Methods for CPP Functionalization

  • Ülo LangelEmail author


This chapter will summarize the methods for functionalization used in CPP research. Due to the very wide field of CPP applications as well as the involvement of CPPs in multiple biochemical pathways, the methods are also multiple. Basically, most of the methods of chemistry, biophysics, biochemistry, cell signaling, molecular biology, imaging etc., has been used to understand the action of CPPs. Hence, here we try to describe briefly the most widely used methods with highest impact for CPP research. It seems that it is reasonable to classify the CPP methods into non-functional and functional, based on the raised questions when applied.


Methods Functionalization Prediction Labeling Oligonucleotide delivery 


  1. Abbate, V., Reelfs, O., Hider, R. C., & Pourzand, C. (2015). Design of novel fluorescent mitochondria-targeted peptides with iron-selective sensing activity. Biochemical Journal, 469, 357–366.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abes, S., Moulton, H. M., Clair, P., Prevot, P., Youngblood, D. S., Wu, R. P., et al. (2006). Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. Journal of Controlled Release, 116, 304–313.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Abes, S., Moulton, H., Turner, J., Clair, P., Richard, J. P., Iversen, P., et al. (2007). Peptide-based delivery of nucleic acids: Design, mechanism of uptake and applications to splice-correcting oligonucleotides. Biochemical Society Transactions, 35, 53–55.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Abushahba, M. F., Mohammad, H., & Seleem, M. N. (2016). Targeting Multidrug-resistant Staphylococci with an anti-rpoA peptide nucleic acid conjugated to the HIV-1 TAT Cell Penetrating Peptide. Molecular Therapy—Nucleic Acids, 5, e339.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Afsari, H. S., Cardoso dos Santos, M., Linden, S., Chen, T., Qiu, X., Van Bergen En Henegouwen, et al. (2016). Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Science Advances 2, e1600265.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aksoy, I., Jauch, R., Eras, V., Chng, W. B., Chen, J., Divakar, U., et al. (2013). Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming. Stem Cells, 31, 2632–2646.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Alberici, L., Roth, L., Sugahara, K. N., Agemy, L., Kotamraju, V. R., Teesalu, T., et al. (2013). De novo design of a tumor-penetrating peptide. Cancer Research, 73, 804–812.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Aldrian, G., Vaissiere, A., Konate, K., Seisel, Q., Vives, E., Fernandez, F., et al. (2017). PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. Journal of Controlled Release, 256, 79–91.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Aldrian-Herrada, G., Desarmenien, M. G., Orcel, H., Boissin-Agasse, L., Mery, J., Brugidou, J., et al. (1998). A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Research, 26, 4910–4916.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., & Prochiantz, A. (1995). Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. Journal of Cell Biology, 128, 919–927.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Alvarez, M. J., Subramaniam, P. S., Tang, L. H., Grunn, A., Aburi, M., Rieckhof, G., et al. (2018). A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nature Genetics.Google Scholar
  12. Arukuusk, P., Pärnaste, L., Hällbrink, M., & Langel, Ü. (2015). PepFects and NickFects for the Intracellular delivery of nucleic acids. Methods in Molecular Biology, 1324, 303–315.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arukuusk, P., Pärnaste, L., Oskolkov, N., Copolovici, D. M., Margus, H., Padari, K., et al. (2013). New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochimica et Biophysica Acta, 1828, 1365–1373.PubMedPubMedCentralGoogle Scholar
  14. Ashwanikumar, N., Plaut, J. S., Mostofian, B., Patel, S., Kwak, P., Sun, C. (2018). Supramolecular self assembly of nanodrill-like structures for intracellular delivery. Journal of Controlled Release.Google Scholar
  15. Astriab-Fisher, A., Sergueev, D., Fisher, M., Shaw, B. R., & Juliano, R. L. (2002). Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharmaceutical Research, 19, 744–754.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Barnett, E. M., Zhang, X., Maxwell, D., Chang, Q., & Piwnica-Worms, D. (2009). Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proceedings of the National Academy of Sciences USA, 106, 9391–9396.CrossRefGoogle Scholar
  17. Basu, S., & Wickstrom, E. (1997). Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjugate Chemistry, 8, 481–488.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bell, T. J., & Eberwine, J. (2015a). Live cell genomics: Cell-specific transcriptome capture in live tissues and cells. Methods in Molecular Biology, 1324, 447–456.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bell, T. J., & Eberwine, J. (2015b). Live cell genomics: RNA exon-specific RNA-binding protein isolation. Methods in Molecular Biology, 1324, 457–468.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bell, T. J., Eiriksdottir, E., Langel, Ü., & Eberwine, J. (2011). PAIR technology: exon-specific RNA-binding protein isolation in live cells. Methods in Molecular Biology, 683, 473–486.PubMedCrossRefGoogle Scholar
  21. Bell, G. D., Yang, Y., Leung, E., & Krissansen, G. W. (2018). mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PLoS ONE, 13, e0201464.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bendifallah, N., Rasmussen, F. W., Zachar, V., Ebbesen, P., Nielsen, P. E., & Koppelhus, U. (2006). Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA). Bioconjugate Chemistry, 17, 750–758.PubMedCrossRefGoogle Scholar
  23. Benner, N. L., Zang, X., Buehler, D. C., Kickhoefer, V. A., Rome, M. E., Rome, L. H., et al. (2017). Vault nanoparticles: Chemical modifications for imaging and enhanced delivery. ACS Nano, 11, 872–881.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bennett, C. F., Baker, B. F., Pham, N., Swayze, E., & Geary, R. S. (2016). Pharmacology of antisense drugs. Annual Review of Pharmacology and Toxicology, 10, 10.Google Scholar
  25. Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals. Nature Reviews Genetics, 12, 846–860.PubMedCrossRefGoogle Scholar
  26. Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41, 7429–7437.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bilan, R., Nabiev, I., & Sukhanova, A. (2016). Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem, 18, 201600357.Google Scholar
  28. Birch, D., Christensen, M. V., Staerk, D., Franzyk, H., & Nielsen, H. M. (2017). Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. Biochimica et Biophysica Acta, 1859, 2483–2494.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Borgatti, M., Finotti, A., Romanelli, A., Saviano, M., Bianchi, N., Lampronti, I., et al. (2004). Peptide nucleic acids (PNA)-DNA chimeras targeting transcription factors as a tool to modify gene expression. Current Drug Targets, 5, 735–744.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Brandén, L. J., Mohamed, A. J., & Smith, C. I. E. (1999). A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nature Biotechnology, 17, 784–787.PubMedCrossRefGoogle Scholar
  31. Breger, J. C., Muttenthaler, M., Delehanty, J. B., Thompson, D. A., Oh, E., Susumu, K., et al. (2017). Nanoparticle cellular uptake by dendritic wedge peptides: achieving single peptide facilitated delivery. Nanoscale, 9, 10447–10464.PubMedCrossRefGoogle Scholar
  32. Brognara, E., Fabbri, E., Aimi, F., Manicardi, A., Bianchi, N., Finotti, A., et al. (2012). Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. International Journal of Oncology, 41, 2119–2127.PubMedCrossRefGoogle Scholar
  33. Brognara, E., Fabbri, E., Bazzoli, E., Montagner, G., Ghimenton, C., Eccher, A., et al. (2014). Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. Journal of Neuro-oncology, 118, 19–28.PubMedCrossRefGoogle Scholar
  34. Brognara, E., Fabbri, E., Montagner, G., Gasparello, J., Manicardi, A., Corradini, R., et al. (2016). High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. International Journal of Oncology, 48, 1029–1038.PubMedCrossRefGoogle Scholar
  35. Brooks, H., Lebleu, B., & Vives, E. (2005). Tat peptide-mediated cellular delivery: Back to basics. Advanced Drug Delivery Reviews, 57, 559–577.PubMedCrossRefGoogle Scholar
  36. Byrne, A., Dolan, C., Moriarty, R. D., Martin, A., Neugebauer, U., Forster, R. J., et al. (2015). Osmium(ii) polypyridyl polyarginine conjugate as a probe for live cell imaging; a comparison of uptake, localization and cytotoxicity with its ruthenium(ii) analogue. Dalton Transactions, 44, 14323–14332.PubMedCrossRefGoogle Scholar
  37. Cardoso, A. M., Trabulo, S., Cardoso, A. L., Lorents, A., Morais, C. M., Gomes, P. (2012). S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization. Biochimica et Biophysica Acta, 1818, 877–88.CrossRefGoogle Scholar
  38. Carney, R. P., Thillier, Y., Kiss, Z., Sahabi, A., Heleno Campos, J. C., Knudson, A. ET AL. (2017). Combinatorial library screening with liposomes for discovery of membrane Active Peptides. ACS combinatorial science, 19, 299–307.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Caulier, B., Berthoin, L., Coradin, H., Garban, F., Dagher, M. C., Polack, B., et al. (2017). Targeted release of transcription factors for human cell reprogramming by ZEBRA cell-penetrating peptide. International Journal of Pharmaceutics, 529, 65–74.PubMedCrossRefGoogle Scholar
  40. Cerrato, C. P., Veiman, K.-L. & Langel, U. (2015). Advances in peptide delivery. Future Science.
  41. Chang, X., & Hou, Y. (2018). Expression of RecA and cell-penetrating peptide (CPP) fusion protein in bacteria and in mammalian cells. International Journal of Biochemistry and Molecular Biology, 9, 1–10.PubMedPubMedCentralGoogle Scholar
  42. Chang, S., Wu, X., Li, Y., Niu, D., Gao, Y., Ma, Z., et al. (2013). A pH-responsive hybrid fluorescent nanoprober for real time cell labeling and endocytosis tracking. Biomaterials, 34, 10182–10190.PubMedCrossRefGoogle Scholar
  43. Chen, R., Braun, G. B., Luo, X., Sugahara, K. N., Teesalu, T., & Ruoslahti, E. (2013). Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Research, 73, 1352–1361.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Chen, L., Fang, S., Xiao, X., Zheng, B., & Zhao, M. (2016). Single-stranded DNA assisted cell penetrating peptide-DNA conjugation strategy for intracellular imaging of nucleases. Analytical Chemistry, 88, 11306–11309.PubMedCrossRefGoogle Scholar
  45. Chen, G., Ma, B., Xie, R., Wang, Y., Dou, K., & Gong, S. (2017). NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier. Journal of Controlled Release.Google Scholar
  46. Chen, X., Nomani, A., Patel, N., Nouri, F. S., & Hatefi, A. (2018). Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells. Biomaterials, 152, 1–14.PubMedCrossRefGoogle Scholar
  47. Chen, B., & Wu, C. (2018). Cationic cell penetrating peptide modified SNARE protein VAMP8 as free chains for gene delivery. Biomaterials Science.Google Scholar
  48. Cheng, C. J., & Saltzman, W. M. (2012). Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Molecular Pharmaceutics, 9, 1481–1488.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Cheruku, P., Huang, J. H., Yen, H. J., Iyer, R. S., Rector, K. D., Martinez, J. S., et al. (2015). Tyrosine-derived stimuli responsive, fluorescent amino acids. Chemical Science, 6, 1150–1158.PubMedCrossRefGoogle Scholar
  50. Cheung, J. C., Kim Chiaw, P., Deber, C. M. & Bear, C. E. (2009). A novel method for monitoring the cytosolic delivery of peptide cargo. Journal of Controlled Release, 137, 2–7.Google Scholar
  51. Choi, S., Jo, J., Seol, D. W., Cha, S. K., Lee, J. E., & Lee, D. R. (2013). Regulation of pluripotency-related genes and differentiation in mouse embryonic stem cells by direct delivery of cell-penetrating peptide-conjugated CARM1 recombinant protein. Balsaenggwa Saengsig, 17, 9–16.Google Scholar
  52. Choi, Y. J., Lee, J. Y., Chung, C. P., & Park, Y. J. (2012). Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21(Cip1) pathway and restores osteoblastic differentiation in human dental pulp stem cells. International Journal of Nanomedicine, 7, 5091–5106.PubMedPubMedCentralGoogle Scholar
  53. Chopra, A. (2012). Cy5.5-Conjugated matrix metalloproteinase cleavable peptide nanoprobe. Bethesda (MD): National Center for Biotechnology Information (US).Google Scholar
  54. Chuah, J. A., Yoshizumi, T., Kodama, Y., & Numata, K. (2015). Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Science Report, 5, 7751.CrossRefGoogle Scholar
  55. Copolovici, D. M., Langel, K., Eriste, E., & Langel, Ü. (2014). Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 8, 1972–1994.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nature Medicine, 21, 121–131.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Crinelli, R., Bianchi, M., Gentilini, L., Palma, L., & Magnani, M. (2004). Locked nucleic acids (LNA): versatile tools for designing oligonucleotide decoys with high stability and affinity. Current Drug Targets, 5, 745–752.PubMedCrossRefGoogle Scholar
  58. Crombez, L., Aldrian-Herrada, G., Konate, K., Nguyen, Q. N., McMaster, G. K., Brasseur, R., et al. (2009a). A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Molecular Therapy, 17, 95–103.CrossRefGoogle Scholar
  59. Crombez, L., & Divita, G. (2011). A non-covalent peptide-based strategy for siRNA delivery. Methods in Molecular Biology, 683, 349–360.PubMedCrossRefGoogle Scholar
  60. Crombez, L., Morris, M. C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., et al. (2009b). Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Research, 37, 4559–4569.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Cui, H., Webber, M. J., & Stupp, S. I. (2010). Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers, 94, 1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  62. D’Angelo, B., Benedetti, E., Cimini, A., & Giordano, A. (2016). MicroRNAs: a puzzling tool in cancer diagnostics and therapy. Anticancer Research, 36, 5571–5575.PubMedCrossRefGoogle Scholar
  63. Dasari, B. C., Cashman, S. M., & Kumar-Singh, R. (2017). Reducible PEG-POD/DNA nanoparticles for gene transfer in vitro and in vivo: application in a mouse model of age-related macular degeneration. Molecular Therapy—Nucleic Acids, 8, 77–89.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Dash-Wagh, S., Jacob, S., Lindberg, S., Fridberger, A., Langel, Ü., & Ulfendahl, M. (2012). Intracellular delivery of short interfering RNA in rat organ of corti using a cell-penetrating peptide PepFect6. Molecular Therapy—Nucleic Acids, 1, e61.PubMedPubMedCentralCrossRefGoogle Scholar
  65. D’Astolfo, D. S., Pagliero, R. J., Pras, A., Karthaus, W. R., Clevers, H., Prasad, V., et al. (2015). Efficient intracellular delivery of native proteins. Cell, 161, 674–690.PubMedCrossRefGoogle Scholar
  66. de Keizer, P. L. (2017). The fountain of youth by targeting senescent cells? Trends in Molecular Medicine, 23, 6–17.PubMedCrossRefGoogle Scholar
  67. Del’Guidice, T., Lepetit-Stoffaes, J. P., Bordeleau, L. J., Roberge, J., Theberge, V., Lauvaux, C., et al. (2018). Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS ONE, 13, e0195558.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Demoulins, T., Ebensen, T., Schulze, K., Englezou, P. C., Pelliccia, M., Guzman, C. A., et al. (2017). Self-replicating RNA vaccine functionality modulated by fine-tuning of polyplex delivery vehicle structure. Journal of Controlled Release, 266, 256–271.PubMedCrossRefGoogle Scholar
  69. di Pisa, M., Chassaing, G., & Swiecicki, J. M. (2015a). Translocation mechanism(s) of cell-penetrating peptides: Biophysical studies using artificial membrane bilayers. Biochemistry, 54, 194–207.PubMedCrossRefGoogle Scholar
  70. di Pisa, M., Chassaing, G., & Swiecicki, J. M. (2015b). When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery. Journal of Peptide Science, 21, 356–369.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Diener, C., Garza Ramos Martinez, G., Moreno Blas, D., Castillo Gonzalez, D. A., Corzo, G., Castro-Obregon, S, et al. (2016). Effective design of multifunctional peptides by combining compatible functions. PLoS Computational Biology, 12.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Dobchev, D. A., Mäger, I., Tulp, I., Karelson, G., Tamm, T., Tamm, K., et al. (2010). Prediction of Cell-penetrating peptides using artificial neural networks. Current Computer-Aided Drug Design, 6, 79–89.PubMedCrossRefGoogle Scholar
  73. Doeppner, T. R., Nagel, F., Dietz, G. P., Weise, J., Tonges, L., Schwarting, S., et al. (2009). TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. Journal of Cerebral Blood Flow and Metabolism, 29, 1187–1196.PubMedCrossRefGoogle Scholar
  74. Dowaidar, M., Abdelhamid, H. N., Hallbrink, M., Freimann, K., Kurrikoff, K., Zou, X., et al. (2017a). Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Scientific Report, 7, 9159.CrossRefGoogle Scholar
  75. Dowaidar, M., Abdelhamid, H. N., Hallbrink, M., Zou, X., & Langel, U. (2017b). Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochimica et Biophysica Acta, 1861, 2334–2341.PubMedCrossRefGoogle Scholar
  76. Dowaidar, M., Nasser Abdelhamid, H., Hallbrink, M., Langel, U., & Zou, X. (2018). Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide. Journal of Biomaterials Applications, 33, 392–401.Google Scholar
  77. Dowdy, S. F. (2017). Overcoming cellular barriers for RNA therapeutics. Nature Biotechnology, 35, 222–229.PubMedCrossRefGoogle Scholar
  78. Dowdy, S. F., & Levy, M. (2018). RNA therapeutics (almost) comes of age: Targeting, delivery and endosomal escape. Nucleic Acid Therapeutics, 28, 107–108.PubMedCrossRefGoogle Scholar
  79. Eguchi, A., Meade, B. R., Chang, Y. C., Fredrickson, C. T., Willert, K., Puri, N., et al. (2009). Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nature Biotechnology, 27, 567–571.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Eiriksdottir, E., Mäger, I., Lehto, T., el Andaloussi, S., & Langel, Ü. (2010). Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates. Bioconjugate Chemistry, 21, 1662–1672.PubMedCrossRefGoogle Scholar
  81. El-Andaloussi, S., Guterstam, P., & Langel, Ü. (2007a). Assessing the delivery efficacy and internalization route of cell-penetrating peptides. Nature Protocols, 2, 2043–2047.PubMedCrossRefGoogle Scholar
  82. El-Andaloussi, S., Johansson, H. J., Holm, T., & Langel, Ü. (2007b). A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Molecular Therapy, 15, 1820–1826.PubMedPubMedCentralCrossRefGoogle Scholar
  83. El-Andaloussi, S., Johansson, H. J., Lundberg, P., & Langel, Ü. (2006). Induction of splice correction by cell-penetrating peptide nucleic acids. The Journal of Gene Medicine, 8, 1262–1273.PubMedCrossRefGoogle Scholar
  84. El-Andaloussi, S., Johansson, H., Magnusdottir, A., Järver, P., Lundberg, P., & Langel, Ü. (2005). TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. Journal of Controlled Release, 110, 189–201.PubMedCrossRefGoogle Scholar
  85. El-Andaloussi, S., Lehto, T., Mäger, I., Rosenthal-Aizman, K., Oprea, I.I., Simonson, O. E., et al. (2011a). Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 39, 3972–3987.CrossRefGoogle Scholar
  86. El-Andaloussi, S., Said Hassane, F., Boisguerin, P., Sillard, R., Langel, Ü., & Lebleu, B. (2011b). Cell-penetrating peptides-based strategies for the delivery of splice redirecting antisense oligonucleotides. Methods in Molecular Biology, 764, 75–89.Google Scholar
  87. Endoh, T., Sisido, M., & Ohtsuki, T. (2008). Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference. Bioconjugate Chemistry, 19, 1017–1024.PubMedCrossRefGoogle Scholar
  88. Eriste, E., Kurrikoff, K., Suhorutsenko, J., Oskolkov, N., Copolovici, D. M., Jones, S., et al. (2013). Peptide-based glioma-targeted drug delivery vector gHoPe2. Bioconjugate Chemistry, 24, 305–313.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ezzat, K., Andaloussi, S. E., Zaghloul, E. M., Lehto, T., Lindberg, S., Moreno, P. M., et al. (2011). PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Research, 39, 5284–5298.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Fabani, M. M., Abreu-Goodger, C., Williams, D., Lyons, P. A., Torres, A. G., Smith, K. G., et al. (2010). Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Research, 38, 4466–4475.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Fabani, M. M., & Gait, M. J. (2008). miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA, 14, 336–346.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Fabbri, E., Manicardi, A., Tedeschi, T., Sforza, S., Bianchi, N., Brognara, E., et al. (2011). Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem, 6, 2192–2202.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Fan, X., Zhang, Y., Liu, X., He, H., Ma, Y., Sun, J., et al. (2016). Biological properties of a 3′,3″-bis-peptide-siRNA conjugate in vitro and in vivo. Bioconjugate Chemistry, 27, 1131–1142.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Fang, W. B., Yao, M., Brummer, G., Acevedo, D., Alhakamy, N., Berkland, C., et al. (2016). Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget, 7.Google Scholar
  95. Favaro, M. T. P., Unzueta, U., de Cabo, M., Villaverde, A., Ferrer-Miralles, N., & Azzoni, A. R. (2018). Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. European Journal of Pharmaceutical Sciences, 112, 71–78.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Favretto, M. E., & Brock, R. (2015). Stereoselective uptake of cell-penetrating peptides is conserved in antisense oligonucleotide polyplexes. Small (Weinheim an der Bergstrasse, Germany), 11, 1414–1417.CrossRefGoogle Scholar
  97. Fellmann, C., Gowen, B. G., Lin, P. C., Doudna, J. A., & Corn, J. E. (2016). Cornerstones of CRISPR-Cas in drug discovery and therapy. Nature Reviews Drug Discovery, 23, 238.Google Scholar
  98. Fischer, R., Kohler, K., Fotin-Mleczek, M., & Brock, R. (2004). A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. Journal of Biological Chemistry, 279, 12625–12635.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Fisher, R. K., Mattern-Schain, S. I., Best, M. D., Kirkpatrick, S. S., Freeman, M. B., Grandas, O. H., et al. (2017). Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. Journal of Surgical Research, 219, 136–144.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Fisher, L., Samuelsson, M., Jiang, Y., Ramberg, V., Figueroa, R., Hallberg, E., et al. (2007). Targeting cytokine expression in glial cells by cellular delivery of an NF-kappaB decoy. Journal of Molecular Neuroscience, 31, 209–219.PubMedGoogle Scholar
  101. Fossat, P., Dobremez, E., Bouali-Benazzouz, R., Favereaux, A., Bertrand, S. S., Kilk, K., et al. (2010). Knockdown of L calcium channel subtypes: differential effects in neuropathic pain. Journal of Neuroscience, 30, 1073–1085.PubMedCrossRefGoogle Scholar
  102. Fraser, G. L., Holmgren, J., Clarke, P. B., & Wahlestedt, C. (2000). Antisense inhibition of delta-opioid receptor gene function in vivo by peptide nucleic acids. Molecular Pharmacology, 57, 725–731.PubMedCrossRefGoogle Scholar
  103. Freimann, K., Arukuusk, P., Kurrikoff, K., Parnaste, L., Raid, R., Piirsoo, A., et al. (2018). Formulation of stable and homogeneous cell-penetrating peptide NF55 nanoparticles for efficient gene delivery in vivo. Molecular Therapy—Nucleic Acids, 10, 28–35.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Freimann, K., Arukuusk, K., Kurrikoff, K., Vasconselos, L. D. F., Veiman, K.-L., Uusna, J. (2016). Optimization of in vivo pDNA gene delivery with NickFect peptide vectors. Journal of Controlled Release, 241, 135–143.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Freire, J. M., Rego De Figueiredo, I., Valle, J., Veiga, A. S., Andreu, D., Enguita, et al. (2017). siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. Journal of Controlled Release, 245, 127–136.PubMedCrossRefGoogle Scholar
  106. Freire, J. M., Veiga, A. S., Rego De Figueiredo, I., De La Torre, B. G., Santos, N. C., Andreu, D., et al. (2014). Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: Design and mechanism of action. FEBS Journal, 281, 191–215.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Friedman, A. A., Letai, A., Fisher, D. E., & Flaherty, K. T. (2015). Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer, 15, 747–756.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Futaki, S., Ohashi, W., Suzuki, T., Niwa, M., Tanaka, S., Ueda, K., et al. (2001). Stearylated arginine-rich peptides: A new class of transfection systems. Bioconjugate Chemistry, 12, 1005–1011.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Gagat, M., Zielinska, W., & Grzanka, A. (2017). Cell-penetrating peptides and their utility in genome function modifications (Review). International Journal of Molecular Medicine, 40, 1615–1623.PubMedPubMedCentralGoogle Scholar
  110. Gaj, T., Sirk, S. J., Shui, S. L., & Liu, J. (2016). Genome-editing technologies: Principles and applications. Cold Spring Harbor Perspectives in Biology, 8.Google Scholar
  111. Ganguly, S., Chaubey, B., Tripathi, S., Upadhyay, A., Neti, P. V., Howell, R. W., et al. (2008). Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides, 18, 277–286.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ganju, A., Khan, S., Hafeez, B. B., Behrman, S. W., Yallapu, M. M., Chauhan, S. C., et al. (2016). miRNA nanotherapeutics for cancer. Drug Discov Today, 1, 30408-1.Google Scholar
  113. Gautam, A., Sharma, M., Vir, P., Chaudhary, K., Kapoor, P., Kumar, R., et al. (2015). Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. European Journal of Pharmaceutics and Biopharmaceutics, 89, 93–106.PubMedCrossRefGoogle Scholar
  114. Gautam, A., Singh, H., Tyagi, A., Chaudhary, K., Kumar, R., Kapoor, P., et al. (2012). CPPsite: A curated database of cell penetrating peptides. Database (Oxford), bas015.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Geiler, C., Andrade, I., & Greenwald, D. (2014). Exogenous c-Myc Blocks differentiation and improves expansion of human erythroblasts in vitro. International Journal of Stem Cells, 7, 153–157.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Golan, M., Feinshtein, V., & David, A. (2016). Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 109, 103–112.PubMedCrossRefGoogle Scholar
  117. Good, L., Awasthi, S. K., Dryselius, R., Larsson, O., & Nielsen, P. E. (2001). Bactericidal antisense effects of peptide-PNA conjugates. Nature Biotechnology, 19, 360–364.PubMedCrossRefGoogle Scholar
  118. Gratton, J. P., Yu, J., Griffith, J. W., Babbitt, R. W., Scotland, R. S., Hickey, R., et al. (2003). Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nature Medicine, 9, 357–362.PubMedCrossRefGoogle Scholar
  119. Guo, Z., Peng, H., Kang, J., & Sun, D. (2016). Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomedical Reports, 4, 528–534.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Guo, J., Wang, H., & Hu, X. (2013). Reprogramming and transdifferentiation shift the landscape of regenerative medicine. DNA and Cell Biology, 32, 565–572.PubMedCrossRefGoogle Scholar
  121. Gupta, A., Mishra, A., & Puri, N. (2017). Peptide nucleic acids: Advanced tools for biomedical applications. Journal of Biotechnology, 259, 148–159.PubMedCrossRefGoogle Scholar
  122. Gupta, S. K., & Shukla, P. (2016). Gene editing for cell engineering: trends and applications. Critical Reviews in Biotechnology, 18, 1–13.Google Scholar
  123. Ha, J. S., Byun, J., & Ahn, D. R. (2016). Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption. Scientific Report, 6, 22847.CrossRefGoogle Scholar
  124. Hällbrink, M., Floren, A., Elmquist, A., Pooga, M., Bartfai, T., & Langel, Ü. (2001). Cargo delivery kinetics of cell-penetrating peptides. Biochimica et Biophysica Acta, 1515, 101–109.PubMedCrossRefGoogle Scholar
  125. Hällbrink, M., & Karelson, M. (2015). Prediction of cell-penetrating peptides. Methods in Molecular Biology, 1324, 39–58.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Hällbrink, M., Kilk, K., Elmquist, A., Lundberg, P., Lindgren, M., Jiang, Y., et al. (2005). Prediction of cell-penetrating peptides. International Journal of Peptide Research and Therapeutics, 11, 249–259.CrossRefGoogle Scholar
  127. Hällbrink, M., & Langel, Ü. (2006). Prediction of cell-penetrating peptides and prodrug approach. In Ü. Langel (Ed.), Handbook of cell-penetrating peptides (2nd ed., pp. 77–85). Boca Raton, London, New York: CRC Press/Taylor & Francis.CrossRefGoogle Scholar
  128. Hällbrink, M., Saar, K., Östenson, C. G., Soomets, U., Efendic, S., Howl, J., et al. (1999). Effects of vasopressin-mastoparan chimeric peptides on insulin release and G-protein activity. Regulatory Peptides, 82, 45–51.PubMedCrossRefGoogle Scholar
  129. Hammond, S. M., Hazell, G., Shabanpoor, F., Saleh, A. F., Bowerman, M., Sleigh, J. N., et al. (2016). Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proceedings of the National Academy of Sciences USA, 113, 10962–10967.CrossRefGoogle Scholar
  130. Hansen, M., Kilk, K., & Langel, Ü. (2008). Predicting cell-penetrating peptides. Advanced Drug Delivery Reviews, 60, 572–579.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Harreither, E., Rydberg, H. A., Amand, H. L., Jadhav, V., Fliedl, L., Benda, C., et al. (2014). Characterization of a novel cell penetrating peptide derived from human Oct4. Cell Regen (Lond), 3, 2.Google Scholar
  132. Hattori, T., Okitsu, K., Yamazaki, N., Ohoka, N., Shibata, N., Misawa, T., et al. (2017). Simple and efficient knockdown of His-tagged proteins by ternary molecules consisting of a His-tag ligand, a ubiquitin ligase ligand, and a cell-penetrating peptide. Bioorganic & Medicinal Chemistry Letters, 27, 4478–4481.CrossRefGoogle Scholar
  133. Hayashi, Y., Mizuno, R., Ikramy, K. A., Akita, H., & Harashima, H. (2012). Pretreatment of hepatocyte growth factor gene transfer mediated by octaarginine peptide-modified nanoparticles ameliorates LPS/D-galactosamine-induced hepatitis. Nucleic Acid Therapeutics, 22, 360–363.PubMedPubMedCentralCrossRefGoogle Scholar
  134. He, Y., Li, F., & Huang, Y. (2018). Smart cell-penetrating peptide-based techniques for intracellular delivery of therapeutic macromolecules. Advances in Protein Chemistry and Structural Biology, 112, 183–220.PubMedCrossRefGoogle Scholar
  135. Helmfors, H., Eriksson, J., & Langel, Ü. (2015). Optimized luciferase assay for cell-penetrating peptide-mediated delivery of short oligonucleotides. Analytical Biochemistry, 484, 136–142.PubMedCrossRefGoogle Scholar
  136. Heng, B. C., & Fussenegger, M. (2014). Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification. Methods in Molecular Biology, 0554-6_6.Google Scholar
  137. Herbig, M. E., Fromm, U., Leuenberger, J., Krauss, U., Beck-Sickinger, A. G., & Merkle, H. P. (2005). Bilayer interaction and localization of cell penetrating peptides with model membranes: a comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43-58). Biochimica et Biophysica Acta, 1712, 197–211.PubMedCrossRefGoogle Scholar
  138. Hirai, T., Yamagishi, Y., Koizumi, N., Nonaka, M., Mochida, R., Shida, K., et al. (2017). Identification of adenovirus-derived cell-penetrating peptide. Biological & Pharmaceutical Bulletin, 40, 195–204.CrossRefGoogle Scholar
  139. Howl, J., & Jones, S. (2015a). Cell penetrating peptide-mediated transport enables the regulated secretion of accumulated cargoes from mast cells. Journal of Controlled Release, 202, 108–117.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Howl, J., & Jones, S. (2015b). Insights into the molecular mechanisms of action of bioportides: A strategy to target protein-protein interactions. Expert Reviews in Molecular Medicine, 17, e1.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Howl, J., & Jones, S. (2015c). Protein mimicry and the design of bioactive cell-penetrating peptides. Methods in Molecular Biology, 1324, 177–190.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Howl, J., Langel, Ü., Hawtin, S. R., Valkna, A., Yarwood, N. J., Saar, K., et al. (1997). Chimeric strategies for the rational design of bioactive analogs of small peptide hormones. FASEB Journal, 11, 582–590.PubMedCrossRefGoogle Scholar
  143. Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827–832.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Hu, Q., Chen, R., Teesalu, T., Ruoslahti, E., & Clegg, D. O. (2014). Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Translational Medicine, 3, 1526–1534.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Hu, Q. L., Jiang, Q. Y., Jin, X., Shen, J., Wang, K., Li, Y. B., et al. (2013). Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials, 34, 2265–2276.PubMedCrossRefGoogle Scholar
  146. Hyrup Moller, L., Bahnsen, J. S., Nielsen, H. M., Ostergaard, J., Sturup, S., & Gammelgaard, B. (2015). Selenium as an alternative peptide label - comparison to fluorophore-labelled penetratin. European Journal of Pharmaceutical Sciences, 67, 76–84.Google Scholar
  147. Hyun, S., Choi, Y., Lee, H. N., Lee, C., Oh, D., Lee, D. K., et al. (2018). Construction of histidine-containing hydrocarbon stapled cell penetrating peptides for in vitro and in vivo delivery of siRNAs. Chemical Science, 9, 3820–3827.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Hyvonen, M., Enbäck, J., Huhtala, T., Lammi, J., Sihto, H., Weisell, J., et al. (2014). Novel target for peptide-based imaging and treatment of brain tumors. Molecular Cancer Therapeutics, 13, 996–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Hyvonen, M., & Laakkonen, P. (2015). Identification and characterization of homing peptides using in vivo peptide phage display. Methods in Molecular Biology, 1324, 205–222.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Ifediba, M. A., Medarova, Z., Ng, S. W., Yang, J., & Moore, A. (2010). siRNA delivery to CNS cells using a membrane translocation peptide. Bioconjugate Chemistry, 21, 803–806.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Ignatovich, I. A., Dizhe, E. B., Pavlotskaya, A. V., Akifiev, B. N., Burov, S. V., Orlov, S. V., et al. (2003). Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat Protein are transferred to mammalian cells by endocytosis-mediated pathways. Journal of Biological Chemistry, 278, 42625–42636.PubMedCrossRefGoogle Scholar
  152. Illien, F., Rodriguez, N., Amoura, M., Joliot, A., Pallerla, M., Cribier, S., et al. (2016). Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Scienfic Report, 6.Google Scholar
  153. Imani, R., Emami, S. H., & Faghihi, S. (2015). Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. Physical Chemistry Chemical Physics: PCCP, 17, 6328–6339.PubMedCrossRefGoogle Scholar
  154. Imani, R., Prakash, S., Vali, H., & Faghihi, S. (2018). Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: An optimization for efficient nucleic acid delivery. Biomaterials Science, 6, 1636–1650.PubMedCrossRefGoogle Scholar
  155. Imani, R., Shao, W., Taherkhani, S., Emami, S. H., Prakash, S., & Faghihi, S. (2016). Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids and Surfaces B: Biointerfaces, 147, 315–325.PubMedCrossRefGoogle Scholar
  156. Ishiguro, S., Alhakamy, N. A., Uppalapati, D., Delzeit, J., Berkland, C. J., & Tamura, M. (2016). Combined local pulmonary and systemic delivery of AT2R gene by modified tat peptide nanoparticles attenuates both murine and human lung carcinoma xenografts in mice. Journal of Pharmaceutical Sciences, 18, 41686-2.Google Scholar
  157. Iwase, Y., Kamei, N., Khafagy El, S., Miyamoto, M., & Takeda-Morishita, M. (2016). Use of a non-covalent cell-penetrating peptide strategy to enhance the nasal delivery of interferon beta and its PEGylated form. International Journal of Pharmaceutics, 510, 304–310.Google Scholar
  158. Jearawiriyapaisarn, N., Moulton, H. M., Buckley, B., Roberts, J., Sazani, P., Fucharoen, S., et al. (2008). Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Molecular Therapy, 16, 1624–1629.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Jeong, C., Yoo, J., Lee, D., & Kim, Y. C. (2016). A branched TAT cell-penetrating peptide as a novel delivery carrier for the efficient gene transfection. Biomaterials Research, 20, 28.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Ji, X., Lv, H., Guo, J., Ding, C., & Luo, X. (2018). A DNA nanotube-peptide biocomplex for mRNA detection and its application in cancer diagnosis and targeted therapy. Chemistry.Google Scholar
  161. Jones, L. R., Goun, E. A., Shinde, R., Rothbard, J. B., Contag, C. H., & Wender, P. A. (2006). Releasable luciferin-transporter conjugates: tools for the real-time analysis of cellular uptake and release. Journal of the American Chemical Society, 128, 6526–6527.PubMedCrossRefPubMedCentralGoogle Scholar
  162. Jung, H., Kim, D. O., Byun, J. E., Kim, W. S., Kim, M. J., Song, H. Y., et al. (2016). Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p 38 kinase activity. Nature Communications, 7.Google Scholar
  163. Jung, M. R., Shim, I. K., Kim, E. S., Park, Y. J., Yang, Y. I., Lee, S. K., et al. (2011). Controlled release of cell-permeable gene complex from poly(L-lactide) scaffold for enhanced stem cell tissue engineering. Journal of Controlled Release, 152, 294–302.PubMedCrossRefGoogle Scholar
  164. Kadkhodayan, S., Jafarzade, B. S., Sadat, S. M., Motevalli, F., Agi, E., & Bolhassani, A. (2017). Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunology Letters, 188, 38–45.PubMedCrossRefGoogle Scholar
  165. Kadkhodayan, S., Sadat, S. M., Irani, S., Fotouhi, F., & Bolhassani, A. (2016). Generation of GFP native protein for detection of its intracellular uptake by cell-penetrating peptides. Folia Biologica, 62, 103–109.PubMedGoogle Scholar
  166. Kaitsuka, T., Noguchi, H., Shiraki, N., Kubo, T., Wei, F. Y., Hakim, F., et al. (2014). Generation of functional insulin-producing cells from mouse embryonic stem cells through 804G cell-derived extracellular matrix and protein transduction of transcription factors. Stem Cells Transl Med, 3, 114–127.PubMedCrossRefGoogle Scholar
  167. Kaitsuka, T., & Tomizawa, K. (2015). Cell-penetrating peptide as a means of directing the differentiation of induced-pluripotent stem cells. International Journal of Molecular Sciences, 16, 26667–26676.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Kalafatovic, D., & Giralt, E. (2017). Cell-penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules, 22.Google Scholar
  169. Kam, Y., Rubinstein, A., Naik, S., Djavsarov, I., Halle, D., Ariel, I., et al. (2014). Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons. Cancer Letters, 352, 90–96.PubMedCrossRefGoogle Scholar
  170. Kamei, N., Shingaki, T., Kanayama, Y., Tanaka, M., Zochi, R., Hasegawa, K., et al. (2016). Visualization and quantitative assessment of the brain distribution of insulin through nose-to-brain delivery based on the cell-penetrating peptide noncovalent strategy. Molecular Pharmaceutics, 13, 1004–1011.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Kameyama, S., Horie, M., Kikuchi, T., Omura, T., Takeuchi, T., Nakase, I., et al. (2006). Effects of cell-permeating peptide binding on the distribution of 125I-labeled Fab fragment in rats. Bioconjugate Chemistry, 17, 597–602.PubMedCrossRefGoogle Scholar
  172. Kang, S. H., Cho, M. J., & Kole, R. (1998). Up-regulation of luciferase gene expression with antisense oligonucleotides: Implications and applications in functional assay development. Biochemistry, 37, 6235–6239.PubMedCrossRefGoogle Scholar
  173. Karagiannis, E. D., Alabi, C. A., & Anderson, D. G. (2012). Rationally designed tumor-penetrating nanocomplexes. ACS Nano, 6, 8484–8487.PubMedCrossRefGoogle Scholar
  174. Karas, J., Turner, B. J., & Shabanpoor, F. (2018). The assembly of fluorescently labeled peptide-oligonucleotide conjugates via orthogonal ligation strategies. Methods in Molecular Biology, 1828, 355–363.PubMedCrossRefGoogle Scholar
  175. Kato, T., Yamashita, H., Misawa, T., Nishida, K., Kurihara, M., Tanaka, M., et al. (2016). Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorganic & Medicinal Chemistry, 24, 2681–2687.CrossRefGoogle Scholar
  176. Kauffman, W. B., Guha, S., & Wimley, W. C. (2018). Synthetic molecular evolution of hybrid cell penetrating peptides. Nature Communications, 9, 2568.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Keller, A. A., Breitling, R., Hemmerich, P., Kappe, K., Braun, M., Wittig, B., et al. (2014). Transduction of proteins into leishmania tarentolae by formation of non-covalent complexes with cell-penetrating peptides. Journal of Cellular Biochemistry, 115, 243–252.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Khalil, I. A., & Harashima, H. (2018). An efficient pegylated gene delivery system with improved targeting: Synergism between octaarginine and a fusogenic peptide. International Journal of Pharmaceutics.Google Scholar
  179. Khalil, I. A., Hayashi, Y., Mizuno, R., & Harashima, H. (2011). Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. Journal of Controlled Release, 156, 374–380.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Khalil, I. A., Kimura, S., Sato, Y., & Harashima, H. (2018). Synergism between a cell penetrating peptide and a pH-sensitive cationic lipid in efficient gene delivery based on double-coated nanoparticles. Journal of Controlled Release, 275, 107–116.PubMedCrossRefGoogle Scholar
  181. Kilk, K., el Andaloussi, S., Järver, P., Meikas, A., Valkna, A., Bartfai, T., et al. (2005). Evaluation of transportan 10 in PEI mediated plasmid delivery assay. Journal of Controlled Release, 103, 511–523.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Kim, D. H., & Choi, J. M. (2018). Chitinase 3-like-1, a novel regulator of Th1/CTL responses, as a therapeutic target for increasing anti-tumor immunity. BMB Reports.Google Scholar
  183. Kim, D., Lee, Y., Dreher, T. W., & Cho, T. J. (2018). Empty Turnip yellow mosaic virus capsids as delivery vehicles to mammalian cells. Virus Research.Google Scholar
  184. Kiss, E., Gyulai, G., Pari, E., Horvati, K., & Bosze, S. (2018). Membrane affinity and fluorescent labelling: comparative study of monolayer interaction, cellular uptake and cytotoxicity profile of carboxyfluorescein-conjugated cationic peptides. Amino Acids.Google Scholar
  185. Knight, J. C., Topping, C., Mosley, M., Kersemans, V., Falzone, N., Fernandez-Varea, J. M., et al. (2015). PET imaging of DNA damage using (89)Zr-labelled anti-gammaH2AX-TAT immunoconjugates. European Journal of Nuclear Medicine and Molecular Imaging, 42, 1707–1717.PubMedCrossRefGoogle Scholar
  186. Kobayashi, H., Misawa, T., Oba, M., Hirata, N., Kanda, Y., Tanaka, M., et al. (2018). Structural development of cell-penetrating peptides containing cationic proline derivatives. Chemical and Pharmaceutical Bulletin (Tokyo), 66, 575–580.CrossRefGoogle Scholar
  187. Komor, A. C., Badran, A. H., & Liu, D. R. (2016). CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 15, 31465–31469.Google Scholar
  188. Konate, K., Rydstrom, A., Divita, G., & Deshayes, S. (2013). Everything you always wanted to know about CADY-mediated siRNA delivery* (* but afraid to ask). Current Pharmaceutical Design, 19, 2869–2877.CrossRefGoogle Scholar
  189. Kostiv, U., Kotelnikov, I., Proks, V., Slouf, M., Kucka, J., Engstova, H., et al. (2016). RGDS- and TAT-conjugated upconversion of NaYF4:Yb(3+)/Er(3+)&SiO2 nanoparticles. In vitro human epithelioid cervix carcinoma cellular uptake, imaging, and targeting. ACS Applied Materials & Interfaces, 8, 20422–20431.CrossRefGoogle Scholar
  190. Kristensen, M., Birch, D., & Mörck Nielsen, H. (2016). Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. International Journal of Molecular Sciences, 17, pii: E185.Google Scholar
  191. Kumar, V., Agrawal, P., Kumar, R., Bhalla, S., Usmani, S. S., Varshney, G. C., et al. (2018). Prediction of cell-penetrating potential of modified peptides containing natural and chemically modified residues. Frontiers in Microbiology, 9, 725.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Kurrikoff, K., Gestin, M., & Langel, Ü. (2016). Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opinion on Drug Delivery, 13, 373–387.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Kurrikoff, K., Veiman, K. L., Kunnapuu, K., Peets, E. M., Lehto, T., Parnaste, L., et al. (2017). Effective in vivo gene delivery with reduced toxicity, achieved by charge and fatty acid -modified cell penetrating peptide. Scientific Report, 7, 17056.CrossRefGoogle Scholar
  194. Kurrikoff, K., Veiman, K.-L., & Langel, Ü. (2015). CPP-based delivery system for in vivo gene delivery. Methods in Molecular Biology, 1324, 339–347.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Kyrychenko, A., Rodnin, M. V., & Ladokhin, A. S. (2015). Calibration of distribution analysis of the depth of membrane penetration using simulations and depth-dependent fluorescence quenching. Journal of Membrane Biology, 248, 583–594.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Ladokhin, A. S. (2014). Measuring membrane penetration with depth-dependent fluorescence quenching: distribution analysis is coming of age. Biochimica et Biophysica Acta, 9, 1.Google Scholar
  197. Langel, Ü., Land, T., & Bartfai, T. (1992). Design of chimeric peptide ligands to galanin receptors and substance P receptors. International Journal of Peptide and Protein Research, 39, 516–522.PubMedCrossRefGoogle Scholar
  198. Langel, Ü., Pooga, M., Kairane, C., Zilmer, M., & Bartfai, T. (1996). A galanin-mastoparan chimeric peptide activates the Na+, K(+)-ATPase and reverses its inhibition by ouabain. Regulatory Peptides, 62, 47–52.PubMedCrossRefGoogle Scholar
  199. Lee, J., & Bogyo, M. (2010). Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chemical Biology, 5, 233–243.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Lee, E. Y., Fulan, B. M., Wong, G. C., & Ferguson, A. L. (2016). Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proceedings of the National Academy of Sciences USA, 14, 201609893.Google Scholar
  201. Lee, J., Moon, S. U., Lee, Y. S., Ali, B. A., Al-Khedhairy, A. A., Ali, D., et al. (2015) Quantum dot-based molecular beacon to monitor intracellular microRNAs. Sensors (Basel), 15, 12872–12883.CrossRefGoogle Scholar
  202. Lee, J., Sayed, N., Hunter, A., Au, K. F., Wong, W. H., Mocarski, E. S., et al. (2012). Activation of innate immunity is required for efficient nuclear reprogramming. Cell, 151, 547–558.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Lehto, T., Abes, R., Oskolkov, N., Suhorutsenko, J., Copolovici, D. M., Mäger, I., et al. (2010). Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. Journal of Controlled Release, 141, 42–51.CrossRefGoogle Scholar
  204. Lehto, T., Ezzat, K., Wood, M. J., & el Andaloussi, S. (2016). Peptides for nucleic acid delivery. Advanced Drug Delivery Reviews, 106, 172–182.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Lehto, T., Vasconcelos, L., Margus, H., Figueroa, R., Pooga, M., Hällbrink, M., et al. (2017). Saturated fatty acid analogues of cell-penetrating peptide PepFect14: Role of fatty acid modification in complexation and delivery of splice-correcting oligonucleotides. Bioconjugate Chemistry, 28, 782–792.CrossRefGoogle Scholar
  206. Lei, Y., Tang, H., Yao, L., Yu, R., Feng, M., & Zou, B. (2008). Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjugate Chemistry, 19, 421–427.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Levacic, A. K., Morys, S., Kempter, S., Lachelt, U., & Wagner, E. (2017). Minicircle versus plasmid DNA delivery by receptor-targeted polyplexes. Human Gene therapy, 28, 862–874.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Li, S., Kim, S. Y., Pittman, A. E., King, G. M., Wimley, W. C., & Hristova, K. (2018). Potent macromolecule-sized poration of lipid bilayers by the macrolittins, A synthetically evolved family of pore-forming peptides. Journal of the American Chemicals.Google Scholar
  209. Li, H., & Tsui, T. (2015). Six-cell penetrating peptide-based fusion proteins for siRNA delivery. Drug Delivery, 22, 436–443.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Li, H., Zheng, X., Koren, V., Vashist, Y. K., & Tsui, T. Y. (2014). Highly efficient delivery of siRNA to a heart transplant model by a novel cell penetrating peptide-dsRNA binding domain. International Journal of Pharmaceutics, 469, 206–213.PubMedCrossRefGoogle Scholar
  211. Lim, J., Kim, J., Kang, J., & JO, D. (2014). Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors. Scientific Report, 4.Google Scholar
  212. Lindberg, S., Munoz-Alarcon, A., Helmfors, H., Mosqueira, D., Gyllborg, D., Tudoran, O., et al. (2013). PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors. International Journal of Pharmaceutics, 441, 242–247.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Lindgren, M., Gallet, X., Soomets, U., Hällbrink, M., Brakenhielm, E., Pooga, M., et al. (2000). Translocation properties of novel cell penetrating transportan and penetratin analogues. Bioconjugate Chemistry, 11, 619–626.PubMedCrossRefGoogle Scholar
  214. Liu, X., Braun, G. B., Qin, M., Ruoslahti, E., & Sugahara, K. N. (2017). In vivo cation exchange in quantum dots for tumor-specific imaging. Nature Communications, 8, 343.PubMedPubMedCentralCrossRefGoogle Scholar
  215. Liu, J., Gaj, T., Yang, Y., Wang, N., Shui, S., Kim, S., et al. (2015). Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nature Protocols, 10, 1842–1859.PubMedCrossRefGoogle Scholar
  216. Liu, M., Guo, Y. M., Wu, Q. F., Yang, J. L., Wang, P., Wang, S. C., et al. (2006). Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro. Biochemical and Biophysical Research Communications, 347, 133–140.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Liu, B. R., Huang, Y. W., Chiang, H. J., & Lee, H. J. (2010). Cell-penetrating peptide-functionalized quantum dots for intracellular delivery. Journal of Nanoscience and Nanotechnology, 10, 7897–7905.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Liu, Y., Wu, X., Gao, Y., Zhang, J., Zhang, D., Gu, S., et al. (2016a). Aptamer-functionalized peptide H3CR219C as a novel nanovehicle for codelivery of fasudil and miRNA-195 targeting hepatocellular carcinoma. International Journal of Nanomedicine, 11, 3891–3905.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Liu, H., Zeng, F., Zhang, M., Huang, F., Wang, J., Guo, J., et al. (2016b). Emerging landscape of cell penetrating peptide in reprogramming and gene editing. Journal of Controlled Release, 226, 124–137.PubMedCrossRefGoogle Scholar
  220. Lönn, P., & Dowdy, S. F. (2015). Cationic PTD/CPP-mediated macromolecular delivery: Charging into the cell. Expert opinion on drug delivery, 12, 1627–1636.PubMedCrossRefGoogle Scholar
  221. Lorenzetto, E., Ettorre, M., Pontelli, V., Bolomini-Vittori, M., Bolognin, S., Zorzan, S., et al. (2013). Rac1 selective activation improves retina ganglion cell survival and regeneration. PLoS One, 8.Google Scholar
  222. Lostale-Seijo, I., Louzao, I., Juanes, M., & Montenegro, J. (2017). Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chemical Science, 8, 7923–7931.Google Scholar
  223. Lou, G., Zhang, Q., Xiao, F., Xiang, Q., Su, Z., Zhang, L., et al. (2012). Intranasal administration of TAT-haFGF((1)(4)(-)(1)(5)(4)) attenuates disease progression in a mouse model of Alzheimer’s disease. Neuroscience, 223, 225–237.PubMedPubMedCentralCrossRefGoogle Scholar
  224. Lovatt, D., Ruble, B. K., Lee, J., Dueck, H., Kim, T. K., Fisher, S., et al. (2014). Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nature Methods, 11, 190–196.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Lundberg, P., el Andaloussi, S., Sutlu, T., Johansson, H., & Langel, Ü. (2007). Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB Journal, 21, 2664–2671.PubMedCrossRefGoogle Scholar
  226. Ma, W., Jin, G. W., Gehret, P. M., Chada, N. C., & Suh, W. H. (2018). A novel cell penetrating peptide for the differentiation of human neural stem cells. Biomolecules, 8.Google Scholar
  227. Mäe, M., el Andaloussi, S., Lundin, P., Oskolkov, N., Johansson, H. J., Guterstam, P., et al. (2009). A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. Journal of Controlled Release, 134, 221–227.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Mäger, I., Eiriksdottir, E., Langel, K., el Andaloussi, S., & Langel, Ü. (2010). Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochimica et Biophysica Acta, 1798, 338–343.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Mäger, I., Langel, K., Lehto, T., Eiriksdottir, E., & Langel, Ü. (2012). The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica et Biophysica Acta, 1818, 502–511.PubMedCrossRefGoogle Scholar
  230. Magzoub, M., Eriksson, L. E., & Graslund, A. (2003). Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophysical Chemistry, 103, 271–288.PubMedCrossRefGoogle Scholar
  231. Mahmood, A., Prufert, F., Efiana, N. A., Ashraf, M. I., Hermann, M., Hussain, S., et al. (2016). Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert opinion on drug delivery, 13, 1503–1512.PubMedCrossRefGoogle Scholar
  232. Manavalan, B., Subramaniyam, S., Shin, T. H., Kim, M., O. & Lee, G. (2018). Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. Journal of Proteome Research.Google Scholar
  233. Manceur, A., Wu, A., & Audet, J. (2007). Flow cytometric screening of cell-penetrating peptides for their uptake into embryonic and adult stem cells. Analytical Biochemistry, 364, 51–59.PubMedCrossRefGoogle Scholar
  234. Manicardi, A., Fabbri, E., Tedeschi, T., Sforza, S., Bianchi, N., Brognara, E., et al. (2012). Cellular uptakes, biostabilities and anti-miR-210 activities of chiral arginine-PNAs in leukaemic K562 cells. ChemBioChem, 13, 1327–1337.PubMedPubMedCentralCrossRefGoogle Scholar
  235. Mann, A., Thakur, G., Shukla, V., Singh, A. K., Khanduri, R., Naik, R., et al. (2011). Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies. Molecular Pharmaceutics, 8, 1729–1741.PubMedCrossRefGoogle Scholar
  236. Margus, H., Arukuusk, P., Langel, U., & Pooga, M. (2016). Characteristics of cell-penetrating peptide/nucleic acid nanoparticles. Molecular Pharmaceutics, 13, 172–179.PubMedCrossRefGoogle Scholar
  237. Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., et al. (2005). Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. Journal of Biological Chemistry, 280, 26360–26370.CrossRefGoogle Scholar
  238. Martins, I. M., Reis, R. L., & Azevedo, H. S. (2016). Phage display technology in biomaterials engineering: Progress and opportunities for applications in regenerative medicine. ACS Chemical Biology, 10, 10.Google Scholar
  239. Mathupala, S. P. (2009). Delivery of small-interfering RNA (siRNA) to the brain. Expert Opinion on Therapeutic Patents, 19, 137–140.PubMedPubMedCentralCrossRefGoogle Scholar
  240. Maxwell, D., Chang, Q., Zhang, X., Barnett, E. M., & Piwnica-Worms, D. (2009). An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging. Bioconjugate Chemistry, 20, 702–709.PubMedPubMedCentralCrossRefGoogle Scholar
  241. McCarthy, H. O., McCaffrey, J., McCrudden, C. M., Zholobenko, A., Ali, A. A., McBride, J. W., et al. (2014). Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. Journal of Controlled Release, 189, 141–149.PubMedCrossRefGoogle Scholar
  242. McClorey, G., & Banerjee, S. (2018). Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines, 6.Google Scholar
  243. Meade, B. R., & Dowdy, S. F. (2007). Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Advanced Drug Delivery Reviews, 59, 134–140.PubMedCrossRefGoogle Scholar
  244. Medema, R. H., Kops, G. J. P. L., Bos, J. L., & Burgering, B. M. T. (2000). AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27(kip1). Nature, 404, 782–787.PubMedCrossRefGoogle Scholar
  245. Medintz, I. L., Pons, T., Delehanty, J. B., Susumu, K., Brunel, F. M., Dawson, P. E., et al. (2008). Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjugate Chemistry, 19, 1785–1795.PubMedCrossRefGoogle Scholar
  246. Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.PubMedCrossRefGoogle Scholar
  247. Meerovich, I., Muthukrishnan, N., Johnson, G. A., Erazo-Oliveras, A., & Pellois, J. P. (2014). Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide. Biochimica et Biophysica Acta, 1840, 507–515.PubMedCrossRefGoogle Scholar
  248. Meng, Z., Guo, L., & Li, Q. (2017). Peptide-coated semiconductor polymer dots for stem cells labeling and tracking. Chemistry, 23, 6836–6844.PubMedCrossRefGoogle Scholar
  249. Meng, Z., Kang, Z., Sun, C., Yang, S., Zhao, B., Feng, S., et al. (2018). Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR. Nanoscale, 10, 1215–1227.PubMedCrossRefGoogle Scholar
  250. Mesken, J., Iltzsche, A., Mulac, D., & Langer, K. (2017). Modifying plasmid-loaded HSA-nanoparticles with cell penetrating peptides—Cellular uptake and enhanced gene delivery. International Journal of Pharmaceutics, 522, 198–209.PubMedCrossRefGoogle Scholar
  251. Michiue, H., Eguchi, A., Scadeng, M., & Dowdy, S. F. (2009). Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma. Cancer Biology & Therapy, 8, 2306–2313.CrossRefGoogle Scholar
  252. Mitra, R. N., Zheng, M., Weiss, E. R., & Han, Z. (2018). Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Biomaterials, 157, 26–39.PubMedCrossRefGoogle Scholar
  253. Mitsueda, A., Shimatani, Y., Ito, M., Ohgita, T., Yamada, A., Hama, S., et al. (2013). Development of a novel nanoparticle by dual modification with the pluripotential cell-penetrating peptide PepFect6 for cellular uptake, endosomal escape, and decondensation of an siRNA core complex. Biopolymers, 100, 698–704.PubMedCrossRefGoogle Scholar
  254. Mondhe, M., Chessher, A., Goh, S., Good, L., & Stach, J. E. (2014). Species-selective killing of bacteria by antimicrobial peptide-PNAs. PLoS ONE, 9, e89082.PubMedPubMedCentralCrossRefGoogle Scholar
  255. Morales, D. P., Wonderly, W. R., Huang, X., McAdams, M., Chron, A. B., & Reich, N. O. (2017). Affinity-based assembly of peptides on plasmonic nanoparticles delivered intracellularly with light activated control. Bioconjugate Chemistry, 28, 1816–1820.PubMedCrossRefGoogle Scholar
  256. Morris, M. C., Chaloin, L., Méry, J., Heitz, F., & Divita, G. (1999). A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Research, 27, 3510–3517.PubMedPubMedCentralCrossRefGoogle Scholar
  257. Morris, M. C., Depollier, J., Mery, J., Heitz, F., & Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 19, 1173–1176.PubMedPubMedCentralCrossRefGoogle Scholar
  258. Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Research, 25, 2730–2736.PubMedPubMedCentralCrossRefGoogle Scholar
  259. Moschos, S. A., Jones, S. W., Perry, M. M., Williams, A. E., Erjefalt, J. S., Turner, J. J., et al. (2007). Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjugate Chemistry, 18, 1450–1459.PubMedPubMedCentralCrossRefGoogle Scholar
  260. Moulay, G., Leborgne, C., Mason, A. J., Aisenbrey, C., Kichler, A., & Bechinger, B. (2017). Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. Journal of Peptide Science, 23, 320–328.PubMedCrossRefGoogle Scholar
  261. Mukai, Y., Sugita, T., Yamato, T., Yamanada, N., Shibata, H., Imai, S., et al. (2006). Creation of novel Protein Transduction Domain (PTD) mutants by a phage display-based high-throughput screening system. Biological & Pharmaceutical Bulletin, 29, 1570–1574.CrossRefGoogle Scholar
  262. Munoz-Alarcon, A., Eriksson, J., & Langel, U. (2015). Novel efficient cell-penetrating, peptide-mediated strategy for enhancing telomerase inhibitor oligonucleotides. Nucleic Acid Therapeutics, 25, 306–310.PubMedCrossRefGoogle Scholar
  263. Murata, Y., Jo, J. I., & Tabata, Y. (2017). Preparation of gelatin nanospheres incorporating quantum dots and iron oxide nanoparticles for multimodal cell imaging. Journal of Biomaterials Science, Polymer Edition, 28, 555–568.PubMedCrossRefGoogle Scholar
  264. Muratovska, A., & Eccles, M. R. (2004). Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Letters, 558, 63–68.PubMedCrossRefGoogle Scholar
  265. Muthukrishnan, N., Donovan, S., & Pellois, J. P. (2014). The photolytic activity of poly-arginine cell penetrating peptides conjugated to carboxy-tetramethylrhodamine is modulated by arginine residue content and fluorophore conjugation site. Photochemistry and Photobiology, 90, 1034–1042.PubMedPubMedCentralGoogle Scholar
  266. Myrberg, H., Lindgren, M., & Langel, Ü. (2007). Protein delivery by the cell-penetrating peptide YTA2. Bioconjugate Chemistry, 18, 170–174.PubMedPubMedCentralCrossRefGoogle Scholar
  267. Myrberg, H., Zhang, L., Mäe, M., & Langel, Ü. (2008). Design of a tumor-homing cell-penetrating peptide. Bioconjugate Chemistry, 19, 70–75.PubMedPubMedCentralCrossRefGoogle Scholar
  268. Nagel, Y. A., Raschle, P. S., & Wennemers, H. (2017). Effect of preorganized charge-display on the cell-penetrating properties of cationic peptides. Angewandte Chemie (International edition in English), 56, 122–126.CrossRefGoogle Scholar
  269. Najjar, K., Erazo-Oliveras, A., & Pellois, J. P. (2015). Delivery of proteins, peptides or cell-impermeable small molecules into live cells by incubation with the endosomolytic reagent dfTAT. Journal of Visualized Experiments, 2, 53175.Google Scholar
  270. Nakamura, Y., Kogure, K., Futaki, S., & Harashima, H. (2007). Octaarginine-modified multifunctional envelope-type nano device for siRNA. Journal of Controlled Release, 119, 360–367.PubMedCrossRefGoogle Scholar
  271. Nakase, I., Akita, H., Kogure, K., Gräslund, A., Langel, Ü., Harashima, H., et al. (2012). Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Accounts of Chemical Research, 45, 1132–1139.PubMedCrossRefGoogle Scholar
  272. Nascimento, F. D., Hayashi, M. A., Kerkis, A., Oliveira, V., Oliveira, E. B., Radis-Baptista, G., et al. (2007). Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. Journal of Biological Chemistry, 282, 21349–21360.PubMedCrossRefGoogle Scholar
  273. Ndeboko, B., Ramamurthy, N., Lemamy, G. J., Jamard, C., Nielsen, P. E., & Cova, L. (2017). Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication. Molecular Therapy—Nucleic Acids, 9, 162–169.PubMedPubMedCentralCrossRefGoogle Scholar
  274. Neundorf, I. (2017). Metal complex-peptide conjugates: How to modulate bioactivity of metal-containing compounds by the attachment to peptides. Current Medicinal Chemistry, 24, 1853–1861.PubMedCrossRefGoogle Scholar
  275. Ni, Z., Gong, Y., Dai, X., Ding, W., Wang, B., Gong, H., et al. (2015). AU4S: a novel synthetic peptide to measure the activity of ATG4 in living cells. Autophagy, 11, 403–415.PubMedPubMedCentralCrossRefGoogle Scholar
  276. Niidome, T., Urakawa, M., Takaji, K., Matsuo, Y., Ohmori, N., Wada, A., et al. (1999). Influence of lipophilic groups in cationic alpha-helical peptides on their abilities to bind with DNA and deliver genes into cells. Journal of Peptide Research, 54, 361–367.PubMedCrossRefGoogle Scholar
  277. Niu, J., Chu, Y., Huang, Y. F., Chong, Y. S., Jiang, Z. H., Mao, Z. W., et al. (2017). Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Applied Materials & Interfaces, 9, 9388–9401.CrossRefGoogle Scholar
  278. Noguchi, H., Bonner-Weir, S., Wei, F. Y., Matsushita, M., & Matsumoto, S. (2005). BETA2/NeuroD protein can be transduced into cells due to an arginine- and lysine-rich sequence. Diabetes, 54, 2859–2866.PubMedCrossRefGoogle Scholar
  279. Noguchi, H., Kaneto, H., Weir, G. C., & Bonner-Weir, S. (2003). PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes, 52, 1732–1737.PubMedCrossRefGoogle Scholar
  280. Nussbaumer, M. G., Duskey, J. T., Rother, M., Renggli, K., Chami, M., & Bruns, N. (2016). Chaperonin-Dendrimer conjugates for siRNA Delivery. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 3, 1600046.Google Scholar
  281. O’Connor, R. M., Gururajan, A., Dinan, T. G., Kenny, P. J., & Cryan, J. F. (2016). All Roads Lead to the miRNome: miRNAs Have a Central Role in the Molecular Pathophysiology of Psychiatric Disorders. Trends in Pharmacological Sciences, 37, 1029–1044.PubMedCrossRefPubMedCentralGoogle Scholar
  282. Oh, S. Y., Ju, Y., Kim, S., & Park, H. (2010). PNA-based antisense oligonucleotides for micrornas inhibition in the absence of a transfection reagent. Oligonucleotides, 20, 225–230.PubMedCrossRefGoogle Scholar
  283. Oh, S. Y., Ju, Y., & Park, H. (2009). A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Molecules and Cells, 28, 341–345.PubMedCrossRefPubMedCentralGoogle Scholar
  284. Okuda-Shinagawa, N. M., Moskalenko, Y. E., Junqueira, H. C., Baptista, M. S., Marques, C. M., & Machini, M. T. (2017). Fluorescent and photosensitizing conjugates of cell-penetrating peptide TAT(47-57): Design, microwave-assisted synthesis at 60 °C, and properties. ACS Omega, 2, 8156–8166.PubMedPubMedCentralCrossRefGoogle Scholar
  285. O’malley, W. I., Rubbiani, R., Aulsebrook, M. L., Grace, M. R., Spiccia, L., Tuck, K. L., et al. (2016). Cellular uptake and photo-cytotoxicity of a Gadolinium(III)-DOTA-Naphthalimide complex “clicked” to a lipidated tat peptide. Molecules, 21.Google Scholar
  286. Onoshima, D., Yukawa, H., & Baba, Y. (2015). Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Advanced Drug Delivery Reviews, 95, 2–14.PubMedCrossRefGoogle Scholar
  287. Oskolkov, N., Arukuusk, P., Copolovici, D.-M., Lindberg, S., Margus, H., Padari, K., et al. (2011). NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. International Journal of Peptide Research and Therapeutics, 17, 147–157.CrossRefGoogle Scholar
  288. Östlund, P., Kilk, K., Lindgren, M., Hällbrink, M., Jiang, Y., Budihna, M., et al. (2005). Cell-penetrating mimics of agonist-activated G-protein coupled receptors. International Journal of Peptide Research and Therapeutics, 11, 237–247.CrossRefGoogle Scholar
  289. Paasonen, L., Sharma, S., Braun, G. B., Kotamraju, V. R., Chung, T. D., She, Z. G., et al. (2016). New p32/gC1qR ligands for targeted tumor drug delivery. ChemBioChem, 17, 570–575.PubMedPubMedCentralCrossRefGoogle Scholar
  290. Padari, K., Koppel, K., Lorents, A., Hallbrink, M., Mano, M., Pedroso De Lima, M. C., et al. (2010). S4(13)-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells. Bioconjugate Chemistry, 21, 774–783.PubMedCrossRefGoogle Scholar
  291. Pan, D., Hu, Z., Qiu, F., Huang, Z. L., Ma, Y., Wang, Y., et al. (2014). A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nature Communications, 5, 5573.PubMedPubMedCentralCrossRefGoogle Scholar
  292. Pärn, K., Viru, L., Lehto, T., Oskolkov, N., Langel, Ü., & Merits, A. (2013). Transfection of infectious RNA and DNA/RNA layered vectors of semliki forest virus by the cell-penetrating peptide based reagent PepFect6. PLoS ONE, 8, e69659.PubMedPubMedCentralCrossRefGoogle Scholar
  293. Pärnaste, L., Arukuusk, P., Langel, K., Tenson, T., & Langel, Ü. (2017). The formation of nanoparticles between small interfering RNA and amphipathic cell-penetrating peptides. Molecular Therapy—Nucleic Acids, 7, 1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  294. Parsons, K. H., Mondal, M. H., McCormick, C. L., & Flynt, A. S. (2018). Guanidinium-functionalized interpolyelectrolyte complexes enabling RNAi in resistant insect pests. Biomacromolecules.Google Scholar
  295. Pazos, I. M., Ahmed, I. A., Berrios, M. I., & Gai, F. (2015). Sensing pH via p-cyanophenylalanine fluorescence: Application to determine peptide pKa and membrane penetration kinetics. Analytical Biochemistry, 483, 21–26.PubMedPubMedCentralCrossRefGoogle Scholar
  296. Peitz, M., Munst, B., Thummer, R. P., Helfen, M., & Edenhofer, F. (2014). Cell-permeant recombinant Nanog protein promotes pluripotency by inhibiting endodermal specification. Stem Cell Research, 12, 680–689.PubMedCrossRefPubMedCentralGoogle Scholar
  297. Peng, J., Rao, Y., Yang, X., Jia, J., Wu, Y., Lu, J., et al. (2017a). Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate. Neuroscience Letters, 650, 153–160.PubMedCrossRefPubMedCentralGoogle Scholar
  298. Peng, F., Tu, Y., Adhikari, A., Hintzen, J. C., Lowik, D. W., & Wilson, D. A. (2017b). A peptide functionalized nanomotor as an efficient cell penetrating tool. Chemical Communications (Cambridge, England), 53, 1088–1091.CrossRefGoogle Scholar
  299. Peraro, L., & Kritzer, J. (2018). Getting in: Emerging methods and design principles for cell-penetrant peptides. Angewandte Chemie International Edition in English.Google Scholar
  300. Peritz, T., Zeng, F., Kannanayakal, T. J., Kilk, K., Eiriksdottir, E., Langel, Ü., et al. (2006). Immunoprecipitation of mRNA-protein complexes. Nature Protocols, 1, 577–580.PubMedCrossRefPubMedCentralGoogle Scholar
  301. Pham, W., Kircher, M. F., Weissleder, R., & Tung, C. H. (2004). Enhancing membrane permeability by fatty acylation of oligoarginine peptides. ChemBioChem, 5, 1148–1151.PubMedCrossRefPubMedCentralGoogle Scholar
  302. Poillot, C., Bichraoui, H., Tisseyre, C., Bahemberae, E., Andreotti, N., Sabatier, J. M., et al. (2012). Small efficient cell-penetrating peptides derived from scorpion toxin maurocalcine. Journal of Biological Chemistry, 287, 17331–17342.PubMedCrossRefPubMedCentralGoogle Scholar
  303. Polyakov, V., Sharma, V., Dahlheimer, J. L., Pica, C. M., Luker, G. D., & Piwnica-Worms, D. (2000). Novel Tat-peptide chelates for direct transduction of technetium-99 m and rhenium into human cells for imaging and radiotherapy. Bioconjugate Chemistry, 11, 762–771.PubMedCrossRefPubMedCentralGoogle Scholar
  304. Pooga, M., Hällbrink, M., Zorko, M., & Langel, Ü. (1998a). Cell penetration by transportan. FASEB Journal, 12, 67–77.PubMedCrossRefPubMedCentralGoogle Scholar
  305. Pooga, M., Jureus, A., Razaei, K., Hasanvan, H., Saar, K., Kask, K., et al. (1998b). Novel galanin receptor ligands. Journal of Peptide Research, 51, 65–74.PubMedCrossRefPubMedCentralGoogle Scholar
  306. Pooga, M., Land, T., Bartfai, T., & Langel, Ü. (2001). PNA oligomers as tools for specific modulation of gene expression. Biomolecular Engineering, 17, 183–192.PubMedPubMedCentralCrossRefGoogle Scholar
  307. Pooga, M., Soomets, U., Hällbrink, M., Valkna, A., Saar, K., Rezaei, K., et al. (1998c). Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nature Biotechnology, 16, 857–861.PubMedPubMedCentralCrossRefGoogle Scholar
  308. Poutiainen, P. K., Ronkko, T., Hinkkanen, A. E., Palvimo, J. J., Narvanen, A., Turhanen, P., et al. (2014). Firefly luciferase inhibitor-conjugated peptide quenches bioluminescence: A versatile tool for real time monitoring cellular uptake of biomolecules. Bioconjugate Chemistry, 25, 4–10.PubMedCrossRefPubMedCentralGoogle Scholar
  309. Prantner, A. M., Sharma, V., Garbow, J. R., & Piwnica-Worms, D. (2003). Synthesis and characterization of a Gd-DOTA-D-permeation peptide for magnetic resonance relaxation enhancement of intracellular targets. Molecular Imaging, 2, 333–341.PubMedCrossRefPubMedCentralGoogle Scholar
  310. Przysiecka, L., Michalska, M., Nowaczyk, G., Peplinska, B., Jesionowski, T., Schneider, R., et al. (2016). iRGD peptide as effective transporter of CuInZnxS2 + x quantum dots into human cancer cells. Colloids and Surfaces B: Biointerfaces, 146, 9–18.PubMedCrossRefPubMedCentralGoogle Scholar
  311. Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans. PLoS One, 8.Google Scholar
  312. Quinn, M. K., Gnan, N., James, S., Ninarello, A., Sciortino, F., Zaccarelli, E., et al. (2015). How fluorescent labelling alters the solution behaviour of proteins. Physical Chemistry Chemical Physics: PCCP, 17, 31177–31187.PubMedCrossRefPubMedCentralGoogle Scholar
  313. Radis-Baptista, G., Campelo, I. S., Morlighem, J. R. L., Melo, L. M., & Freitas, V. J. F. (2017). Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. Journal of Biotechnology, 4, 30203-1.Google Scholar
  314. Radwani, H., Lopez-Gonzalez, M. J., Cattaert, D., Roca-Lapirot, O., Dobremez, E., Bouali-Benazzouz, R., et al. (2016). Cav1.2 and Cav1.3 L-type calcium channels independently control short- and long-term sensitization to pain. The Journal of Physiology, 594, 6607–6626.PubMedPubMedCentralCrossRefGoogle Scholar
  315. Rajendran, M., Yapici, E., & Miller, L. W. (2014). Lanthanide-based imaging of protein-protein interactions in live cells. Inorganic Chemistry, 53, 1839–1853.PubMedCrossRefPubMedCentralGoogle Scholar
  316. Ramaker, K., Henkel, M., Krause, T., Rockendorf, N., & Frey, A. (2018). Cell penetrating peptides: A comparative transport analysis for 474 sequence motifs. Drug Delivery, 25, 928–937.PubMedPubMedCentralCrossRefGoogle Scholar
  317. Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K., & Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Resarch, 24, 1020–1027.Google Scholar
  318. Rathnayake, P. V., Gunathunge, B. G., Wimalasiri, P. N., Karunaratne, D. N., & Ranatunga, R. J. (2017). Trends in the binding of cell penetrating peptides to siRNA: A molecular docking study. J Biophys, 2017, 1059216.PubMedPubMedCentralCrossRefGoogle Scholar
  319. Regberg, J., Srimanee, A., Erlandsson, M., Sillard, R., Dobchev, D. A., Karelson, M., et al. (2014). Rational design of a series of novel amphipathic cell-penetrating peptides. International Journal of Pharmaceutics, 464, 111–116.PubMedPubMedCentralCrossRefGoogle Scholar
  320. Regberg, J., Vasconcelos, L., Madani, F., Langel, Ü., & Hällbrink, M. (2016). pH-responsive PepFect cell-penetrating peptides. International Journal of Pharmaceutics, 501, 32–38.PubMedPubMedCentralCrossRefGoogle Scholar
  321. Rittner, K., Benavente, A., Bompard-Sorlet, A., Heitz, F., Divita, G., Brasseur, R., et al. (2002). New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Molecular Therapy, 5, 104–114.PubMedCrossRefPubMedCentralGoogle Scholar
  322. Roberts, T. C., Ezzat, K., el Andaloussi, S., & Weinberg, M. S. (2016). Synthetic SiRNA delivery: Progress and prospects. Methods in Molecular Biology, 1364, 291–310.PubMedCrossRefPubMedCentralGoogle Scholar
  323. Rodrigues, M., Santos, A., de la Torre, B. G., Radis-Baptista, G., Andreu, D., & Santos, N. C. (2012). Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. Biochimica et Biophysica Acta, 1818, 2707–2717.PubMedCrossRefPubMedCentralGoogle Scholar
  324. Ross, K. (2018). Towards topical microRNA-directed therapy for epidermal disorders. Journal of Controlled Release, 269, 136–147.PubMedCrossRefPubMedCentralGoogle Scholar
  325. Roth, L., Agemy, L., Kotamraju, V. R., Braun, G., Teesalu, T., Sugahara, K. N., et al. (2012). Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 31, 3754–3763.CrossRefGoogle Scholar
  326. Roux, L. N., Petit, I., Domart, R., Concordet, J. P., Qu, J., Zhou, H., et al. (2018). Modeling of Aniridia-related keratopathy by CRISPR/Cas9 genome editing of human limbal epithelial cells and rescue by recombinant PAX6 protein. Stem Cells.Google Scholar
  327. Ru, R., Yao, Y., Yu, S., Yin, B., Xu, W., Zhao, S., et al. (2013). Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regeneration (London), 2, 5.Google Scholar
  328. Ruan, G., Agrawal, A., Marcus, A. I., & Nie, S. (2007). Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. Journal of the American Chemical Society, 129, 14759–14766.PubMedCrossRefPubMedCentralGoogle Scholar
  329. Rudolph, C., Plank, C., Lausier, J., Schillinger, U., Müller, R. H., & Rosenecker, J. (2003). Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. Journal of Biological Chemistry, 278, 11411–11418.PubMedCrossRefPubMedCentralGoogle Scholar
  330. Ryu, J. H., Lee, A., Na, J. H., Lee, S., Ahn, H. J., Park, J. W., et al. (2011). Optimization of matrix metalloproteinase fluorogenic probes for osteoarthritis imaging. Amino Acids, 41, 1113–1122.PubMedCrossRefGoogle Scholar
  331. Säälik, P., Elmquist, A., Hansen, M., Padari, K., Saar, K., Viht, K., et al. (2004). Protein cargo delivery properties of cell-penetrating peptides. A comparative study. Bioconjugate Chemistry, 15, 1246–1253.PubMedCrossRefGoogle Scholar
  332. Sakurai, Y., Hatakeyama, H., Sato, Y., Akita, H., Takayama, K., Kobayashi, S., et al. (2011). Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials, 32, 5733–5742.PubMedCrossRefGoogle Scholar
  333. Saleh, T., Bolhassani, A., Shojaosadati, S. A., & Aghasadeghi, M. R. (2015). MPG-based nanoparticle: An efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine, 33, 3164–3170.PubMedCrossRefGoogle Scholar
  334. Salerno, J. C., Ngwa, V. M., Nowak, S. J., Chrestensen, C. A., Healey, A. N., & McMurry, J. L. (2016). Novel cell-penetrating peptide-adaptors effect intracellular delivery and endosomal escape of protein cargos. Journal of Cell Science, 129, 893–897.PubMedPubMedCentralCrossRefGoogle Scholar
  335. Salzano, G., Costa, D. F., Sarisozen, C., Luther, E., Mattheolabakis, G., Dhargalkar, P. P., et al. (2016). Mixed nanosized polymeric micelles as promoter of doxorubicin and miRNA-34a co-delivery triggered by dual stimuli in tumor tissue. Small (Weinheim an der Bergstrasse, Germany), 12, 4837–4848.CrossRefGoogle Scholar
  336. Sandberg, M., Eriksson, L., Jonsson, J., Sjostrom, M., & Wold, S. (1998). New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. Journal of Medicinal Chemistry, 41, 2481–2491.CrossRefGoogle Scholar
  337. Sanders, W. S., Johnston, C. I., Bridges, S. M., Burgess, S. C., & Willeford, K. O. (2011). Prediction of cell penetrating peptides by support vector machines. PLoS Computational Biology, 7, e1002101.PubMedPubMedCentralCrossRefGoogle Scholar
  338. Sangtani, A., Petryayeva, E., Wu, M., Susumu, K., Oh, E., Huston, A. L., et al. (2018). Intracellularly actuated quantum dot-peptide-doxorubicin nanobioconjugates for controlled drug delivery via the endocytic pathway. Bioconjugate Chemistry, 29, 136–148.PubMedCrossRefPubMedCentralGoogle Scholar
  339. Saw, P. E., Ko, Y. T., & Jon, S. (2010). Efficient liposomal nanocarrier-mediated oligodeoxynucleotide delivery involving dual use of a cell-penetrating peptide as a packaging and intracellular delivery agent. Macromolecular Rapid Communications, 31, 1155–1162.PubMedCrossRefGoogle Scholar
  340. Sayers, E. J., Cleal, K., Eissa, N. G., Watson, P., & Jones, A. T. (2014). Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides. Journal of Controlled Release, 195, 55–62.PubMedCrossRefGoogle Scholar
  341. Sazani, P., Gemignani, F., Kang, S. H., Maier, M. A., Manoharan, M., Persmark, M., et al. (2002). Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nature Biotechnology, 20, 1228–1233.PubMedCrossRefGoogle Scholar
  342. Sazani, P., Kang, S. H., Maier, M. A., Wei, C., Dillman, J., Summerton, J., et al. (2001). Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Research, 29, 3965–3974.PubMedPubMedCentralCrossRefGoogle Scholar
  343. Scarfi, S., Giovine, M., Gasparini, A., Damonte, G., Millo, E., Pozzolini, M., et al. (1999). Modified peptide nucleic acids are internalized in mouse macrophages RAW 264.7 and inhibit inducible nitric oxide synthase. FEBS Letters, 451, 264–268.PubMedCrossRefGoogle Scholar
  344. Schmidt, S., Adjobo-Hermans, M. J., Kohze, R., Enderle, T., Brock, R., & Milletti, F. (2017). Identification of short hydrophobic cell-penetrating peptides for cytosolic peptide delivery by rational design. Bioconjugate Chemistry, 28, 382–389.CrossRefGoogle Scholar
  345. Schnittert, J., Kuninty, P. R., Bystry, T. F., Brock, R., Storm, G., & Prakash, J. (2017). Anti-microRNA targeting using peptide-based nanocomplexes to inhibit differentiation of human pancreatic stellate cells. Nanomedicine (London).Google Scholar
  346. Sciani, J. M., Vigerelli, H., Costa, A. S., Camara, D. A., Junior, P. L., & Pimenta, D. C. (2017). An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening. Journal of Peptide Science, 23, 68–76.PubMedCrossRefPubMedCentralGoogle Scholar
  347. Segura, J., Fillat, C., Andreu, D., Llop, J., Millan, O., de la Torre, B. G., et al. (2007). Monitoring gene therapy by external imaging of mRNA: Pilot study on murine erythropoietin. Therapeutic Drug Monitoring, 29, 612–618.PubMedCrossRefGoogle Scholar
  348. Seo, B. J., Hong, Y. J., & Do, J. T. (2017). Cellular reprogramming using protein and cell-penetrating peptides. International Journal of Molecular Sciences, 18.Google Scholar
  349. Shiraishi, T., & Nielsen, P. E. (2011). Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers. Artif DNA PNA XNA, 2, 90–99.PubMedPubMedCentralCrossRefGoogle Scholar
  350. Shukla, R. S., Qin, B., & Cheng, K. (2014). Peptides used in the delivery of small noncoding RNA. Molecular Pharmaceutics, 11, 3395–3408.PubMedPubMedCentralCrossRefGoogle Scholar
  351. Simeoni, F., Morris, M. C., Heitz, F., & Divita, G. (2003). Insight into the mechanism of the peptide-based gene delivery system MPG: Implications for delivery of siRNA into mammalian cells. Nucleic Acids Research, 31, 2717–2724.PubMedPubMedCentralCrossRefGoogle Scholar
  352. Simmons, C. G., Pitts, A. E., Mayfield, L. D., Shay, J. W., & Corey, D. R. (1997). Synthesis and membrane permeability of PNA-peptide conjugates. Bioorganic & Medicinal Chemistry Letters, 7, 3001–3006.CrossRefGoogle Scholar
  353. Song, J., Kai, M., Zhang, W., Zhang, J., Liu, L., Zhang, B., et al. (2011). Cellular uptake of transportan 10 and its analogs in live cells: Selectivity and structure-activity relationship studies. Peptides, 32, 1934–1941.PubMedCrossRefGoogle Scholar
  354. Song, L., Liang, X., Yang, S., Wang, N., He, T., Wang, Y., et al. (2018). Novel polyethyleneimine-R8-heparin nanogel for high-efficiency gene delivery in vitro and in vivo. Drug Delivery, 25, 122–131.PubMedCrossRefGoogle Scholar
  355. Soomets, U., Hällbrink, M., Zorko, M., & Langel, Ü. (1997). From galanin and mastoparan to galparan and transportan. Current Topics in Peptide and Protein Res., 2, 83–113.Google Scholar
  356. Soudah, T., Mogilevsky, M., Karni, R., & Yavin, E. (2017). CLIP6-PNA-Peptide conjugates: Non-endosomal delivery of splice switching oligonucleotides. Bioconjugate Chemistry, 28, 3036–3042.PubMedCrossRefGoogle Scholar
  357. Sousa, A. A., Morgan, J. T., Brown, P. H., Adams, A., Jayasekara, M. P., Zhang, G., et al. (2012). Synthesis, characterization, and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 8, 2277–2286.CrossRefGoogle Scholar
  358. Srimanee, A., Regberg, J., Hällbrink, M., Kurrikoff, K., Veiman, K.-L., Vajragupta, O., et al. (2014). Peptide based delivery of oligonucleotides across blood-brain barrier model. International Journal of Peptide Research and Therapeutics, 20, 169–178.CrossRefGoogle Scholar
  359. Stein, C. A., & Castanotto, D. (2017). FDA-approved oligonucleotide therapies in 2017. Molecular Therapy, 25, 1069–1075.PubMedPubMedCentralCrossRefGoogle Scholar
  360. Suchaoin, W., Mahmood, A., Netsomboon, K., & Bernkop-Schnurch, A. (2017). Zeta-potential-changing nanoparticles conjugated with cell-penetrating peptides for enhanced transfection efficiency. Nanomedicine (London), 12, 963–975.CrossRefGoogle Scholar
  361. Sugahara, K. N., Braun, G. B., de Mendoza, T. H., Kotamraju, V. R., French, R. P., Lowy, A. M., et al. (2015). Tumor-penetrating iRGD peptide inhibits metastasis. Molecular Cancer Therapeutics, 14, 120–128.PubMedCrossRefGoogle Scholar
  362. Suh, J. S., Lee, J. Y., Choi, Y. S., Chung, C. P., & Park, Y. J. (2013). Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation. Biomaterials, 34, 4347–4359.PubMedCrossRefGoogle Scholar
  363. Suh, J. S., Lee, J. Y., Choi, Y. J., You, H. K., Hong, S. D., Chung, C. P., et al. (2014a). Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis. International Journal of Nanomedicine, 9, 1153–1166.PubMedPubMedCentralGoogle Scholar
  364. Suh, J. S., Lee, J. Y., Lee, G., Chung, C. P., & Park, Y. J. (2014b). Simultaneous imaging and restoration of cell function using cell permeable peptide probe. Biomaterials, 35, 6287–6298.PubMedCrossRefGoogle Scholar
  365. Suresh, B., Ramakrishna, S., & Kim, H. (2017). Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing. Methods in Molecular Biology, 81–94.Google Scholar
  366. Suryawanshi, H., Sarangdhar, M. A., Vij, M., Roshan, R., Singh, V. P., Ganguli, M., et al. (2015). A simple alternative to stereotactic injection for brain specific knockdown of miRNA. Journal of Visualized Experiments, 26, 53307.Google Scholar
  367. Swiecicki, J. M., di Pisa, M., Burlina, F., Lecorche, P., Mansuy, C., Chassaing, G., et al. (2015). Accumulation of cell-penetrating peptides in large unilamellar vesicles: A straightforward screening assay for investigating the internalization mechanism. Biopolymers, 104, 533–543.PubMedCrossRefGoogle Scholar
  368. Tai, W., & Gao, X. (2016). Functional peptides for siRNA delivery. Advanced Drug Delivery Reviews, 13, 30236–30238.Google Scholar
  369. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedPubMedCentralCrossRefGoogle Scholar
  370. Takashina, T., Koyama, T., Nohara, S., Hasegawa, M., Ishiguro, A., Iijima, K., et al. (2018). Identification of a cell-penetrating peptide applicable to a protein-based transcription activator-like effector expression system for cell engineering. Biomaterials, 173, 11–21.PubMedCrossRefGoogle Scholar
  371. Tang, H., Su, Z. D., Wei, H. H., Chen, W., & Lin, H. (2016). Prediction of cell-penetrating peptides with feature selection techniques. Biochemical and Biophysical Research Communications, 477, 150–154.PubMedCrossRefGoogle Scholar
  372. Teesalu, T., Sugahara, K. N., & Ruoslahti, E. (2013). Tumor-penetrating peptides. Frontiers in Oncology, 3.Google Scholar
  373. Theunissen, T. W., Costa, Y., Radzisheuskaya, A., van Oosten, A. L., Lavial, F., Pain, B., et al. (2011). Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development, 138, 4853–4865.PubMedPubMedCentralCrossRefGoogle Scholar
  374. Thiagarajan, L., Abu-Awwad, H. A. M., & Dixon, J. E. (2017). Osteogenic programming of human mesenchymal stem cells with highly efficient intracellular delivery of RUNX2. Stem Cells Translational Medicine, 6, 2146–2159.PubMedPubMedCentralCrossRefGoogle Scholar
  375. Thierry, A. R., Abes, S., Resina, S., Travo, A., Richard, J. P., Prevot, P., et al. (2006). Comparison of basic peptides- and lipid-based strategies for the delivery of splice correcting oligonucleotides. Biochimica et Biophysica Acta, 1758, 364–374.PubMedCrossRefGoogle Scholar
  376. Thoren, P. E., Persson, D., Esbjorner, E. K., Goksor, M., Lincoln, P., & Norden, B. (2004). Membrane binding and translocation of cell-penetrating peptides. Biochemistry, 43, 3471–3489.PubMedCrossRefGoogle Scholar
  377. Tisseyre, C., Ahmadi, M., Bacot, S., Dardevet, L., Perret, P., Ronjat, M., et al. (2014). Quantitative evaluation of the cell penetrating properties of an iodinated Tyr-l-maurocalcine analog. Biochimica et Biophysica Acta, 1843, 2356–2364.PubMedCrossRefGoogle Scholar
  378. Torres, A. G., Fabani, M. M., Vigorito, E., Williams, D., Al-Obaidi, N., Wojciechowski, F., et al. (2012). Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs. Nucleic Acids Research, 40, 2152–2167.PubMedCrossRefGoogle Scholar
  379. Tung, C. H., Mueller, S., & Weissleder, R. (2002). Novel branching membrane translocational peptide as gene delivery vector. Bioorganic & Medicinal Chemistry, 10, 3609–3614.CrossRefGoogle Scholar
  380. Tuttolomondo, M., Casella, C., Hansen, P. L., Polo, E., Herda, L. M., Dawson, K. A., et al. (2017). Human DMBT1-Derived cell-penetrating peptides for intracellular siRNA delivery. Molecular Therapy—Nucleic Acids, 8, 264–276.PubMedPubMedCentralCrossRefGoogle Scholar
  381. Udhayakumar, V. K., De Beuckelaer, A., McCaffrey, J., McCrudden, C. M., Kirschman, J. L., Vanover, D., et al. (2017). Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Advanced Healthcare Materials, 6.CrossRefGoogle Scholar
  382. Upadhya, A., & Sangave, P. C. (2016). Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. Journal of Peptide Science, 22, 647–659.PubMedCrossRefGoogle Scholar
  383. Urgard, E., Brjalin, A., Langel, U., Pooga, M., Rebane, A., & Annilo, T. (2017). Comparison of peptide- and lipid-based delivery of miR-34a-5p Mimic into PPC-1 cells. Nucleic Acid Therapeutics, 27, 295–302.PubMedCrossRefGoogle Scholar
  384. Urgard, E., Lorents, A., Klaas, M., Padari, K., Viil, J., Runnel, T., et al. (2016). Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. Journal of Controlled Release, 235, 195–204.PubMedCrossRefGoogle Scholar
  385. Vaissiere, A., Aldrian, G., Konate, K., Lindberg, M. F., Jourdan, C., Telmar, A., et al. (2017). A retro-inverso cell-penetrating peptide for siRNA delivery. Journal of Nanobiotechnology, 15, 34.PubMedPubMedCentralCrossRefGoogle Scholar
  386. van Asbeck, A. H., Beyerle, A., McNeill, H., Bovee-Geurts, P. H., Lindberg, S., Verdurmen, W. P., et al. (2013). Molecular parameters of siRNA–cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano, 7, 3797–3807.PubMedCrossRefGoogle Scholar
  387. van den Berg, A., & Dowdy, S. F. (2011). Protein transduction domain delivery of therapeutic macromolecules. Current Opinion in Biotechnology, 22, 888–893.PubMedCrossRefGoogle Scholar
  388. Veiman, K. L., Kunnapuu, K., Lehto, T., Kiisholts, K., Pärn, K., Langel, Ü., et al. (2015). PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. Journal of Controlled Release, 209, 238–247.PubMedPubMedCentralCrossRefGoogle Scholar
  389. Veiman, K. L., Mäger, I., Ezzat, K., Margus, H., Lehto, T., Langel, K., et al. (2013). PepFect14 peptide vector for efficient gene delivery in cell cultures. Molecular Pharmaceutics, 10, 199–210.PubMedCrossRefGoogle Scholar
  390. Vij, M., Natarajan, P., Pattnaik, B. R., Alam, S., Gupta, N., Santhiya, D., et al. (2016). Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. Journal of Controlled Release, 222, 159–168.CrossRefGoogle Scholar
  391. Wada, S. I., Takesada, A., Nagamura, Y., Sogabe, E., Ohki, R., Hayashi, J., et al. (2017). Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery. Bioorganic & Medicinal Chemistry Letters, 27, 5378–5381.CrossRefGoogle Scholar
  392. Wan, Y., Moyle, P. M., Christie, M. P., & Toth, I. (2016). Nanosized, peptide-based multicomponent DNA delivery systems: Optimization of endosome escape activity. Nanomedicine (London), 11, 907–919.CrossRefGoogle Scholar
  393. Wan, Y., Moyle, P. M., Gn, P. Z., & Toth, I. (2017). Design and evaluation of a stearylated multicomponent peptide-siRNA nanocomplex for efficient cellular siRNA delivery. Nanomedicine (London), 12, 281–293.CrossRefGoogle Scholar
  394. Wang, X., & Jauch, R. (2014). OCT4: A penetrant pluripotency inducer. Cell Regeneration (London), 3, 6.Google Scholar
  395. Wang, H. X., Song, Z., Lao, Y. H., Xu, X., Gong, J., Cheng, D., et al. (2018a). Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proceedings of the National Academy of Sciences USA, 115, 4903–4908.CrossRefGoogle Scholar
  396. Wang, L., Tang, W., Yan, S., Zhou, L., Shen, T., Huang, X., et al. (2013). Efficient delivery of miR-122 to regulate cholesterol metabolism using a non-covalent peptide-based strategy. Molecular Medicine Reports, 8, 1472–1478.PubMedPubMedCentralCrossRefGoogle Scholar
  397. Wang, X., Wu, F., Li, G., Zhang, N., Song, X., Zheng, Y., et al. (2018b). Lipid-modified cell-penetrating peptide-based self-assembly micelles for co-delivery of narciclasine and siULK1 in hepatocellular carcinoma therapy. Acta Biomaterialia.Google Scholar
  398. Wei, L., Tang, J., & Zou, Q. (2017a). SkipCPP-Pred: An improved and promising sequence-based predictor for predicting cell-penetrating peptides. BMC Genomics, 18, 742.PubMedPubMedCentralCrossRefGoogle Scholar
  399. Wei, L., Xing, P., Su, R., Shi, G., Ma, Z. S., & Zou, Q. (2017b). CPPred-RF: A sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. Journal of Proteome Research, 16, 2044–2053.PubMedCrossRefGoogle Scholar
  400. Weiss, H. M., Wirz, B., Schweitzer, A., Amstutz, R., Rodriguez Perez, M. I., Andres, H., et al. (2007). ADME investigations of unnatural peptides: distribution of a 14C-labeled beta 3-octaarginine in rats. Chemistry & Biodiversity, 4, 1413–1437.CrossRefGoogle Scholar
  401. Willmore, A. A., Simon-Gracia, L., Toome, K., Paiste, P., Kotamraju, V. R., Molder, T., et al. (2015). Targeted silver nanoparticles for ratiometric cell phenotyping. Nanoscale, 8, 8.Google Scholar
  402. Wolfe, J. M., Fadzen, C. M., Choo, Z. N., Holden, R. L., Yao, M., Hanson, G. J., et al. (2018a). Machine learning to predict cell-penetrating peptides for antisense delivery. ACS Central Science, 4, 512–520.PubMedPubMedCentralCrossRefGoogle Scholar
  403. Wolfe, J. M., Fadzen, C. M., Holden, R. L., Yao, M., Hanson, G. J., & Pentelute, B. L. (2018b). Perfluoroaryl bicyclic cell-penetrating peptides for delivery of antisense oligonucleotides. Angewandte Chemie International Edition in English.Google Scholar
  404. Wu, Y., Sun, J., Li, A., & Chen, D. (2018). The promoted delivery of RRM2 siRNA to vascular smooth muscle cells through liposome-polycation-DNA complex conjugated with cell penetrating peptides. Biomedicine & Pharmacotherapy, 103, 982–988.CrossRefGoogle Scholar
  405. Wyman, T. B., Nicol, F., Zelphati, O., Scaria, P. V., Plank, C., & Szoka Jr., F. C. (1997). Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 36, 3008–3017.Google Scholar
  406. Xia, M. C., Cai, L., Zhang, S., & Zhang, X. (2018). A cell-penetrating ratiometric probe for simultaneous measurement of lysosomal and cytosolic pH change. Talanta, 178, 355–361.PubMedCrossRefPubMedCentralGoogle Scholar
  407. Xie, X., Lin, W., Li, M., Yang, Y., Deng, J., Liu, H., et al. (2016). Efficient siRNA delivery using novel cell-penetrating peptide-siRNA conjugate-loaded nanobubbles and ultrasound. Ultrasound in Medicine and Biology, 42, 1362–1374.PubMedCrossRefPubMedCentralGoogle Scholar
  408. Xu, H., Bao, X., Wang, Y., Xu, Y., Deng, B., Lu, Y., et al. (2018). Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector. Virology Journal, 15, 49.PubMedPubMedCentralCrossRefGoogle Scholar
  409. Xu, J., Xiang, Q., Su, J., Yang, P., Zhang, Q., Su, Z., et al. (2014). Evaluation of the safety and brain-related tissues distribution characteristics of TAT-HaFGF via intranasal administration. Biological & Pharmaceutical Bulletin, 37, 1149–1157.CrossRefGoogle Scholar
  410. Xue, X. Y., Mao, X. G., Zhou, Y., Chen, Z., Hu, Y., Hou, Z., et al. (2018). Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomedicine (Lond), 14, 745–758.CrossRefGoogle Scholar
  411. Yamaguchi, S., Ito, S., Kurogi-Hirayama, M., & Ohtsuki, S. (2017). Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. Journal of Controlled Release, 262, 232–238.PubMedCrossRefPubMedCentralGoogle Scholar
  412. Yang, Y., Xia, X., Dong, W., Wang, H., Li, L., Ma, P., et al. (2016a). Acid sensitive polymeric micelles combining folate and bioreducible conjugate for specific intracellular siRNA delivery. Macromolecular Bioscience, 16, 759–773.PubMedCrossRefPubMedCentralGoogle Scholar
  413. Yang, Y., Xie, X., Xu, X., Xia, X., Wang, H., Li, L., et al. (2016b). Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids Surf B Biointerfaces, 146, 607–615.PubMedCrossRefPubMedCentralGoogle Scholar
  414. Yang, Y., Yang, Y., Xie, X., Xu, X., Xia, X., Wang, H., et al. (2016c). Dual stimulus of hyperthermia and intracellular redox environment triggered release of siRNA for tumor-specific therapy. International Journal of Pharmaceutics, 506, 158–173.PubMedCrossRefPubMedCentralGoogle Scholar
  415. Yao, H., Wang, K., Wang, Y., Wang, S., Li, J., Lou, J., et al. (2015). Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials, 37, 345–352.PubMedCrossRefPubMedCentralGoogle Scholar
  416. Ye, J., Liu, E., Gong, J., Wang, J., Huang, Y., He, H., et al. (2017). High-yield synthesis of monomeric LMWP(CPP)-siRNA covalent conjugate for effective cytosolic delivery of siRNA. Theranostics, 7, 2495–2508.PubMedPubMedCentralCrossRefGoogle Scholar
  417. Yong, K.-T. (2010). Biophotonics and biotechnology in pancreatic cancer: Cyclic RGD-peptide-conjugated Type II quantum dots for in vivo imaging. Pancreatology, 10, 553–564.PubMedCrossRefPubMedCentralGoogle Scholar
  418. Yoo, J., Lee, D., Gujrati, V., Rejinold, N. S., Lekshmi, K. M., Uthaman, S., et al. (2017). Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform. Journal of Controlled Release, 246, 142–154.PubMedCrossRefPubMedCentralGoogle Scholar
  419. Youn, P., Chen, Y., & Furgeson, D. Y. (2014). A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Molecular Pharmaceutics, 11, 486–495.PubMedPubMedCentralCrossRefGoogle Scholar
  420. Yu, Z., Ye, J., Pei, X., Sun, L., Liu, E., Wang, J., et al. (2018). Improved method for synthesis of low molecular weight protamine-siRNA conjugate. Acta pharmaceutica Sinica. B, 8, 116–126.PubMedCrossRefPubMedCentralGoogle Scholar
  421. Yukawa, H., Kagami, Y., Watanabe, M., Oishi, K., Miyamoto, Y., Okamoto, Y., et al. (2010a). Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials, 31, 4094–4103.PubMedCrossRefPubMedCentralGoogle Scholar
  422. Yukawa, H., Noguchi, H., Nakase, I., Miyamoto, Y., Oishi, K., Hamajima, N., et al. (2010b). Transduction of cell-penetrating peptides into induced pluripotent stem cells. Cell Transplantation, 19, 901–909.PubMedCrossRefPubMedCentralGoogle Scholar
  423. Yukawa, H., Suzuki, K., Kano, Y., Yamada, T., Kaji, N., Ishikawa, T., et al. (2013). Induced pluripotent stem cell labeling using quantum dots. Cell Med, 6, 83–90.PubMedPubMedCentralCrossRefGoogle Scholar
  424. Zamaleeva, A. I., Despras, G., Luccardini, C., Collot, M., de Waard, M., Oheim, M., et al. (2015). FRET-based nanobiosensors for imaging intracellular Ca(2)(+) and H(+) microdomains. Sensors (Basel), 15, 24662–24680.CrossRefGoogle Scholar
  425. Zeng, F., Peritz, T., Kannanayakal, T. J., Kilk, K., Eiriksdottir, E., Langel, Ü., et al. (2006). A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nature Protocols, 1, 920–927.PubMedCrossRefPubMedCentralGoogle Scholar
  426. Zhang, L., Liang, D., Wang, Y., Li, D., Zhang, J., Wu, L., et al. (2018a). Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chemical Science, 9, 44–51.PubMedCrossRefPubMedCentralGoogle Scholar
  427. Zhang, Z., Yuan, Y., Liu, Z., Chen, H., Chen, D., Fang, X., et al. (2018b). Brightness enhancement of near-infrared semiconducting polymer dots for in vivo whole-body cell tracking in deep organs. ACS Applied Materials & Interfaces, 10, 26928–26935.CrossRefGoogle Scholar
  428. Zhang, M., Zhao, X., Geng, J., Liu, H., Zeng, F., Qin, Y., et al. (2018b). Efficient penetration of Scp01-b and its DNA transfer abilities into cells. Journal of Cell Physiology.Google Scholar
  429. Zhang, L., Zhou, Q., Song, W., Wu, K., Zhang, Y., & Zhao, Y. (2017). Dual-functionalized graphene oxide based siRNA delivery system for implant surface biomodification with enhanced osteogenesis. ACS Applied Materials & Interfaces, 9, 34722–34735.CrossRefGoogle Scholar
  430. Zhao, Y., He, Z., Gao, H., Tang, H., He, J., Guo, Q., et al. (2018). Fine tuning of core-shell structure of hyaluronic acid/cell-penetrating peptides/siRNA nanoparticles for enhanced gene delivery to macrophages in antiatherosclerotic therapy. Biomacromolecules.Google Scholar
  431. Zielinski, J., Kilk, K., Peritz, T., Kannanayakal, T., Miyashiro, K. Y., Eiriksdottir, E., et al. (2006). In vivo identification of ribonucleoprotein-RNA interactions. Proceedings of the National Academy of Sciences USA, 103, 1557–1562.CrossRefGoogle Scholar
  432. Zou, Z., Sun, Z., Li, P., Feng, T., & Wu, S. (2016). Cre fused with RVG Peptide mediates targeted genome editing in mouse brain cells in vivo. International Journal of Molecular Sciences, 17.Google Scholar
  433. Zuris, J. A., Thompson, D. B., Shu, Y., Guilinger, J. P., Bessen, J. L., Hu, J. H., et al. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33, 73–80.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
  2. 2.Institute of TechnologyUniversity of TartuTartuEstonia

Personalised recommendations