-mediated cellular delivery: Back to basics. Advanced Drug Delivery Reviews, 57, 559–577.

    Article  CAS  PubMed  Google Scholar 

  • Byrne, A., Dolan, C., Moriarty, R. D., Martin, A., Neugebauer, U., Forster, R. J., et al. (2015). Osmium(ii) polypyridyl polyarginine conjugate as a probe for live cell imaging; a comparison of uptake, localization and cytotoxicity with its ruthenium(ii) analogue. Dalton Transactions, 44, 14323–14332.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso, A. M., Trabulo, S., Cardoso, A. L., Lorents, A., Morais, C. M., Gomes, P. (2012). S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization. Biochimica et Biophysica Acta, 1818, 877–88.

    Article  CAS  Google Scholar 

  • Carney, R. P., Thillier, Y., Kiss, Z., Sahabi, A., Heleno Campos, J. C., Knudson, A. ET AL. (2017). Combinatorial library screening with liposomes for discovery of membrane Active Peptides. ACS combinatorial science, 19, 299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caulier, B., Berthoin, L., Coradin, H., Garban, F., Dagher, M. C., Polack, B., et al. (2017). Targeted release of transcription factors for human cell reprogramming by ZEBRA cell-penetrating peptide. International Journal of Pharmaceutics, 529, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Cerrato, C. P., Veiman, K.-L. & Langel, U. (2015). Advances in peptide delivery. Future Science. https://doi.org/10.4155/fseb2013.14.23.

  • Chang, X., & Hou, Y. (2018). Expression of RecA and cell-penetrating peptide (CPP) fusion protein in bacteria and in mammalian cells. International Journal of Biochemistry and Molecular Biology, 9, 1–10.

    PubMed  PubMed Central  Google Scholar 

  • Chang, S., Wu, X., Li, Y., Niu, D., Gao, Y., Ma, Z., et al. (2013). A pH-responsive hybrid fluorescent nanoprober for real time cell labeling and endocytosis tracking. Biomaterials, 34, 10182–10190.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R., Braun, G. B., Luo, X., Sugahara, K. N., Teesalu, T., & Ruoslahti, E. (2013). Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Research, 73, 1352–1361.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Fang, S., Xiao, X., Zheng, B., & Zhao, M. (2016). Single-stranded DNA assisted cell penetrating peptide-DNA conjugation strategy for intracellular imaging of nucleases. Analytical Chemistry, 88, 11306–11309.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Ma, B., Xie, R., Wang, Y., Dou, K., & Gong, S. (2017). NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier. Journal of Controlled Release.

    Google Scholar 

  • Chen, X., Nomani, A., Patel, N., Nouri, F. S., & Hatefi, A. (2018). Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells. Biomaterials, 152, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., & Wu, C. (2018). Cationic cell penetrating peptide modified SNARE protein VAMP8 as free chains for gene delivery. Biomaterials Science.

    Google Scholar 

  • Cheng, C. J., & Saltzman, W. M. (2012). Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Molecular Pharmaceutics, 9, 1481–1488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheruku, P., Huang, J. H., Yen, H. J., Iyer, R. S., Rector, K. D., Martinez, J. S., et al. (2015). Tyrosine-derived stimuli responsive, fluorescent amino acids. Chemical Science, 6, 1150–1158.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, J. C., Kim Chiaw, P., Deber, C. M. & Bear, C. E. (2009). A novel method for monitoring the cytosolic delivery of peptide cargo. Journal of Controlled Release, 137, 2–7.

    Google Scholar 

  • Choi, S., Jo, J., Seol, D. W., Cha, S. K., Lee, J. E., & Lee, D. R. (2013). Regulation of pluripotency-related genes and differentiation in mouse embryonic stem cells by direct delivery of cell-penetrating peptide-conjugated CARM1 recombinant protein. Balsaenggwa Saengsig, 17, 9–16.

    Google Scholar 

  • Choi, Y. J., Lee, J. Y., Chung, C. P., & Park, Y. J. (2012). Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21(Cip1) pathway and restores osteoblastic differentiation in human dental pulp stem cells. International Journal of Nanomedicine, 7, 5091–5106.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra, A. (2012). Cy5.5-Conjugated matrix metalloproteinase cleavable peptide nanoprobe. Bethesda (MD): National Center for Biotechnology Information (US).

    Google Scholar 

  • Chuah, J. A., Yoshizumi, T., Kodama, Y., & Numata, K. (2015). Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Science Report, 5, 7751.

    Article  CAS  Google Scholar 

  • Copolovici, D. M., Langel, K., Eriste, E., & Langel, Ü. (2014). Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 8, 1972–1994.

    Article  CAS  PubMed  Google Scholar 

  • Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nature Medicine, 21, 121–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crinelli, R., Bianchi, M., Gentilini, L., Palma, L., & Magnani, M. (2004). Locked nucleic acids (LNA): versatile tools for designing oligonucleotide decoys with high stability and affinity. Current Drug Targets, 5, 745–752.

    Article  CAS  PubMed  Google Scholar 

  • Crombez, L., Aldrian-Herrada, G., Konate, K., Nguyen, Q. N., McMaster, G. K., Brasseur, R., et al. (2009a). A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Molecular Therapy, 17, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Crombez, L., & Divita, G. (2011). A non-covalent peptide-based strategy for siRNA delivery. Methods in Molecular Biology, 683, 349–360.

    Article  CAS  PubMed  Google Scholar 

  • Crombez, L., Morris, M. C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., et al. (2009b). Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Research, 37, 4559–4569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, H., Webber, M. J., & Stupp, S. I. (2010). Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers, 94, 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo, B., Benedetti, E., Cimini, A., & Giordano, A. (2016). MicroRNAs: a puzzling tool in cancer diagnostics and therapy. Anticancer Research, 36, 5571–5575.

    Article  PubMed  CAS  Google Scholar 

  • Dasari, B. C., Cashman, S. M., & Kumar-Singh, R. (2017). Reducible PEG-POD/DNA nanoparticles for gene transfer in vitro and in vivo: application in a mouse model of age-related macular degeneration. Molecular Therapy—Nucleic Acids, 8, 77–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash-Wagh, S., Jacob, S., Lindberg, S., Fridberger, A., Langel, Ü., & Ulfendahl, M. (2012). Intracellular delivery of short interfering RNA in rat organ of corti using a cell-penetrating peptide PepFect6. Molecular Therapy—Nucleic Acids, 1, e61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Astolfo, D. S., Pagliero, R. J., Pras, A., Karthaus, W. R., Clevers, H., Prasad, V., et al. (2015). Efficient intracellular delivery of native proteins. Cell, 161, 674–690.

    Article  PubMed  CAS  Google Scholar 

  • de Keizer, P. L. (2017). The fountain of youth by targeting senescent cells? Trends in Molecular Medicine, 23, 6–17.

    Article  PubMed  Google Scholar 

  • Del’Guidice, T., Lepetit-Stoffaes, J. P., Bordeleau, L. J., Roberge, J., Theberge, V., Lauvaux, C., et al. (2018). Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS ONE, 13, e0195558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demoulins, T., Ebensen, T., Schulze, K., Englezou, P. C., Pelliccia, M., Guzman, C. A., et al. (2017). Self-replicating RNA vaccine functionality modulated by fine-tuning of polyplex delivery vehicle structure. Journal of Controlled Release, 266, 256–271.

    Article  CAS  PubMed  Google Scholar 

  • di Pisa, M., Chassaing, G., & Swiecicki, J. M. (2015a). Translocation mechanism(s) of cell-penetrating peptides: Biophysical studies using artificial membrane bilayers. Biochemistry, 54, 194–207.

    Article  PubMed  CAS  Google Scholar 

  • di Pisa, M., Chassaing, G., & Swiecicki, J. M. (2015b). When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery. Journal of Peptide Science, 21, 356–369.

    Article  PubMed  CAS  Google Scholar 

  • Diener, C., Garza Ramos Martinez, G., Moreno Blas, D., Castillo Gonzalez, D. A., Corzo, G., Castro-Obregon, S, et al. (2016). Effective design of multifunctional peptides by combining compatible functions. PLoS Computational Biology, 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobchev, D. A., Mäger, I., Tulp, I., Karelson, G., Tamm, T., Tamm, K., et al. (2010). Prediction of Cell-penetrating peptides using artificial neural networks. Current Computer-Aided Drug Design, 6, 79–89.

    Article  CAS  PubMed  Google Scholar 

  • Doeppner, T. R., Nagel, F., Dietz, G. P., Weise, J., Tonges, L., Schwarting, S., et al. (2009). TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. Journal of Cerebral Blood Flow and Metabolism, 29, 1187–1196.

    Article  CAS  PubMed  Google Scholar 

  • Dowaidar, M., Abdelhamid, H. N., Hallbrink, M., Freimann, K., Kurrikoff, K., Zou, X., et al. (2017a). Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Scientific Report, 7, 9159.

    Article  CAS  Google Scholar 

  • Dowaidar, M., Abdelhamid, H. N., Hallbrink, M., Zou, X., & Langel, U. (2017b). Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochimica et Biophysica Acta, 1861, 2334–2341.

    Article  CAS  PubMed  Google Scholar 

  • Dowaidar, M., Nasser Abdelhamid, H., Hallbrink, M., Langel, U., & Zou, X. (2018). Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide. Journal of Biomaterials Applications, 33, 392–401.

    Google Scholar 

  • Dowdy, S. F. (2017). Overcoming cellular barriers for RNA therapeutics. Nature Biotechnology, 35, 222–229.

    Article  CAS  PubMed  Google Scholar 

  • Dowdy, S. F., & Levy, M. (2018). RNA therapeutics (almost) comes of age: Targeting, delivery and endosomal escape. Nucleic Acid Therapeutics, 28, 107–108.

    Article  CAS  PubMed  Google Scholar 

  • Eguchi, A., Meade, B. R., Chang, Y. C., Fredrickson, C. T., Willert, K., Puri, N., et al. (2009). Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nature Biotechnology, 27, 567–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiriksdottir, E., Mäger, I., Lehto, T., el Andaloussi, S., & Langel, Ü. (2010). Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates. Bioconjugate Chemistry, 21, 1662–1672.

    Article  CAS  PubMed  Google Scholar 

  • El-Andaloussi, S., Guterstam, P., & Langel, Ü. (2007a). Assessing the delivery efficacy and internalization route of cell-penetrating peptides. Nature Protocols, 2, 2043–2047.

    Article  CAS  PubMed  Google Scholar 

  • El-Andaloussi, S., Johansson, H. J., Holm, T., & Langel, Ü. (2007b). A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Molecular Therapy, 15, 1820–1826.

    Article  CAS  PubMed  Google Scholar 

  • El-Andaloussi, S., Johansson, H. J., Lundberg, P., & Langel, Ü. (2006). Induction of splice correction by cell-penetrating peptide nucleic acids. The Journal of Gene Medicine, 8, 1262–1273.

    Article  CAS  PubMed  Google Scholar 

  • El-Andaloussi, S., Johansson, H., Magnusdottir, A., Järver, P., Lundberg, P., & Langel, Ü. (2005). TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. Journal of Controlled Release, 110, 189–201.

    Article  CAS  PubMed  Google Scholar 

  • El-Andaloussi, S., Lehto, T., Mäger, I., Rosenthal-Aizman, K., Oprea, I.I., Simonson, O. E., et al. (2011a). Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 39, 3972–3987.

    Article  CAS  PubMed Central  Google Scholar 

  • El-Andaloussi, S., Said Hassane, F., Boisguerin, P., Sillard, R., Langel, Ü., & Lebleu, B. (2011b). Cell-penetrating peptides-based strategies for the delivery of splice redirecting antisense oligonucleotides. Methods in Molecular Biology, 764, 75–89.

    Google Scholar 

  • Endoh, T., Sisido, M., & Ohtsuki, T. (2008). Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. Bioconjugate Chemistry, 19, 1017–1024.

    Article  CAS  PubMed  Google Scholar 

  • Eriste, E., Kurrikoff, K., Suhorutsenko, J., Oskolkov, N., Copolovici, D. M., Jones, S., et al. (2013). Peptide-based glioma-targeted drug delivery vector gHoPe2. Bioconjugate Chemistry, 24, 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Ezzat, K., Andaloussi, S. E., Zaghloul, E. M., Lehto, T., Lindberg, S., Moreno, P. M., et al. (2011). PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Research, 39, 5284–5298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabani, M. M., Abreu-Goodger, C., Williams, D., Lyons, P. A., Torres, A. G., Smith, K. G., et al. (2010). Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Research, 38, 4466–4475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabani, M. M., & Gait, M. J. (2008). miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA, 14, 336–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbri, E., Manicardi, A., Tedeschi, T., Sforza, S., Bianchi, N., Brognara, E., et al. (2011). Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem, 6, 2192–2202.

    Article  CAS  PubMed  Google Scholar 

  • Fan, X., Zhang, Y., Liu, X., He, H., Ma, Y., Sun, J., et al. (2016). Biological properties of a 3′,3″-bis-peptide-siRNA conjugate in vitro and in vivo. Bioconjugate Chemistry, 27, 1131–1142.

    Article  CAS  PubMed  Google Scholar 

  • Fang, W. B., Yao, M., Brummer, G., Acevedo, D., Alhakamy, N., Berkland, C., et al. (2016). Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget, 7.

    Google Scholar 

  • Favaro, M. T. P., Unzueta, U., de Cabo, M., Villaverde, A., Ferrer-Miralles, N., & Azzoni, A. R. (2018). Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. European Journal of Pharmaceutical Sciences, 112, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Favretto, M. E., & Brock, R. (2015). Stereoselective uptake of cell-penetrating peptides is conserved in antisense oligonucleotide polyplexes. Small (Weinheim an der Bergstrasse, Germany), 11, 1414–1417.

    Article  CAS  Google Scholar 

  • Fellmann, C., Gowen, B. G., Lin, P. C., Doudna, J. A., & Corn, J. E. (2016). Cornerstones of CRISPR-Cas in drug discovery and therapy. Nature Reviews Drug Discovery, 23, 238.

    Google Scholar 

  • Fischer, R., Kohler, K., Fotin-Mleczek, M., & Brock, R. (2004). A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. Journal of Biological Chemistry, 279, 12625–12635.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R. K., Mattern-Schain, S. I., Best, M. D., Kirkpatrick, S. S., Freeman, M. B., Grandas, O. H., et al. (2017). Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. Journal of Surgical Research, 219, 136–144.

    Article  PubMed  Google Scholar 

  • Fisher, L., Samuelsson, M., Jiang, Y., Ramberg, V., Figueroa, R., Hallberg, E., et al. (2007). Targeting cytokine expression in glial cells by cellular delivery of an NF-kappaB decoy. Journal of Molecular Neuroscience, 31, 209–219.

    CAS  PubMed  Google Scholar 

  • Fossat, P., Dobremez, E., Bouali-Benazzouz, R., Favereaux, A., Bertrand, S. S., Kilk, K., et al. (2010). Knockdown of L calcium channel subtypes: differential effects in neuropathic pain. Journal of Neuroscience, 30, 1073–1085.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, G. L., Holmgren, J., Clarke, P. B., & Wahlestedt, C. (2000). Antisense inhibition of delta-opioid receptor gene function in vivo by peptide nucleic acids. Molecular Pharmacology, 57, 725–731.

    Article  CAS  PubMed  Google Scholar 

  • Freimann, K., Arukuusk, P., Kurrikoff, K., Parnaste, L., Raid, R., Piirsoo, A., et al. (2018). Formulation of stable and homogeneous cell-penetrating peptide NF55 nanoparticles for efficient gene delivery in vivo. Molecular Therapy—Nucleic Acids, 10, 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Freimann, K., Arukuusk, K., Kurrikoff, K., Vasconselos, L. D. F., Veiman, K.-L., Uusna, J. (2016). Optimization of in vivo pDNA gene delivery with NickFect peptide vectors. Journal of Controlled Release, 241, 135–143.

    Article  CAS  PubMed  Google Scholar 

  • Freire, J. M., Rego De Figueiredo, I., Valle, J., Veiga, A. S., Andreu, D., Enguita, et al. (2017). siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. Journal of Controlled Release, 245, 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Freire, J. M., Veiga, A. S., Rego De Figueiredo, I., De La Torre, B. G., Santos, N. C., Andreu, D., et al. (2014). Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: Design and mechanism of action. FEBS Journal, 281, 191–215.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, A. A., Letai, A., Fisher, D. E., & Flaherty, K. T. (2015). Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer, 15, 747–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futaki, S., Ohashi, W., Suzuki, T., Niwa, M., Tanaka, S., Ueda, K., et al. (2001). Stearylated arginine-rich peptides: A new class of transfection systems. Bioconjugate Chemistry, 12, 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  • Gagat, M., Zielinska, W., & Grzanka, A. (2017). Cell-penetrating peptides and their utility in genome function modifications (Review). International Journal of Molecular Medicine, 40, 1615–1623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-editing technologies: Principles and applications. Cold Spring Harbor Perspectives in Biology, 8.

    Google Scholar 

  • Ganguly, S., Chaubey, B., Tripathi, S., Upadhyay, A., Neti, P. V., Howell, R. W., et al. (2008). Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides, 18, 277–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganju, A., Khan, S., Hafeez, B. B., Behrman, S. W., Yallapu, M. M., Chauhan, S. C., et al. (2016). miRNA nanotherapeutics for cancer. Drug Discov Today, 1, 30408-1.

    Google Scholar 

  • Gautam, A., Sharma, M., Vir, P., Chaudhary, K., Kapoor, P., Kumar, R., et al. (2015). Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. European Journal of Pharmaceutics and Biopharmaceutics, 89, 93–106.

    Article  CAS  PubMed  Google Scholar 

  • Gautam, A., Singh, H., Tyagi, A., Chaudhary, K., Kumar, R., Kapoor, P., et al. (2012). CPPsite: A curated database of cell penetrating peptides. Database (Oxford), bas015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geiler, C., Andrade, I., & Greenwald, D. (2014). Exogenous c-Myc Blocks differentiation and improves expansion of human erythroblasts in vitro. International Journal of Stem Cells, 7, 153–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golan, M., Feinshtein, V., & David, A. (2016). Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 109, 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Good, L., Awasthi, S. K., Dryselius, R., Larsson, O., & Nielsen, P. E. (2001). Bactericidal antisense effects of peptide-PNA conjugates. Nature Biotechnology, 19, 360–364.

    Article  CAS  PubMed  Google Scholar 

  • Gratton, J. P., Yu, J., Griffith, J. W., Babbitt, R. W., Scotland, R. S., Hickey, R., et al. (2003). Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nature Medicine, 9, 357–362.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Peng, H., Kang, J., & Sun, D. (2016). Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomedical Reports, 4, 528–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, J., Wang, H., & Hu, X. (2013). Reprogramming and transdifferentiation shift the landscape of regenerative medicine. DNA and Cell Biology, 32, 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, A., Mishra, A., & Puri, N. (2017). Peptide nucleic acids: Advanced tools for biomedical applications. Journal of Biotechnology, 259, 148–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, S. K., & Shukla, P. (2016). Gene editing for cell engineering: trends and applications. Critical Reviews in Biotechnology, 18, 1–13.

    CAS  Google Scholar 

  • Ha, J. S., Byun, J., & Ahn, D. R. (2016). Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption. Scientific Report, 6, 22847.

    Article  CAS  Google Scholar 

  • Hällbrink, M., Floren, A., Elmquist, A., Pooga, M., Bartfai, T., & Langel, Ü. (2001). Cargo delivery kinetics of cell-penetrating peptides. Biochimica et Biophysica Acta, 1515, 101–109.

    Article  PubMed  Google Scholar 

  • Hällbrink, M., & Karelson, M. (2015). Prediction of cell-penetrating peptides. Methods in Molecular Biology, 1324, 39–58.

    Article  PubMed  Google Scholar 

  • Hällbrink, M., Kilk, K., Elmquist, A., Lundberg, P., Lindgren, M., Jiang, Y., et al. (2005). Prediction of cell-penetrating peptides. International Journal of Peptide Research and Therapeutics, 11, 249–259.

    Article  CAS  Google Scholar 

  • Hällbrink, M., & Langel, Ü. (2006). Prediction of cell-penetrating peptides and prodrug approach. In Ü. Langel (Ed.), Handbook of cell-penetrating peptides (2nd ed., pp. 77–85). Boca Raton, London, New York: CRC Press/Taylor & Francis.

    Chapter  Google Scholar 

  • Hällbrink, M., Saar, K., Östenson, C. G., Soomets, U., Efendic, S., Howl, J., et al. (1999). Effects of vasopressin-mastoparan chimeric peptides on insulin release and G-protein activity. Regulatory Peptides, 82, 45–51.

    Article  PubMed  Google Scholar 

  • Hammond, S. M., Hazell, G., Shabanpoor, F., Saleh, A. F., Bowerman, M., Sleigh, J. N., et al. (2016). Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proceedings of the National Academy of Sciences USA, 113, 10962–10967.

    Article  CAS  Google Scholar 

  • Hansen, M., Kilk, K., & Langel, Ü. (2008). Predicting cell-penetrating peptides. Advanced Drug Delivery Reviews, 60, 572–579.

    Article  CAS  PubMed  Google Scholar 

  • Harreither, E., Rydberg, H. A., Amand, H. L., Jadhav, V., Fliedl, L., Benda, C., et al. (2014). Characterization of a novel cell penetrating peptide derived from human Oct4. Cell Regen (Lond), 3, 2.

    Google Scholar 

  • Hattori, T., Okitsu, K., Yamazaki, N., Ohoka, N., Shibata, N., Misawa, T., et al. (2017). Simple and efficient knockdown of His-tagged proteins by ternary molecules consisting of a His-tag ligand, a ubiquitin ligase ligand, and a cell-penetrating peptide. Bioorganic & Medicinal Chemistry Letters, 27, 4478–4481.

    Article  CAS  Google Scholar 

  • Hayashi, Y., Mizuno, R., Ikramy, K. A., Akita, H., & Harashima, H. (2012). Pretreatment of hepatocyte growth factor gene transfer mediated by octaarginine peptide-modified nanoparticles ameliorates LPS/D-galactosamine-induced hepatitis. Nucleic Acid Therapeutics, 22, 360–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., Li, F., & Huang, Y. (2018). Smart cell-penetrating peptide-based techniques for intracellular delivery of therapeutic macromolecules. Advances in Protein Chemistry and Structural Biology, 112, 183–220.

    Article  CAS  PubMed  Google Scholar 

  • Helmfors, H., Eriksson, J., & Langel, Ü. (2015). Optimized luciferase assay for cell-penetrating peptide-mediated delivery of short oligonucleotides. Analytical Biochemistry, 484, 136–142.

    Article  CAS  PubMed  Google Scholar 

  • Heng, B. C., & Fussenegger, M. (2014). Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification. Methods in Molecular Biology, 0554-6_6.

    Google Scholar 

  • Herbig, M. E., Fromm, U., Leuenberger, J., Krauss, U., Beck-Sickinger, A. G., & Merkle, H. P. (2005). Bilayer interaction and localization of cell penetrating peptides with model membranes: a comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43-58). Biochimica et Biophysica Acta, 1712, 197–211.

    Article  CAS  PubMed  Google Scholar 

  • Hirai, T., Yamagishi, Y., Koizumi, N., Nonaka, M., Mochida, R., Shida, K., et al. (2017). Identification of adenovirus-derived cell-penetrating peptide. Biological & Pharmaceutical Bulletin, 40, 195–204.

    Article  CAS  Google Scholar 

  • Howl, J., & Jones, S. (2015a). Cell penetrating peptide-mediated transport enables the regulated secretion of accumulated cargoes from mast cells. Journal of Controlled Release, 202, 108–117.

    Article  CAS  PubMed  Google Scholar 

  • Howl, J., & Jones, S. (2015b). Insights into the molecular mechanisms of action of bioportides: A strategy to target protein-protein interactions. Expert Reviews in Molecular Medicine, 17, e1.

    Article  PubMed  CAS  Google Scholar 

  • Howl, J., & Jones, S. (2015c). Protein mimicry and the design of bioactive cell-penetrating peptides. Methods in Molecular Biology, 1324, 177–190.

    Article  PubMed  Google Scholar 

  • Howl, J., Langel, Ü., Hawtin, S. R., Valkna, A., Yarwood, N. J., Saar, K., et al. (1997). Chimeric strategies for the rational design of bioactive analogs of small peptide hormones. FASEB Journal, 11, 582–590.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q., Chen, R., Teesalu, T., Ruoslahti, E., & Clegg, D. O. (2014). Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Translational Medicine, 3, 1526–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q. L., Jiang, Q. Y., Jin, X., Shen, J., Wang, K., Li, Y. B., et al. (2013). Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials, 34, 2265–2276.

    Article  CAS  PubMed  Google Scholar 

  • Hyrup Moller, L., Bahnsen, J. S., Nielsen, H. M., Ostergaard, J., Sturup, S., & Gammelgaard, B. (2015). Selenium as an alternative peptide label - comparison to fluorophore-labelled penetratin. European Journal of Pharmaceutical Sciences, 67, 76–84.

    Google Scholar 

  • Hyun, S., Choi, Y., Lee, H. N., Lee, C., Oh, D., Lee, D. K., et al. (2018). Construction of histidine-containing hydrocarbon stapled cell penetrating peptides for in vitro and in vivo delivery of siRNAs. Chemical Science, 9, 3820–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyvonen, M., Enbäck, J., Huhtala, T., Lammi, J., Sihto, H., Weisell, J., et al. (2014). Novel target for peptide-based imaging and treatment of brain tumors. Molecular Cancer Therapeutics, 13, 996–1007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyvonen, M., & Laakkonen, P. (2015). Identification and characterization of homing peptides using in vivo peptide phage display. Methods in Molecular Biology, 1324, 205–222.

    Article  PubMed  Google Scholar 

  • Ifediba, M. A., Medarova, Z., Ng, S. W., Yang, J., & Moore, A. (2010). siRNA delivery to CNS cells using a membrane translocation peptide. Bioconjugate Chemistry, 21, 803–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatovich, I. A., Dizhe, E. B., Pavlotskaya, A. V., Akifiev, B. N., Burov, S. V., Orlov, S. V., et al. (2003). Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat Protein are transferred to mammalian cells by endocytosis-mediated pathways. Journal of Biological Chemistry, 278, 42625–42636.

    Article  CAS  PubMed  Google Scholar 

  • Illien, F., Rodriguez, N., Amoura, M., Joliot, A., Pallerla, M., Cribier, S., et al. (2016). Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Scienfic Report, 6.

    Google Scholar 

  • Imani, R., Emami, S. H., & Faghihi, S. (2015). Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. Physical Chemistry Chemical Physics: PCCP, 17, 6328–6339.

    Article  CAS  PubMed  Google Scholar 

  • Imani, R., Prakash, S., Vali, H., & Faghihi, S. (2018). Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: An optimization for efficient nucleic acid delivery. Biomaterials Science, 6, 1636–1650.

    Article  CAS  PubMed  Google Scholar 

  • Imani, R., Shao, W., Taherkhani, S., Emami, S. H., Prakash, S., & Faghihi, S. (2016). Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids and Surfaces B: Biointerfaces, 147, 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro, S., Alhakamy, N. A., Uppalapati, D., Delzeit, J., Berkland, C. J., & Tamura, M. (2016). Combined local pulmonary and systemic delivery of AT2R gene by modified tat peptide nanoparticles attenuates both murine and human lung carcinoma xenografts in mice. Journal of Pharmaceutical Sciences, 18, 41686-2.

    Google Scholar 

  • Iwase, Y., Kamei, N., Khafagy El, S., Miyamoto, M., & Takeda-Morishita, M. (2016). Use of a non-covalent cell-penetrating peptide strategy to enhance the nasal delivery of interferon beta and its PEGylated form. International Journal of Pharmaceutics, 510, 304–310.

    Google Scholar 

  • Jearawiriyapaisarn, N., Moulton, H. M., Buckley, B., Roberts, J., Sazani, P., Fucharoen, S., et al. (2008). Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Molecular Therapy, 16, 1624–1629.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, C., Yoo, J., Lee, D., & Kim, Y. C. (2016). A branched TAT cell-penetrating peptide as a novel delivery carrier for the efficient gene transfection. Biomaterials Research, 20, 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji, X., Lv, H., Guo, J., Ding, C., & Luo, X. (2018). A DNA nanotube-peptide biocomplex for mRNA detection and its application in cancer diagnosis and targeted therapy. Chemistry.

    Google Scholar 

  • Jones, L. R., Goun, E. A., Shinde, R., Rothbard, J. B., Contag, C. H., & Wender, P. A. (2006). Releasable luciferin-transporter conjugates: tools for the real-time analysis of cellular uptake and release. Journal of the American Chemical Society, 128, 6526–6527.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H., Kim, D. O., Byun, J. E., Kim, W. S., Kim, M. J., Song, H. Y., et al. (2016). Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p 38 kinase activity. Nature Communications, 7.

    Google Scholar 

  • Jung, M. R., Shim, I. K., Kim, E. S., Park, Y. J., Yang, Y. I., Lee, S. K., et al. (2011). Controlled release of cell-permeable gene complex from poly(L-lactide) scaffold for enhanced stem cell tissue engineering. Journal of Controlled Release, 152, 294–302.

    Article  CAS  PubMed  Google Scholar 

  • Kadkhodayan, S., Jafarzade, B. S., Sadat, S. M., Motevalli, F., Agi, E., & Bolhassani, A. (2017). Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunology Letters, 188, 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Kadkhodayan, S., Sadat, S. M., Irani, S., Fotouhi, F., & Bolhassani, A. (2016). Generation of GFP native protein for detection of its intracellular uptake by cell-penetrating peptides. Folia Biologica, 62, 103–109.

    CAS  PubMed  Google Scholar 

  • Kaitsuka, T., Noguchi, H., Shiraki, N., Kubo, T., Wei, F. Y., Hakim, F., et al. (2014). Generation of functional insulin-producing cells from mouse embryonic stem cells through 804G cell-derived extracellular matrix and protein transduction of transcription factors. Stem Cells Transl Med, 3, 114–127.

    Article  CAS  PubMed  Google Scholar 

  • Kaitsuka, T., & Tomizawa, K. (2015). Cell-penetrating peptide as a means of directing the differentiation of induced-pluripotent stem cells. International Journal of Molecular Sciences, 16, 26667–26676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalafatovic, D., & Giralt, E. (2017). Cell-penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules, 22.

    Google Scholar 

  • Kam, Y., Rubinstein, A., Naik, S., Djavsarov, I., Halle, D., Ariel, I., et al. (2014). Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons. Cancer Letters, 352, 90–96.

    Article  CAS  PubMed  Google Scholar 

  • Kamei, N., Shingaki, T., Kanayama, Y., Tanaka, M., Zochi, R., Hasegawa, K., et al. (2016). Visualization and quantitative assessment of the brain distribution of insulin through nose-to-brain delivery based on the cell-penetrating peptide noncovalent strategy. Molecular Pharmaceutics, 13, 1004–1011.

    Article  CAS  PubMed  Google Scholar 

  • Kameyama, S., Horie, M., Kikuchi, T., Omura, T., Takeuchi, T., Nakase, I., et al. (2006). Effects of cell-permeating peptide binding on the distribution of 125I-labeled Fab fragment in rats. Bioconjugate Chemistry, 17, 597–602.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S. H., Cho, M. J., & Kole, R. (1998). Up-regulation of luciferase gene expression with antisense oligonucleotides: Implications and applications in functional assay development. Biochemistry, 37, 6235–6239.

    Article  CAS  PubMed  Google Scholar 

  • Karagiannis, E. D., Alabi, C. A., & Anderson, D. G. (2012). Rationally designed tumor-penetrating nanocomplexes. ACS Nano, 6, 8484–8487.

    Article  CAS  PubMed  Google Scholar 

  • Karas, J., Turner, B. J., & Shabanpoor, F. (2018). The assembly of fluorescently labeled peptide-oligonucleotide conjugates via orthogonal ligation strategies. Methods in Molecular Biology, 1828, 355–363.

    Article  PubMed  Google Scholar 

  • Kato, T., Yamashita, H., Misawa, T., Nishida, K., Kurihara, M., Tanaka, M., et al. (2016). Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorganic & Medicinal Chemistry, 24, 2681–2687.

    Article  CAS  Google Scholar 

  • Kauffman, W. B., Guha, S., & Wimley, W. C. (2018). Synthetic molecular evolution of hybrid cell penetrating peptides. Nature Communications, 9, 2568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keller, A. A., Breitling, R., Hemmerich, P., Kappe, K., Braun, M., Wittig, B., et al. (2014). Transduction of proteins into leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides. Journal of Cellular Biochemistry, 115, 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Khalil, I. A., & Harashima, H. (2018). An efficient pegylated gene delivery system with improved targeting: Synergism between octaarginine and a fusogenic peptide. International Journal of Pharmaceutics.

    Google Scholar 

  • Khalil, I. A., Hayashi, Y., Mizuno, R., & Harashima, H. (2011). Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. Journal of Controlled Release, 156, 374–380.

    Article  CAS  PubMed  Google Scholar 

  • Khalil, I. A., Kimura, S., Sato, Y., & Harashima, H. (2018). Synergism between a cell penetrating peptide and a pH-sensitive cationic lipid in efficient gene delivery based on double-coated nanoparticles. Journal of Controlled Release, 275, 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Kilk, K., el Andaloussi, S., Järver, P., Meikas, A., Valkna, A., Bartfai, T., et al. (2005). Evaluation of transportan 10 in PEI mediated plasmid delivery assay. Journal of Controlled Release, 103, 511–523.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D. H., & Choi, J. M. (2018). Chitinase 3-like-1, a novel regulator of Th1/CTL responses, as a therapeutic target for increasing anti-tumor immunity. BMB Reports.

    Google Scholar 

  • Kim, D., Lee, Y., Dreher, T. W., & Cho, T. J. (2018). Empty Turnip yellow mosaic virus capsids as delivery vehicles to mammalian cells. Virus Research.

    Google Scholar 

  • Kiss, E., Gyulai, G., Pari, E., Horvati, K., & Bosze, S. (2018). Membrane affinity and fluorescent labelling: comparative study of monolayer interaction, cellular uptake and cytotoxicity profile of carboxyfluorescein-conjugated cationic peptides. Amino Acids.

    Google Scholar 

  • Knight, J. C., Topping, C., Mosley, M., Kersemans, V., Falzone, N., Fernandez-Varea, J. M., et al. (2015). PET imaging of DNA damage using (89)Zr-labelled anti-gammaH2AX-TAT immunoconjugates. European Journal of Nuclear Medicine and Molecular Imaging, 42, 1707–1717.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, H., Misawa, T., Oba, M., Hirata, N., Kanda, Y., Tanaka, M., et al. (2018). Structural development of cell-penetrating peptides containing cationic proline derivatives. Chemical and Pharmaceutical Bulletin (Tokyo), 66, 575–580.

    Article  CAS  Google Scholar 

  • Komor, A. C., Badran, A. H., & Liu, D. R. (2016). CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 15, 31465–31469.

    Google Scholar 

  • Konate, K., Rydstrom, A., Divita, G., & Deshayes, S. (2013). Everything you always wanted to know about CADY-mediated siRNA delivery* (* but afraid to ask). Current Pharmaceutical Design, 19, 2869–2877.

    Article  CAS  PubMed  Google Scholar 

  • Kostiv, U., Kotelnikov, I., Proks, V., Slouf, M., Kucka, J., Engstova, H., et al. (2016). RGDS- and TAT-conjugated upconversion of NaYF4:Yb(3+)/Er(3+)&SiO2 nanoparticles. In vitro human epithelioid cervix carcinoma cellular uptake, imaging, and targeting. ACS Applied Materials & Interfaces, 8, 20422–20431.

    Article  CAS  Google Scholar 

  • Kristensen, M., Birch, D., & Mörck Nielsen, H. (2016). Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. International Journal of Molecular Sciences, 17, pii: E185.

    Google Scholar 

  • Kumar, V., Agrawal, P., Kumar, R., Bhalla, S., Usmani, S. S., Varshney, G. C., et al. (2018). Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues. Frontiers in Microbiology, 9, 725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurrikoff, K., Gestin, M., & Langel, Ü. (2016). Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opinion on Drug Delivery, 13, 373–387.

    Article  CAS  PubMed  Google Scholar 

  • Kurrikoff, K., Veiman, K. L., Kunnapuu, K., Peets, E. M., Lehto, T., Parnaste, L., et al. (2017). Effective in vivo gene delivery with reduced toxicity, achieved by charge and fatty acid -modified cell penetrating peptide. Scientific Report, 7, 17056.

    Article  CAS  Google Scholar 

  • Kurrikoff, K., Veiman, K.-L., & Langel, Ü. (2015). CPP-based delivery system for in vivo gene delivery. Methods in Molecular Biology, 1324, 339–347.

    Article  PubMed  Google Scholar 

  • Kyrychenko, A., Rodnin, M. V., & Ladokhin, A. S. (2015). Calibration of distribution analysis of the depth of membrane penetration using simulations and depth-dependent fluorescence quenching. Journal of Membrane Biology, 248, 583–594.

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin, A. S. (2014). Measuring membrane penetration with depth-dependent fluorescence quenching: distribution analysis is coming of age. Biochimica et Biophysica Acta, 9, 1.

    Google Scholar 

  • Langel, Ü., Land, T., & Bartfai, T. (1992). Design of chimeric peptide ligands to galanin receptors and substance P receptors. International Journal of Peptide and Protein Research, 39, 516–522.

    Article  CAS  PubMed  Google Scholar 

  • Langel, Ü., Pooga, M., Kairane, C., Zilmer, M., & Bartfai, T. (1996). A galanin-mastoparan chimeric peptide activates the Na+, K(+)-ATPase and reverses its inhibition by ouabain. Regulatory Peptides, 62, 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., & Bogyo, M. (2010). Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chemical Biology, 5, 233–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, E. Y., Fulan, B. M., Wong, G. C., & Ferguson, A. L. (2016). Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proceedings of the National Academy of Sciences USA, 14, 201609893.

    Google Scholar 

  • Lee, J., Moon, S. U., Lee, Y. S., Ali, B. A., Al-Khedhairy, A. A., Ali, D., et al. (2015) Quantum dot-based molecular beacon to monitor intracellular microRNAs. Sensors (Basel), 15, 12872–12883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Sayed, N., Hunter, A., Au, K. F., Wong, W. H., Mocarski, E. S., et al. (2012). Activation of innate immunity is required for efficient nuclear reprogramming. Cell, 151, 547–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehto, T., Abes, R., Oskolkov, N., Suhorutsenko, J., Copolovici, D. M., Mäger, I., et al. (2010). Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. Journal of Controlled Release, 141, 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Lehto, T., Ezzat, K., Wood, M. J., & el Andaloussi, S. (2016). Peptides for nucleic acid delivery. Advanced Drug Delivery Reviews, 106, 172–182.

    Article  CAS  PubMed  Google Scholar 

  • Lehto, T., Vasconcelos, L., Margus, H., Figueroa, R., Pooga, M., Hällbrink, M., et al. (2017). Saturated fatty acid analogues of cell-penetrating peptide PepFect14: Role of fatty acid modification in complexation and delivery of splice-correcting oligonucleotides. Bioconjugate Chemistry, 28, 782–792.

    Article  CAS  PubMed  Google Scholar 

  • Lei, Y., Tang, H., Yao, L., Yu, R., Feng, M., & Zou, B. (2008). Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjugate Chemistry, 19, 421–427.

    Article  CAS  PubMed  Google Scholar 

  • Levacic, A. K., Morys, S., Kempter, S., Lachelt, U., & Wagner, E. (2017). Minicircle versus plasmid DNA delivery by receptor-targeted polyplexes. Human Gene therapy, 28, 862–874.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Kim, S. Y., Pittman, A. E., King, G. M., Wimley, W. C., & Hristova, K. (2018). Potent macromolecule-sized poration of lipid bilayers by the macrolittins, A synthetically evolved family of pore-forming peptides. Journal of the American Chemicals.

    Google Scholar 

  • Li, H., & Tsui, T. (2015). Six-cell penetrating peptide-based fusion proteins for siRNA delivery. Drug Delivery, 22, 436–443.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Zheng, X., Koren, V., Vashist, Y. K., & Tsui, T. Y. (2014). Highly efficient delivery of siRNA to a heart transplant model by a novel cell penetrating peptide-dsRNA binding domain. International Journal of Pharmaceutics, 469, 206–213.

    Article  CAS  PubMed  Google Scholar 

  • Lim, J., Kim, J., Kang, J., & JO, D. (2014). Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors. Scientific Report, 4.

    Google Scholar 

  • Lindberg, S., Munoz-Alarcon, A., Helmfors, H., Mosqueira, D., Gyllborg, D., Tudoran, O., et al. (2013). PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors. International Journal of Pharmaceutics, 441, 242–247.

    Article  CAS  PubMed  Google Scholar 

  • Lindgren, M., Gallet, X., Soomets, U., Hällbrink, M., Brakenhielm, E., Pooga, M., et al. (2000). Translocation properties of novel cell penetrating transportan and penetratin analogues. Bioconjugate Chemistry, 11, 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Braun, G. B., Qin, M., Ruoslahti, E., & Sugahara, K. N. (2017). In vivo cation exchange in quantum dots for tumor-specific imaging. Nature Communications, 8, 343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, J., Gaj, T., Yang, Y., Wang, N., Shui, S., Kim, S., et al. (2015). Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nature Protocols, 10, 1842–1859.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Guo, Y. M., Wu, Q. F., Yang, J. L., Wang, P., Wang, S. C., et al. (2006). Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro. Biochemical and Biophysical Research Communications, 347, 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B. R., Huang, Y. W., Chiang, H. J., & Lee, H. J. (2010). Cell-penetrating peptide-functionalized quantum dots for intracellular delivery. Journal of Nanoscience and Nanotechnology, 10, 7897–7905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Wu, X., Gao, Y., Zhang, J., Zhang, D., Gu, S., et al. (2016a). Aptamer-functionalized peptide H3CR219C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. International Journal of Nanomedicine, 11, 3891–3905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Zeng, F., Zhang, M., Huang, F., Wang, J., Guo, J., et al. (2016b). Emerging landscape of cell penetrating peptide in reprogramming and gene editing. Journal of Controlled Release, 226, 124–137.

    Article  CAS  PubMed  Google Scholar 

  • Lönn, P., & Dowdy, S. F. (2015). Cationic PTD/CPP-mediated macromolecular delivery: Charging into the cell. Expert opinion on drug delivery, 12, 1627–1636.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzetto, E., Ettorre, M., Pontelli, V., Bolomini-Vittori, M., Bolognin, S., Zorzan, S., et al. (2013). Rac1 selective activation improves retina ganglion cell survival and regeneration. PLoS One, 8.

    Google Scholar 

  • Lostale-Seijo, I., Louzao, I., Juanes, M., & Montenegro, J. (2017). Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chemical Science, 8, 7923–7931.

    Google Scholar 

  • Lou, G., Zhang, Q., Xiao, F., Xiang, Q., Su, Z., Zhang, L., et al. (2012). Intranasal administration of TAT-haFGF((1)(4)(-)(1)(5)(4)) attenuates disease progression in a mouse model of Alzheimer’s disease. Neuroscience, 223, 225–237.

    Article  CAS  PubMed  Google Scholar 

  • Lovatt, D., Ruble, B. K., Lee, J., Dueck, H., Kim, T. K., Fisher, S., et al. (2014). Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nature Methods, 11, 190–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg, P., el Andaloussi, S., Sutlu, T., Johansson, H., & Langel, Ü. (2007). Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB Journal, 21, 2664–2671.

    Article  CAS  PubMed  Google Scholar 

  • Ma, W., Jin, G. W., Gehret, P. M., Chada, N. C., & Suh, W. H. (2018). A novel cell penetrating peptide for the differentiation of human neural stem cells. Biomolecules, 8.

    Google Scholar 

  • Mäe, M., el Andaloussi, S., Lundin, P., Oskolkov, N., Johansson, H. J., Guterstam, P., et al. (2009). A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. Journal of Controlled Release, 134, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Mäger, I., Eiriksdottir, E., Langel, K., el Andaloussi, S., & Langel, Ü. (2010). Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochimica et Biophysica Acta, 1798, 338–343.

    Article  PubMed  CAS  Google Scholar 

  • Mäger, I., Langel, K., Lehto, T., Eiriksdottir, E., & Langel, Ü. (2012). The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica et Biophysica Acta, 1818, 502–511.

    Article  PubMed  CAS  Google Scholar 

  • Magzoub, M., Eriksson, L. E., & Graslund, A. (2003). Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophysical Chemistry, 103, 271–288.

    Article  CAS  PubMed  Google Scholar 

  • Mahmood, A., Prufert, F., Efiana, N. A., Ashraf, M. I., Hermann, M., Hussain, S., et al. (2016). Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert opinion on drug delivery, 13, 1503–1512.

    Article  CAS  PubMed  Google Scholar 

  • Manavalan, B., Subramaniyam, S., Shin, T. H., Kim, M., O. & Lee, G. (2018). Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. Journal of Proteome Research.

    Google Scholar 

  • Manceur, A., Wu, A., & Audet, J. (2007). Flow cytometric screening of cell-penetrating peptides for their uptake into embryonic and adult stem cells. Analytical Biochemistry, 364, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Manicardi, A., Fabbri, E., Tedeschi, T., Sforza, S., Bianchi, N., Brognara, E., et al. (2012). Cellular uptakes, biostabilities and anti-miR-210 activities of chiral arginine-PNAs in leukaemic K562 cells. ChemBioChem, 13, 1327–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann, A., Thakur, G., Shukla, V., Singh, A. K., Khanduri, R., Naik, R., et al. (2011). Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies. Molecular Pharmaceutics, 8, 1729–1741.

    Article  CAS  PubMed  Google Scholar 

  • Margus, H., Arukuusk, P., Langel, U., & Pooga, M. (2016). Characteristics of cell-penetrating peptide/nucleic acid nanoparticles. Molecular Pharmaceutics, 13, 172–179.

    Article  CAS  PubMed  Google Scholar 

  • Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., et al. (2005). Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. Journal of Biological Chemistry, 280, 26360–26370.

    Article  CAS  PubMed  Google Scholar 

  • Martins, I. M., Reis, R. L., & Azevedo, H. S. (2016). Phage display technology in biomaterials engineering: Progress and opportunities for applications in regenerative medicine. ACS Chemical Biology, 10, 10.

    Google Scholar 

  • Mathupala, S. P. (2009). Delivery of small-interfering RNA (siRNA) to the brain. Expert Opinion on Therapeutic Patents, 19, 137–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell, D., Chang, Q., Zhang, X., Barnett, E. M., & Piwnica-Worms, D. (2009). An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging. Bioconjugate Chemistry, 20, 702–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy, H. O., McCaffrey, J., McCrudden, C. M., Zholobenko, A., Ali, A. A., McBride, J. W., et al. (2014). Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. Journal of Controlled Release, 189, 141–149.

    Article  CAS  PubMed  Google Scholar 

  • McClorey, G., & Banerjee, S. (2018). Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines, 6.

    Google Scholar 

  • Meade, B. R., & Dowdy, S. F. (2007). Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Advanced Drug Delivery Reviews, 59, 134–140.

    Article  CAS  PubMed  Google Scholar 

  • Medema, R. H., Kops, G. J. P. L., Bos, J. L., & Burgering, B. M. T. (2000). AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27(kip1). Nature, 404, 782–787.

    Article  CAS  PubMed  Google Scholar 

  • Medintz, I. L., Pons, T., Delehanty, J. B., Susumu, K., Brunel, F. M., Dawson, P. E., et al. (2008). Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjugate Chemistry, 19, 1785–1795.

    Article  CAS  PubMed  Google Scholar 

  • Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Meerovich, I., Muthukrishnan, N., Johnson, G. A., Erazo-Oliveras, A., & Pellois, J. P. (2014). Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide. Biochimica et Biophysica Acta, 1840, 507–515.

    Article  CAS  PubMed  Google Scholar 

  • Meng, Z., Guo, L., & Li, Q. (2017). Peptide-coated semiconductor polymer dots for stem cells labeling and tracking. Chemistry, 23, 6836–6844.

    Article  CAS  PubMed  Google Scholar 

  • Meng, Z., Kang, Z., Sun, C., Yang, S., Zhao, B., Feng, S., et al. (2018). Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR. Nanoscale, 10, 1215–1227.

    Article  CAS  PubMed  Google Scholar 

  • Mesken, J., Iltzsche, A., Mulac, D., & Langer, K. (2017). Modifying plasmid-loaded HSA-nanoparticles with cell penetrating peptides—Cellular uptake and enhanced gene delivery. International Journal of Pharmaceutics, 522, 198–209.

    Article  CAS  PubMed  Google Scholar 

  • Michiue, H., Eguchi, A., Scadeng, M., & Dowdy, S. F. (2009). Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma. Cancer Biology & Therapy, 8, 2306–2313.

    Article  Google Scholar 

  • Mitra, R. N., Zheng, M., Weiss, E. R., & Han, Z. (2018). Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Biomaterials, 157, 26–39.

    Article  CAS  PubMed  Google Scholar 

  • Mitsueda, A., Shimatani, Y., Ito, M., Ohgita, T., Yamada, A., Hama, S., et al. (2013). Development of a novel nanoparticle by dual modification with the pluripotential cell-penetrating peptide PepFect6 for cellular uptake, endosomal escape, and decondensation of an siRNA core complex. Biopolymers, 100, 698–704.

    Article  CAS  PubMed  Google Scholar 

  • Mondhe, M., Chessher, A., Goh, S., Good, L., & Stach, J. E. (2014). Species-selective killing of bacteria by antimicrobial peptide-PNAs. PLoS ONE, 9, e89082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales, D. P., Wonderly, W. R., Huang, X., McAdams, M., Chron, A. B., & Reich, N. O. (2017). Affinity-based assembly of peptides on plasmonic nanoparticles delivered intracellularly with light activated control. Bioconjugate Chemistry, 28, 1816–1820.

    Article  CAS  PubMed  Google Scholar 

  • Morris, M. C., Chaloin, L., Méry, J., Heitz, F., & Divita, G. (1999). A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Research, 27, 3510–3517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris, M. C., Depollier, J., Mery, J., Heitz, F., & Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 19, 1173–1176.

    Article  CAS  PubMed  Google Scholar 

  • Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Research, 25, 2730–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moschos, S. A., Jones, S. W., Perry, M. M., Williams, A. E., Erjefalt, J. S., Turner, J. J., et al. (2007). Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjugate Chemistry, 18, 1450–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulay, G., Leborgne, C., Mason, A. J., Aisenbrey, C., Kichler, A., & Bechinger, B. (2017). Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. Journal of Peptide Science, 23, 320–328.

    Article  CAS  PubMed  Google Scholar 

  • Mukai, Y., Sugita, T., Yamato, T., Yamanada, N., Shibata, H., Imai, S., et al. (2006). Creation of novel Protein Transduction Domain (PTD) mutants by a phage display-based high-throughput screening system. Biological & Pharmaceutical Bulletin, 29, 1570–1574.

    Article  CAS  Google Scholar 

  • Munoz-Alarcon, A., Eriksson, J., & Langel, U. (2015). Novel efficient cell-penetrating, peptide-mediated strategy for enhancing telomerase inhibitor oligonucleotides. Nucleic Acid Therapeutics, 25, 306–310.

    Article  CAS  PubMed  Google Scholar 

  • Murata, Y., Jo, J. I., & Tabata, Y. (2017). Preparation of gelatin nanospheres incorporating quantum dots and iron oxide nanoparticles for multimodal cell imaging. Journal of Biomaterials Science, Polymer Edition, 28, 555–568.

    Article  CAS  Google Scholar 

  • Muratovska, A., & Eccles, M. R. (2004). Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Letters, 558, 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Muthukrishnan, N., Donovan, S., & Pellois, J. P. (2014). The photolytic activity of poly-arginine cell penetrating peptides conjugated to carboxy-tetramethylrhodamine is modulated by arginine residue content and fluorophore conjugation site. Photochemistry and Photobiology, 90, 1034–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myrberg, H., Lindgren, M., & Langel, Ü. (2007). Protein delivery by the cell-penetrating peptide YTA2. Bioconjugate Chemistry, 18, 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Myrberg, H., Zhang, L., Mäe, M., & Langel, Ü. (2008). Design of a tumor-homing cell-penetrating peptide. Bioconjugate Chemistry, 19, 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Nagel, Y. A., Raschle, P. S., & Wennemers, H. (2017). Effect of preorganized charge-display on the cell-penetrating properties of cationic peptides. Angewandte Chemie (International edition in English), 56, 122–126.

    Article  CAS  Google Scholar 

  • Najjar, K., Erazo-Oliveras, A., & Pellois, J. P. (2015). Delivery of proteins, peptides or cell-impermeable small molecules into live cells by incubation with the endosomolytic reagent dfTAT. Journal of Visualized Experiments, 2, 53175.

    Google Scholar 

  • Nakamura, Y., Kogure, K., Futaki, S., & Harashima, H. (2007). Octaarginine-modified multifunctional envelope-type nano device for siRNA. Journal of Controlled Release, 119, 360–367.

    Article  CAS  PubMed  Google Scholar 

  • Nakase, I., Akita, H., Kogure, K., Gräslund, A., Langel, Ü., Harashima, H., et al. (2012). Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Accounts of Chemical Research, 45, 1132–1139.

    Article  CAS  PubMed  Google Scholar 

  • Nascimento, F. D., Hayashi, M. A., Kerkis, A., Oliveira, V., Oliveira, E. B., Radis-Baptista, G., et al. (2007). Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. Journal of Biological Chemistry, 282, 21349–21360.

    Article  CAS  PubMed  Google Scholar 

  • Ndeboko, B., Ramamurthy, N., Lemamy, G. J., Jamard, C., Nielsen, P. E., & Cova, L. (2017). Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication. Molecular Therapy—Nucleic Acids, 9, 162–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neundorf, I. (2017). Metal complex-peptide conjugates: How to modulate bioactivity of metal-containing compounds by the attachment to peptides. Current Medicinal Chemistry, 24, 1853–1861.

    Article  CAS  PubMed  Google Scholar 

  • Ni, Z., Gong, Y., Dai, X., Ding, W., Wang, B., Gong, H., et al. (2015). AU4S: a novel synthetic peptide to measure the activity of ATG4 in living cells. Autophagy, 11, 403–415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niidome, T., Urakawa, M., Takaji, K., Matsuo, Y., Ohmori, N., Wada, A., et al. (1999). Influence of lipophilic groups in cationic alpha-helical peptides on their abilities to bind with DNA and deliver genes into cells. Journal of Peptide Research, 54, 361–367.

    Article  CAS  Google Scholar 

  • Niu, J., Chu, Y., Huang, Y. F., Chong, Y. S., Jiang, Z. H., Mao, Z. W., et al. (2017). Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Applied Materials & Interfaces, 9, 9388–9401.

    Article  CAS  Google Scholar 

  • Noguchi, H., Bonner-Weir, S., Wei, F. Y., Matsushita, M., & Matsumoto, S. (2005). BETA2/NeuroD protein can be transduced into cells due to an arginine- and lysine-rich sequence. Diabetes, 54, 2859–2866.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi, H., Kaneto, H., Weir, G. C., & Bonner-Weir, S. (2003). PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes, 52, 1732–1737.

    Article  CAS  PubMed  Google Scholar 

  • Nussbaumer, M. G., Duskey, J. T., Rother, M., Renggli, K., Chami, M., & Bruns, N. (2016). Chaperonin-Dendrimer conjugates for siRNA Delivery. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 3, 1600046.

    Google Scholar 

  • O’Connor, R. M., Gururajan, A., Dinan, T. G., Kenny, P. J., & Cryan, J. F. (2016). All Roads Lead to the miRNome: miRNAs Have a Central Role in the Molecular Pathophysiology of Psychiatric Disorders. Trends in Pharmacological Sciences, 37, 1029–1044.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S. Y., Ju, Y., Kim, S., & Park, H. (2010). PNA-based antisense oligonucleotides for micrornas inhibition in the absence of a transfection reagent. Oligonucleotides, 20, 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Oh, S. Y., Ju, Y., & Park, H. (2009). A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Molecules and Cells, 28, 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Okuda-Shinagawa, N. M., Moskalenko, Y. E., Junqueira, H. C., Baptista, M. S., Marques, C. M., & Machini, M. T. (2017). Fluorescent and photosensitizing conjugates of cell-penetrating peptide TAT(47-57): Design, microwave-assisted synthesis at 60 °C, and properties. ACS Omega, 2, 8156–8166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’malley, W. I., Rubbiani, R., Aulsebrook, M. L., Grace, M. R., Spiccia, L., Tuck, K. L., et al. (2016). Cellular uptake and photo-cytotoxicity of a Gadolinium(III)-DOTA-Naphthalimide complex “clicked” to a lipidated tat peptide. Molecules, 21.

    Google Scholar 

  • Onoshima, D., Yukawa, H., & Baba, Y. (2015). Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Advanced Drug Delivery Reviews, 95, 2–14.

    Article  CAS  PubMed  Google Scholar 

  • Oskolkov, N., Arukuusk, P., Copolovici, D.-M., Lindberg, S., Margus, H., Padari, K., et al. (2011). NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. International Journal of Peptide Research and Therapeutics, 17, 147–157.

    Article  CAS  Google Scholar 

  • Östlund, P., Kilk, K., Lindgren, M., Hällbrink, M., Jiang, Y., Budihna, M., et al. (2005). Cell-penetrating mimics of agonist-activated G-protein coupled receptors. International Journal of Peptide Research and Therapeutics, 11, 237–247.

    Article  CAS  Google Scholar 

  • Paasonen, L., Sharma, S., Braun, G. B., Kotamraju, V. R., Chung, T. D., She, Z. G., et al. (2016). New p32/gC1qR ligands for targeted tumor drug delivery. ChemBioChem, 17, 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padari, K., Koppel, K., Lorents, A., Hallbrink, M., Mano, M., Pedroso De Lima, M. C., et al. (2010). S4(13)-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells. Bioconjugate Chemistry, 21, 774–783.

    Article  CAS  PubMed  Google Scholar 

  • Pan, D., Hu, Z., Qiu, F., Huang, Z. L., Ma, Y., Wang, Y., et al. (2014). A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nature Communications, 5, 5573.

    Article  CAS  PubMed  Google Scholar 

  • Pärn, K., Viru, L., Lehto, T., Oskolkov, N., Langel, Ü., & Merits, A. (2013). Transfection of infectious RNA and DNA/RNA layered vectors of semliki forest virus by the cell-penetrating peptide based reagent PepFect6. PLoS ONE, 8, e69659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pärnaste, L., Arukuusk, P., Langel, K., Tenson, T., & Langel, Ü. (2017). The formation of nanoparticles between small interfering RNA and amphipathic cell-penetrating peptides. Molecular Therapy—Nucleic Acids, 7, 1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parsons, K. H., Mondal, M. H., McCormick, C. L., & Flynt, A. S. (2018). Guanidinium-functionalized interpolyelectrolyte complexes enabling RNAi in resistant insect pests. Biomacromolecules.

    Google Scholar 

  • Pazos, I. M., Ahmed, I. A., Berrios, M. I., & Gai, F. (2015). Sensing pH via p-cyanophenylalanine fluorescence: Application to determine peptide pKa and membrane penetration kinetics. Analytical Biochemistry, 483, 21–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peitz, M., Munst, B., Thummer, R. P., Helfen, M., & Edenhofer, F. (2014). Cell-permeant recombinant Nanog protein promotes pluripotency by inhibiting endodermal specification. Stem Cell Research, 12, 680–689.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J., Rao, Y., Yang, X., Jia, J., Wu, Y., Lu, J., et al. (2017a). Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate. Neuroscience Letters, 650, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Peng, F., Tu, Y., Adhikari, A., Hintzen, J. C., Lowik, D. W., & Wilson, D. A. (2017b). A peptide functionalized nanomotor as an efficient cell penetrating tool. Chemical Communications (Cambridge, England), 53, 1088–1091.

    Article  CAS  Google Scholar 

  • Peraro, L., & Kritzer, J. (2018). Getting in: Emerging methods and design principles for cell-penetrant peptides. Angewandte Chemie International Edition in English.

    Google Scholar 

  • Peritz, T., Zeng, F., Kannanayakal, T. J., Kilk, K., Eiriksdottir, E., Langel, Ü., et al. (2006). Immunoprecipitation of mRNA-protein complexes. Nature Protocols, 1, 577–580.

    Article  CAS  PubMed  Google Scholar 

  • Pham, W., Kircher, M. F., Weissleder, R., & Tung, C. H. (2004). Enhancing membrane permeability by fatty acylation of oligoarginine peptides. ChemBioChem, 5, 1148–1151.

    Article  CAS  PubMed  Google Scholar 

  • Poillot, C., Bichraoui, H., Tisseyre, C., Bahemberae, E., Andreotti, N., Sabatier, J. M., et al. (2012). Small efficient cell-penetrating peptides derived from scorpion toxin maurocalcine. Journal of Biological Chemistry, 287, 17331–17342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polyakov, V., Sharma, V., Dahlheimer, J. L., Pica, C. M., Luker, G. D., & Piwnica-Worms, D. (2000). Novel Tat-peptide chelates for direct transduction of technetium-99 m and rhenium into human cells for imaging and radiotherapy. Bioconjugate Chemistry, 11, 762–771.

    Article  CAS  PubMed  Google Scholar 

  • Pooga, M., Hällbrink, M., Zorko, M., & Langel, Ü. (1998a). Cell penetration by transportan. FASEB Journal, 12, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Pooga, M., Jureus, A., Razaei, K., Hasanvan, H., Saar, K., Kask, K., et al. (1998b). Novel galanin receptor ligands. Journal of Peptide Research, 51, 65–74.

    Article  CAS  Google Scholar 

  • Pooga, M., Land, T., Bartfai, T., & Langel, Ü. (2001). PNA oligomers as tools for specific modulation of gene expression. Biomolecular Engineering, 17, 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Pooga, M., Soomets, U., Hällbrink, M., Valkna, A., Saar, K., Rezaei, K., et al. (1998c). Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nature Biotechnology, 16, 857–861.

    Article  CAS  PubMed  Google Scholar 

  • Poutiainen, P. K., Ronkko, T., Hinkkanen, A. E., Palvimo, J. J., Narvanen, A., Turhanen, P., et al. (2014). Firefly luciferase inhibitor-conjugated peptide quenches bioluminescence: A versatile tool for real time monitoring cellular uptake of biomolecules. Bioconjugate Chemistry, 25, 4–10.

    Article  CAS  PubMed  Google Scholar 

  • Prantner, A. M., Sharma, V., Garbow, J. R., & Piwnica-Worms, D. (2003). Synthesis and characterization of a Gd-DOTA-D-permeation peptide for magnetic resonance relaxation enhancement of intracellular targets. Molecular Imaging, 2, 333–341.

    Article  CAS  PubMed  Google Scholar 

  • Przysiecka, L., Michalska, M., Nowaczyk, G., Peplinska, B., Jesionowski, T., Schneider, R., et al. (2016). iRGD peptide as effective transporter of CuInZnxS2 + x quantum dots into human cancer cells. Colloids and Surfaces B: Biointerfaces, 146, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans. PLoS One, 8.

    Google Scholar 

  • Quinn, M. K., Gnan, N., James, S., Ninarello, A., Sciortino, F., Zaccarelli, E., et al. (2015). How fluorescent labelling alters the solution behaviour of proteins. Physical Chemistry Chemical Physics: PCCP, 17, 31177–31187.

    Article  CAS  PubMed  Google Scholar 

  • Radis-Baptista, G., Campelo, I. S., Morlighem, J. R. L., Melo, L. M., & Freitas, V. J. F. (2017). Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. Journal of Biotechnology, 4, 30203-1.

    Google Scholar 

  • Radwani, H., Lopez-Gonzalez, M. J., Cattaert, D., Roca-Lapirot, O., Dobremez, E., Bouali-Benazzouz, R., et al. (2016). Cav1.2 and Cav1.3 L-type calcium channels independently control short- and long-term sensitization to pain. The Journal of Physiology, 594, 6607–6626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran, M., Yapici, E., & Miller, L. W. (2014). Lanthanide-based imaging of protein-protein interactions in live cells. Inorganic Chemistry, 53, 1839–1853.

    Article  CAS  PubMed  Google Scholar 

  • Ramaker, K., Henkel, M., Krause, T., Rockendorf, N., & Frey, A. (2018). Cell penetrating peptides: A comparative transport analysis for 474 sequence motifs. Drug Delivery, 25, 928–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K., & Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Resarch, 24, 1020–1027.

    Google Scholar 

  • Rathnayake, P. V., Gunathunge, B. G., Wimalasiri, P. N., Karunaratne, D. N., & Ranatunga, R. J. (2017). Trends in the binding of cell penetrating peptides to siRNA: A molecular docking study. J Biophys, 2017, 1059216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regberg, J., Srimanee, A., Erlandsson, M., Sillard, R., Dobchev, D. A., Karelson, M., et al. (2014). Rational design of a series of novel amphipathic cell-penetrating peptides. International Journal of Pharmaceutics, 464, 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Regberg, J., Vasconcelos, L., Madani, F., Langel, Ü., & Hällbrink, M. (2016). pH-responsive PepFect cell-penetrating peptides. International Journal of Pharmaceutics, 501, 32–38.

    Article  CAS  PubMed  Google Scholar 

  • Rittner, K., Benavente, A., Bompard-Sorlet, A., Heitz, F., Divita, G., Brasseur, R., et al. (2002). New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Molecular Therapy, 5, 104–114.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, T. C., Ezzat, K., el Andaloussi, S., & Weinberg, M. S. (2016). Synthetic SiRNA delivery: Progress and prospects. Methods in Molecular Biology, 1364, 291–310.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, M., Santos, A., de la Torre, B. G., Radis-Baptista, G., Andreu, D., & Santos, N. C. (2012). Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. Biochimica et Biophysica Acta, 1818, 2707–2717.

    Article  CAS  PubMed  Google Scholar 

  • Ross, K. (2018). Towards topical microRNA-directed therapy for epidermal disorders. Journal of Controlled Release, 269, 136–147.

    Article  CAS  PubMed  Google Scholar 

  • Roth, L., Agemy, L., Kotamraju, V. R., Braun, G., Teesalu, T., Sugahara, K. N., et al. (2012). Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 31, 3754–3763.

    Article  CAS  PubMed  Google Scholar 

  • Roux, L. N., Petit, I., Domart, R., Concordet, J. P., Qu, J., Zhou, H., et al. (2018). Modeling of Aniridia-related keratopathy by CRISPR/Cas9 genome editing of human limbal epithelial cells and rescue by recombinant PAX6 protein. Stem Cells.

    Google Scholar 

  • Ru, R., Yao, Y., Yu, S., Yin, B., Xu, W., Zhao, S., et al. (2013). Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regeneration (London), 2, 5.

    CAS  Google Scholar 

  • Ruan, G., Agrawal, A., Marcus, A. I., & Nie, S. (2007). Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. Journal of the American Chemical Society, 129, 14759–14766.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, C., Plank, C., Lausier, J., Schillinger, U., Müller, R. H., & Rosenecker, J. (2003). Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. Journal of Biological Chemistry, 278, 11411–11418.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, J. H., Lee, A., Na, J. H., Lee, S., Ahn, H. J., Park, J. W., et al. (2011). Optimization of matrix metalloproteinase fluorogenic probes for osteoarthritis imaging. Amino Acids, 41, 1113–1122.

    Article  CAS  PubMed  Google Scholar 

  • Säälik, P., Elmquist, A., Hansen, M., Padari, K., Saar, K., Viht, K., et al. (2004). Protein cargo delivery properties of cell-penetrating peptides. A comparative study. Bioconjugate Chemistry, 15, 1246–1253.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, Y., Hatakeyama, H., Sato, Y., Akita, H., Takayama, K., Kobayashi, S., et al. (2011). Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials, 32, 5733–5742.

    Article  CAS  PubMed  Google Scholar 

  • Saleh, T., Bolhassani, A., Shojaosadati, S. A., & Aghasadeghi, M. R. (2015). MPG-based nanoparticle: An efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine, 33, 3164–3170.

    Article  CAS  PubMed  Google Scholar 

  • Salerno, J. C., Ngwa, V. M., Nowak, S. J., Chrestensen, C. A., Healey, A. N., & McMurry, J. L. (2016). Novel cell-penetrating peptide-adaptors effect intracellular delivery and endosomal escape of protein cargos. Journal of Cell Science, 129, 893–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzano, G., Costa, D. F., Sarisozen, C., Luther, E., Mattheolabakis, G., Dhargalkar, P. P., et al. (2016). Mixed nanosized polymeric micelles as promoter of doxorubicin and miRNA-34a co-delivery triggered by dual stimuli in tumor tissue. Small (Weinheim an der Bergstrasse, Germany), 12, 4837–4848.

    Article  CAS  Google Scholar 

  • Sandberg, M., Eriksson, L., Jonsson, J., Sjostrom, M., & Wold, S. (1998). New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. Journal of Medicinal Chemistry, 41, 2481–2491.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, W. S., Johnston, C. I., Bridges, S. M., Burgess, S. C., & Willeford, K. O. (2011). Prediction of cell penetrating peptides by support vector machines. PLoS Computational Biology, 7, e1002101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangtani, A., Petryayeva, E., Wu, M., Susumu, K., Oh, E., Huston, A. L., et al. (2018). Intracellularly actuated quantum dot-peptide-doxorubicin nanobioconjugates for controlled drug delivery via the endocytic pathway. Bioconjugate Chemistry, 29, 136–148.

    Article  CAS  PubMed  Google Scholar 

  • Saw, P. E., Ko, Y. T., & Jon, S. (2010). Efficient liposomal nanocarrier-mediated oligodeoxynucleotide delivery involving dual use of a cell-penetrating peptide as a packaging and intracellular delivery agent. Macromolecular Rapid Communications, 31, 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  • Sayers, E. J., Cleal, K., Eissa, N. G., Watson, P., & Jones, A. T. (2014). Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides. Journal of Controlled Release, 195, 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Sazani, P., Gemignani, F., Kang, S. H., Maier, M. A., Manoharan, M., Persmark, M., et al. (2002). Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nature Biotechnology, 20, 1228–1233.

    Article  CAS  PubMed  Google Scholar 

  • Sazani, P., Kang, S. H., Maier, M. A., Wei, C., Dillman, J., Summerton, J., et al. (2001). Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Research, 29, 3965–3974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarfi, S., Giovine, M., Gasparini, A., Damonte, G., Millo, E., Pozzolini, M., et al. (1999). Modified peptide nucleic acids are internalized in mouse macrophages RAW 264.7 and inhibit inducible nitric oxide synthase. FEBS Letters, 451, 264–268.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, S., Adjobo-Hermans, M. J., Kohze, R., Enderle, T., Brock, R., & Milletti, F. (2017). Identification of short hydrophobic cell-penetrating peptides for cytosolic peptide delivery by rational design. Bioconjugate Chemistry, 28, 382–389.

    Article  CAS  PubMed  Google Scholar 

  • Schnittert, J., Kuninty, P. R., Bystry, T. F., Brock, R., Storm, G., & Prakash, J. (2017). Anti-microRNA targeting using peptide-based nanocomplexes to inhibit differentiation of human pancreatic stellate cells. Nanomedicine (London).

    Google Scholar 

  • Sciani, J. M., Vigerelli, H., Costa, A. S., Camara, D. A., Junior, P. L., & Pimenta, D. C. (2017). An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening. Journal of Peptide Science, 23, 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Segura, J., Fillat, C., Andreu, D., Llop, J., Millan, O., de la Torre, B. G., et al. (2007). Monitoring gene therapy by external imaging of mRNA: Pilot study on murine erythropoietin. Therapeutic Drug Monitoring, 29, 612–618.

    Article  CAS  PubMed  Google Scholar 

  • Seo, B. J., Hong, Y. J., & Do, J. T. (2017). Cellular reprogramming using protein and cell-penetrating peptides. International Journal of Molecular Sciences, 18.

    Google Scholar 

  • Shiraishi, T., & Nielsen, P. E. (2011). Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers. Artif DNA PNA XNA, 2, 90–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla, R. S., Qin, B., & Cheng, K. (2014). Peptides used in the delivery of small noncoding RNA. Molecular Pharmaceutics, 11, 3395–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simeoni, F., Morris, M. C., Heitz, F., & Divita, G. (2003). Insight into the mechanism of the peptide-based gene delivery system MPG: Implications for delivery of siRNA into mammalian cells. Nucleic Acids Research, 31, 2717–2724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons, C. G., Pitts, A. E., Mayfield, L. D., Shay, J. W., & Corey, D. R. (1997). Synthesis and membrane permeability of PNA-peptide conjugates. Bioorganic & Medicinal Chemistry Letters, 7, 3001–3006.

    Article  CAS  Google Scholar 

  • Song, J., Kai, M., Zhang, W., Zhang, J., Liu, L., Zhang, B., et al. (2011). Cellular uptake of transportan 10 and its analogs in live cells: Selectivity and structure-activity relationship studies. Peptides, 32, 1934–1941.

    Article  CAS  PubMed  Google Scholar 

  • Song, L., Liang, X., Yang, S., Wang, N., He, T., Wang, Y., et al. (2018). Novel polyethyleneimine-R8-heparin nanogel for high-efficiency gene delivery in vitro and in vivo. Drug Delivery, 25, 122–131.

    Article  CAS  PubMed  Google Scholar 

  • Soomets, U., Hällbrink, M., Zorko, M., & Langel, Ü. (1997). From galanin and mastoparan to galparan and transportan. Current Topics in Peptide and Protein Res., 2, 83–113.

    CAS  Google Scholar 

  • Soudah, T., Mogilevsky, M., Karni, R., & Yavin, E. (2017). CLIP6-PNA-Peptide conjugates: Non-endosomal delivery of splice switching oligonucleotides. Bioconjugate Chemistry, 28, 3036–3042.

    Article  CAS  PubMed  Google Scholar 

  • Sousa, A. A., Morgan, J. T., Brown, P. H., Adams, A., Jayasekara, M. P., Zhang, G., et al. (2012). Synthesis, characterization, and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 8, 2277–2286.

    Article  CAS  Google Scholar 

  • Srimanee, A., Regberg, J., Hällbrink, M., Kurrikoff, K., Veiman, K.-L., Vajragupta, O., et al. (2014). Peptide based delivery of oligonucleotides across blood-brain barrier model. International Journal of Peptide Research and Therapeutics, 20, 169–178.

    Article  CAS  Google Scholar 

  • Stein, C. A., & Castanotto, D. (2017). FDA-approved oligonucleotide therapies in 2017. Molecular Therapy, 25, 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suchaoin, W., Mahmood, A., Netsomboon, K., & Bernkop-Schnurch, A. (2017). Zeta-potential-changing nanoparticles conjugated with cell-penetrating peptides for enhanced transfection efficiency. Nanomedicine (London), 12, 963–975.

    Article  CAS  Google Scholar 

  • Sugahara, K. N., Braun, G. B., de Mendoza, T. H., Kotamraju, V. R., French, R. P., Lowy, A. M., et al. (2015). Tumor-penetrating iRGD peptide inhibits metastasis. Molecular Cancer Therapeutics, 14, 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Suh, J. S., Lee, J. Y., Choi, Y. S., Chung, C. P., & Park, Y. J. (2013). Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation. Biomaterials, 34, 4347–4359.

    Article  CAS  PubMed  Google Scholar 

  • Suh, J. S., Lee, J. Y., Choi, Y. J., You, H. K., Hong, S. D., Chung, C. P., et al. (2014a). Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis. International Journal of Nanomedicine, 9, 1153–1166.

    PubMed  PubMed Central  Google Scholar 

  • Suh, J. S., Lee, J. Y., Lee, G., Chung, C. P., & Park, Y. J. (2014b). Simultaneous imaging and restoration of cell function using cell permeable peptide probe. Biomaterials, 35, 6287–6298.

    Article  CAS  PubMed  Google Scholar 

  • Suresh, B., Ramakrishna, S., & Kim, H. (2017). Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing. Methods in Molecular Biology, 81–94.

    Google Scholar 

  • Suryawanshi, H., Sarangdhar, M. A., Vij, M., Roshan, R., Singh, V. P., Ganguli, M., et al. (2015). A simple alternative to stereotactic injection for brain specific knockdown of miRNA. Journal of Visualized Experiments, 26, 53307.

    Google Scholar 

  • Swiecicki, J. M., di Pisa, M., Burlina, F., Lecorche, P., Mansuy, C., Chassaing, G., et al. (2015). Accumulation of cell-penetrating peptides in large unilamellar vesicles: A straightforward screening assay for investigating the internalization mechanism. Biopolymers, 104, 533–543.

    Article  CAS  PubMed  Google Scholar 

  • Tai, W., & Gao, X. (2016). Functional peptides for siRNA delivery. Advanced Drug Delivery Reviews, 13, 30236–30238.

    Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Takashina, T., Koyama, T., Nohara, S., Hasegawa, M., Ishiguro, A., Iijima, K., et al. (2018). Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering. Biomaterials, 173, 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H., Su, Z. D., Wei, H. H., Chen, W., & Lin, H. (2016). Prediction of cell-penetrating peptides with feature selection techniques. Biochemical and Biophysical Research Communications, 477, 150–154.

    Article  CAS  PubMed  Google Scholar 

  • Teesalu, T., Sugahara, K. N., & Ruoslahti, E. (2013). Tumor-penetrating peptides. Frontiers in Oncology, 3.

    Google Scholar 

  • Theunissen, T. W., Costa, Y., Radzisheuskaya, A., van Oosten, A. L., Lavial, F., Pain, B., et al. (2011). Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development, 138, 4853–4865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiagarajan, L., Abu-Awwad, H. A. M., & Dixon, J. E. (2017). Osteogenic programming of human mesenchymal stem cells with highly efficient intracellular delivery of RUNX2. Stem Cells Translational Medicine, 6, 2146–2159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thierry, A. R., Abes, S., Resina, S., Travo, A., Richard, J. P., Prevot, P., et al. (2006). Comparison of basic peptides- and lipid-based strategies for the delivery of splice correcting oligonucleotides. Biochimica et Biophysica Acta, 1758, 364–374.

    Article  CAS  PubMed  Google Scholar 

  • Thoren, P. E., Persson, D., Esbjorner, E. K., Goksor, M., Lincoln, P., & Norden, B. (2004). Membrane binding and translocation of cell-penetrating peptides. Biochemistry, 43, 3471–3489.

    Article  CAS  PubMed  Google Scholar 

  • Tisseyre, C., Ahmadi, M., Bacot, S., Dardevet, L., Perret, P., Ronjat, M., et al. (2014). Quantitative evaluation of the cell penetrating properties of an iodinated Tyr-l-maurocalcine analog. Biochimica et Biophysica Acta, 1843, 2356–2364.

    Article  CAS  PubMed  Google Scholar 

  • Torres, A. G., Fabani, M. M., Vigorito, E., Williams, D., Al-Obaidi, N., Wojciechowski, F., et al. (2012). Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs. Nucleic Acids Research, 40, 2152–2167.

    Article  CAS  PubMed  Google Scholar 

  • Tung, C. H., Mueller, S., & Weissleder, R. (2002). Novel branching membrane translocational peptide as gene delivery vector. Bioorganic & Medicinal Chemistry, 10, 3609–3614.

    Article  CAS  Google Scholar 

  • Tuttolomondo, M., Casella, C., Hansen, P. L., Polo, E., Herda, L. M., Dawson, K. A., et al. (2017). Human DMBT1-Derived cell-penetrating peptides for intracellular siRNA delivery. Molecular Therapy—Nucleic Acids, 8, 264–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udhayakumar, V. K., De Beuckelaer, A., McCaffrey, J., McCrudden, C. M., Kirschman, J. L., Vanover, D., et al. (2017). Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Advanced Healthcare Materials, 6.

    Article  CAS  Google Scholar 

  • Upadhya, A., & Sangave, P. C. (2016). Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. Journal of Peptide Science, 22, 647–659.

    Article  CAS  PubMed  Google Scholar 

  • Urgard, E., Brjalin, A., Langel, U., Pooga, M., Rebane, A., & Annilo, T. (2017). Comparison of peptide- and lipid-based delivery of miR-34a-5p Mimic into PPC-1 cells. Nucleic Acid Therapeutics, 27, 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Urgard, E., Lorents, A., Klaas, M., Padari, K., Viil, J., Runnel, T., et al. (2016). Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. Journal of Controlled Release, 235, 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Vaissiere, A., Aldrian, G., Konate, K., Lindberg, M. F., Jourdan, C., Telmar, A., et al. (2017). A retro-inverso cell-penetrating peptide for siRNA delivery. Journal of Nanobiotechnology, 15, 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Asbeck, A. H., Beyerle, A., McNeill, H., Bovee-Geurts, P. H., Lindberg, S., Verdurmen, W. P., et al. (2013). Molecular parameters of siRNA–cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano, 7, 3797–3807.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg, A., & Dowdy, S. F. (2011). Protein transduction domain delivery of therapeutic macromolecules. Current Opinion in Biotechnology, 22, 888–893.

    Article  PubMed  CAS  Google Scholar 

  • Veiman, K. L., Kunnapuu, K., Lehto, T., Kiisholts, K., Pärn, K., Langel, Ü., et al. (2015). PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. Journal of Controlled Release, 209, 238–247.

    Article  CAS  PubMed  Google Scholar 

  • Veiman, K. L., Mäger, I., Ezzat, K., Margus, H., Lehto, T., Langel, K., et al. (2013). PepFect14 peptide vector for efficient gene delivery in cell cultures. Molecular Pharmaceutics, 10, 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Vij, M., Natarajan, P., Pattnaik, B. R., Alam, S., Gupta, N., Santhiya, D., et al. (2016). Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. Journal of Controlled Release, 222, 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Wada, S. I., Takesada, A., Nagamura, Y., Sogabe, E., Ohki, R., Hayashi, J., et al. (2017). Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery. Bioorganic & Medicinal Chemistry Letters, 27, 5378–5381.

    Article  CAS  Google Scholar 

  • Wan, Y., Moyle, P. M., Christie, M. P., & Toth, I. (2016). Nanosized, peptide-based multicomponent DNA delivery systems: Optimization of endosome escape activity. Nanomedicine (London), 11, 907–919.

    Article  CAS  Google Scholar 

  • Wan, Y., Moyle, P. M., Gn, P. Z., & Toth, I. (2017). Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine (London), 12, 281–293.

    Article  CAS  Google Scholar 

  • Wang, X., & Jauch, R. (2014). OCT4: A penetrant pluripotency inducer. Cell Regeneration (London), 3, 6.

    Google Scholar 

  • Wang, H. X., Song, Z., Lao, Y. H., Xu, X., Gong, J., Cheng, D., et al. (2018a). Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proceedings of the National Academy of Sciences USA, 115, 4903–4908.

    Article  CAS  Google Scholar 

  • Wang, L., Tang, W., Yan, S., Zhou, L., Shen, T., Huang, X., et al. (2013). Efficient delivery of miR-122 to regulate cholesterol metabolism using a non-covalent peptide-based strategy. Molecular Medicine Reports, 8, 1472–1478.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Wu, F., Li, G., Zhang, N., Song, X., Zheng, Y., et al. (2018b). Lipid-modified cell-penetrating peptide-based self-assembly micelles for co-delivery of narciclasine and siULK1 in hepatocellular carcinoma therapy. Acta Biomaterialia.

    Google Scholar 

  • Wei, L., Tang, J., & Zou, Q. (2017a). SkipCPP-Pred: An improved and promising sequence-based predictor for predicting cell-penetrating peptides. BMC Genomics, 18, 742.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, L., Xing, P., Su, R., Shi, G., Ma, Z. S., & Zou, Q. (2017b). CPPred-RF: A sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. Journal of Proteome Research, 16, 2044–2053.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, H. M., Wirz, B., Schweitzer, A., Amstutz, R., Rodriguez Perez, M. I., Andres, H., et al. (2007). ADME investigations of unnatural peptides: distribution of a 14C-labeled beta 3-octaarginine in rats. Chemistry & Biodiversity, 4, 1413–1437.

    Article  CAS  Google Scholar 

  • Willmore, A. A., Simon-Gracia, L., Toome, K., Paiste, P., Kotamraju, V. R., Molder, T., et al. (2015). Targeted silver nanoparticles for ratiometric cell phenotyping. Nanoscale, 8, 8.

    Google Scholar 

  • Wolfe, J. M., Fadzen, C. M., Choo, Z. N., Holden, R. L., Yao, M., Hanson, G. J., et al. (2018a). Machine learning to predict cell-penetrating peptides for antisense delivery. ACS Central Science, 4, 512–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe, J. M., Fadzen, C. M., Holden, R. L., Yao, M., Hanson, G. J., & Pentelute, B. L. (2018b). Perfluoroaryl bicyclic cell-penetrating peptides for delivery of antisense oligonucleotides. Angewandte Chemie International Edition in English.

    Google Scholar 

  • Wu, Y., Sun, J., Li, A., & Chen, D. (2018). The promoted delivery of RRM2 siRNA to vascular smooth muscle cells through liposome-polycation-DNA complex conjugated with cell penetrating peptides. Biomedicine & Pharmacotherapy, 103, 982–988.

    Article  CAS  Google Scholar 

  • Wyman, T. B., Nicol, F., Zelphati, O., Scaria, P. V., Plank, C., & Szoka Jr., F. C. (1997). Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 36, 3008–3017.

    Google Scholar 

  • Xia, M. C., Cai, L., Zhang, S., & Zhang, X. (2018). A cell-penetrating ratiometric probe for simultaneous measurement of lysosomal and cytosolic pH change. Talanta, 178, 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Xie, X., Lin, W., Li, M., Yang, Y., Deng, J., Liu, H., et al. (2016). Efficient siRNA delivery using novel cell-penetrating peptide-siRNA conjugate-loaded nanobubbles and ultrasound. Ultrasound in Medicine and Biology, 42, 1362–1374.

    Article  PubMed  Google Scholar 

  • Xu, H., Bao, X., Wang, Y., Xu, Y., Deng, B., Lu, Y., et al. (2018). Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector. Virology Journal, 15, 49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, J., Xiang, Q., Su, J., Yang, P., Zhang, Q., Su, Z., et al. (2014). Evaluation of the safety and brain-related tissues distribution characteristics of TAT-HaFGF via intranasal administration. Biological & Pharmaceutical Bulletin, 37, 1149–1157.

    Article  CAS  Google Scholar 

  • Xue, X. Y., Mao, X. G., Zhou, Y., Chen, Z., Hu, Y., Hou, Z., et al. (2018). Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomedicine (Lond), 14, 745–758.

    Article  CAS  Google Scholar 

  • Yamaguchi, S., Ito, S., Kurogi-Hirayama, M., & Ohtsuki, S. (2017). Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. Journal of Controlled Release, 262, 232–238.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Xia, X., Dong, W., Wang, H., Li, L., Ma, P., et al. (2016a). Acid sensitive polymeric micelles combining folate and bioreducible conjugate for specific intracellular siRNA delivery. Macromolecular Bioscience, 16, 759–773.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Xie, X., Xu, X., Xia, X., Wang, H., Li, L., et al. (2016b). Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids Surf B Biointerfaces, 146, 607–615.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Yang, Y., Xie, X., Xu, X., Xia, X., Wang, H., et al. (2016c). Dual stimulus of hyperthermia and intracellular redox environment triggered release of siRNA for tumor-specific therapy. International Journal of Pharmaceutics, 506, 158–173.

    Article  CAS  PubMed  Google Scholar 

  • Yao, H., Wang, K., Wang, Y., Wang, S., Li, J., Lou, J., et al. (2015). Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials, 37, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Liu, E., Gong, J., Wang, J., Huang, Y., He, H., et al. (2017). High-yield synthesis of monomeric LMWP(CPP)-siRNA covalent conjugate for effective cytosolic delivery of siRNA. Theranostics, 7, 2495–2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong, K.-T. (2010). Biophotonics and biotechnology in pancreatic cancer: Cyclic RGD-peptide-conjugated Type II quantum dots for in vivo imaging. Pancreatology, 10, 553–564.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, J., Lee, D., Gujrati, V., Rejinold, N. S., Lekshmi, K. M., Uthaman, S., et al. (2017). Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform. Journal of Controlled Release, 246, 142–154.

    Article  CAS  PubMed  Google Scholar 

  • Youn, P., Chen, Y., & Furgeson, D. Y. (2014). A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Molecular Pharmaceutics, 11, 486–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Z., Ye, J., Pei, X., Sun, L., Liu, E., Wang, J., et al. (2018). Improved method for synthesis of low molecular weight protamine-siRNA conjugate. Acta pharmaceutica Sinica. B, 8, 116–126.

    Article  PubMed  Google Scholar 

  • Yukawa, H., Kagami, Y., Watanabe, M., Oishi, K., Miyamoto, Y., Okamoto, Y., et al. (2010a). Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials, 31, 4094–4103.

    Article  CAS  PubMed  Google Scholar 

  • Yukawa, H., Noguchi, H., Nakase, I., Miyamoto, Y., Oishi, K., Hamajima, N., et al. (2010b). Transduction of cell-penetrating peptides into induced pluripotent stem cells. Cell Transplantation, 19, 901–909.

    Article  PubMed  Google Scholar 

  • Yukawa, H., Suzuki, K., Kano, Y., Yamada, T., Kaji, N., Ishikawa, T., et al. (2013). Induced pluripotent stem cell labeling using quantum dots. Cell Med, 6, 83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamaleeva, A. I., Despras, G., Luccardini, C., Collot, M., de Waard, M., Oheim, M., et al. (2015). FRET-based nanobiosensors for imaging intracellular Ca(2)(+) and H(+) microdomains. Sensors (Basel), 15, 24662–24680.

    Article  CAS  Google Scholar 

  • Zeng, F., Peritz, T., Kannanayakal, T. J., Kilk, K., Eiriksdottir, E., Langel, Ü., et al. (2006). A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nature Protocols, 1, 920–927.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Liang, D., Wang, Y., Li, D., Zhang, J., Wu, L., et al. (2018a). Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chemical Science, 9, 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Yuan, Y., Liu, Z., Chen, H., Chen, D., Fang, X., et al. (2018b). Brightness enhancement of near-infrared semiconducting polymer dots for in vivo whole-body cell tracking in deep organs. ACS Applied Materials & Interfaces, 10, 26928–26935.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhao, X., Geng, J., Liu, H., Zeng, F., Qin, Y., et al. (2018b). Efficient penetration of Scp01-b and its DNA transfer abilities into cells. Journal of Cell Physiology.

    Google Scholar 

  • Zhang, L., Zhou, Q., Song, W., Wu, K., Zhang, Y., & Zhao, Y. (2017). Dual-functionalized graphene oxide based siRNA delivery system for implant surface biomodification with enhanced osteogenesis. ACS Applied Materials & Interfaces, 9, 34722–34735.

    Article  CAS  Google Scholar 

  • Zhao, Y., He, Z., Gao, H., Tang, H., He, J., Guo, Q., et al. (2018). Fine tuning of core-shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in antiatherosclerotic therapy. Biomacromolecules.

    Google Scholar 

  • Zielinski, J., Kilk, K., Peritz, T., Kannanayakal, T., Miyashiro, K. Y., Eiriksdottir, E., et al. (2006). In vivo identification of ribonucleoprotein-RNA interactions. Proceedings of the National Academy of Sciences USA, 103, 1557–1562.

    Article  CAS  Google Scholar 

  • Zou, Z., Sun, Z., Li, P., Feng, T., & Wu, S. (2016). Cre fused with RVG Peptide mediates targeted genome editing in mouse brain cells in vivo. International Journal of Molecular Sciences, 17.

    Google Scholar 

  • Zuris, J. A., Thompson, D. B., Shu, Y., Guilinger, J. P., Bessen, J. L., Hu, J. H., et al. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33, 73–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Langel .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langel, Ü. (2019). Methods for CPP Functionalization. In: CPP, Cell-Penetrating Peptides. Springer, Singapore. https://doi.org/10.1007/978-981-13-8747-0_3

Download citation

Publish with us

Policies and ethics