Therapeutic Potential of CPPs

  • Ülo Langel


Cell penetrating peptides as well as their applications have been extensively studied and multiple exciting reports about the topics emerge daily; this book hopefully is the proof for this statement. However, CPPs are not yet on the list of drugs for a patient therapy today and we can talk about the therapeutic potential of CPPs only. I believe that the CPP based drugs will be available in near future, however, several hurdles should be overcome before that. Below, the brief summary of therapeutic developments and current situation with applications of CPPs will be presented.


Therapeutic potential Diseases Addressing Imaging 


  1. Abushahba, M. F., Mohammad, H., & Seleem, M. N. (2016). Targeting multidrug-resistant staphylococci with an anti-rpoA peptide nucleic acid conjugated to the HIV-1 TAT cell penetrating peptide. Molecular Therapy Nucleic Acids, 5, e339.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acar, H., Ting, J. M., Srivastava, S., Labelle, J. L., & Tirrell, M. V. (2017). Molecular engineering solutions for therapeutic peptide delivery. Chemical Society Reviews, 46, 6553–6569.PubMedCrossRefGoogle Scholar
  3. Acharyya, S., Villalta, S. A., Bakkar, N., Bupha-Intr, T., Janssen, P. M., Carathers, M., et al. (2007). Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. Journal of Clinical Investigation, 117, 889–901.PubMedCrossRefGoogle Scholar
  4. Adachi, Y., Sakamoto, K., Umemoto, T., Fukuda, Y., Tani, A., & Asami, T. (2017). Investigation on cellular uptake and pharmacodynamics of DOCK2-inhibitory peptides conjugated with cell-penetrating peptides. Bioorganic & Medicinal Chemistry, 25, 2148–2155.CrossRefGoogle Scholar
  5. Adams, S. R., Mackey, M. R., Ramachandra, R., Palida Lemieux, S. F., Steinbach, P., Bushong, E. A., et al. (2016). Multicolor electron microscopy for simultaneous visualization of multiple molecular species. Cell Chemical Biology, 23, 1417–1427.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Agarwal, A., Lariya, N., Saraogi, G., Dubey, N., Agrawal, H., & Agrawal, G. P. (2009). Nanoparticles as novel carrier for brain delivery: A review. Current Pharmaceutical Design, 15, 917–925.PubMedCrossRefGoogle Scholar
  7. Aharony, I., Ehrnhoefer, D. E., Shruster, A., Qiu, X., Franciosi, S., Hayden, M. R., et al. (2015). A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits. Human Molecular Genetics, 24, 2604–2614.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Alaybeyoglu, B., Uluocak, B. G., Akbulut, B. S., & Ozkirimli, E. (2017). The effect of a beta-lactamase inhibitor peptide on bacterial membrane structure and integrity: A comparative study. Journal of Peptide Science, 23, 374–383.PubMedCrossRefGoogle Scholar
  9. Alexander-Bryant, A. A., Zhang, H., Attaway, C. C., Pugh, W., Eggart, L., Sansevere, R. M., et al. (2017). Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo. Oral Oncology, 72, 123–131.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Allison, R. R. (2016). Fluorescence guided resection (FGR): A primer for oncology. Photodiagnosis and Photodynamic Therapy, 13, 73–80.PubMedCrossRefGoogle Scholar
  11. Al-Zaher, A. A., Moreno, R., Fajardo, C. A., Arias-Badia, M., Farrera, M., de Sostoa, J., et al. (2018). Evidence of anti-tumoral efficacy in an immune competent setting with an iRGD-Modified hyaluronidase-armed oncolytic adenovirus. Molecular Therapy Oncolytics, 8, 62–70.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Amantana, A., Moulton, H. M., Cate, M. L., Reddy, M. T., Whitehead, T., Hassinger, J. N., et al. (2007). Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjugate Chemistry, 18, 1325–1331.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arias, M., Hilchie, A. L., Haney, E. F., Bolscher, J. G., Hyndman, M. E., Hancock, R. E., et al. (2017). Anticancer activities of bovine and human lactoferricin-derived peptides. Biochemistry and Cell Biology = Biochimie et biologie cellulaire, 95, 91–98.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Aroui, S., Brahim, S., Waard, M. D., & Kenani, A. (2010). Cytotoxicity, intracellular distribution and uptake of doxorubicin and doxorubicin coupled to cell-penetrating peptides in different cell lines: A comparative study. Biochemical and Biophysical Research Communications, 391, 419–425.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Aroui, S., Ram, N., Appaix, F., Ronjat, M., Kenani, A., Pirollet, F., et al. (2009). Maurocalcine as a non toxic drug carrier overcomes doxorubicin resistance in the cancer cell line MDA-MB 231. Pharmaceutical Research, 26, 836–845.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Arribat, Y., Talmat-Amar, Y., Paucard, A., Lesport, P., Bonneaud, N., Bauer, C., et al. (2014). Systemic delivery of P42 peptide: A new weapon to fight Huntington’s disease. Acta Neuropathol Commun, 2, 86.PubMedPubMedCentralGoogle Scholar
  17. Arrighi, R. B., Ebikeme, C., Jiang, Y., Ranford-Cartwright, L., Barrett, M. P., Langel, Ü., et al. (2008). Cell-penetrating peptide TP10 shows broad-spectrum activity against both Plasmodium falciparum and Trypanosoma brucei brucei. Antimicrobial Agents and Chemotherapy, 52, 3414–3417.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Asoh, S., Ohsawa, I., Mori, T., Katsura, K., Hiraide, T., Katayama, Y., et al. (2002). Protection against ischemic brain injury by protein therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 99, 17107–17112.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ayalew, L., Acuna, J., Urfano, S. F., Morfin, C., Sablan, A., Oh, M., et al. (2017). Conjugation of paclitaxel to hybrid peptide carrier and biological evaluation in Jurkat and A549 cancer cell lines. ACS Medicinal Chemistry Letters, 8, 814–819.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Azimzadeh, O., & Tapio, S. (2017). Proteomics landscape of radiation-induced cardiovascular disease: Somewhere over the paradigm. Expert Review of Proteomics, 14, 987–996.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., et al. (2017). Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell, 169, 132–147.e16.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bahnsen, J. S., Franzyk, H., Sandberg-Schaal, A., & Nielsen, H. M. (2013). Antimicrobial and cell-penetrating properties of penetratin analogs: Effect of sequence and secondary structure. Biochimica et Biophysica Acta, 1828, 223–232.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bahnsen, J. S., Franzyk, H., Sayers, E. J., Jones, A. T., & Nielsen, H. M. (2015). Cell-penetrating antimicrobial peptides—prospectives for targeting intracellular infections. Pharmaceutical Research, 32, 1546–1556.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Banoczi, Z., Keglevich, A., Szabo, I., Randelovic, I., Hegedus, Z., Regenbach, F. L., et al. (2018). The effect of conjugation on antitumor activity of vindoline derivatives with octaarginine, a cell-penetrating peptide. Journal of Peptide Science, 24, e3118.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bansal, K., Aqdas, M., Kumar, M., Bala, R., Singh, S., Agrewala, J. N., et al. (2018). A facile approach for synthesis and intracellular delivery of size tunable cationic peptide functionalized gold nanohybrids in cancer cells. Bioconjugate Chemistry, 29, 1102–1110.PubMedCrossRefGoogle Scholar
  26. Bao, Y., Guo, H., Lu, Y., Feng, W., Sun, X., Tang, C., et al. (2016). Blocking hepatic metastases of colon cancer cells using an shRNA against Rac1 delivered by activatable cell-penetrating peptide. Oncotarget, 7, 77183–77195.PubMedPubMedCentralGoogle Scholar
  27. Bartlett 2nd, R. L., Sharma, S., & Panitch, A. (2013). Cell-penetrating peptides released from thermosensitive nanoparticles suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants. Nanomedicine: Nanotechnology, Biology, and Medicine, 9, 419–427.Google Scholar
  28. Bartomeu Garcia, C., Shi, D., & Webster, T. J. (2017). Tat-functionalized liposomes for the treatment of meningitis: An in vitro study. International Journal of Nanomedicine, 12, 3009–3021.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Baxter, D., Perry, S. R., Hill, T. A., Kok, W. M., Zaccai, N. R., Brady, R. L., et al. (2017). Downsizing proto-oncogene cFos to short helix-constrained peptides that bind jun. ACS Chemical Biology, 12, 2051–2061.PubMedCrossRefGoogle Scholar
  30. Bergmann, R., Splith, K., Pietzsch, J., Bachmann, M., & Neundorf, I. (2017). Biological characterization of novel nitroimidazole-peptide conjugates in vitro and in vivo. Journal of Peptide Science, 23, 597–609.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Bernkop-Schnurch, A. (2018). Strategies to overcome the polycation dilemma in drug delivery. Advanced Drug Delivery Reviews.Google Scholar
  32. Betts, C., Saleh, A. F., Arzumanov, A. A., Hammond, S. M., Godfrey, C., Coursindel, T., et al. (2012). Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Molecular Therapy Nucleic Acids, 1, e38.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Betts, C. A., & Wood, M. J. (2013). Cell penetrating peptide delivery of splice directing oligonucleotides as a treatment for Duchenne muscular dystrophy. Current Pharmaceutical Design, 19, 2948–2962.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bharadwaj, V. N., Nguyen, D. T., Kodibagkar, V. D., & Stabenfeldt, S. E. (2017). Nanoparticle-Based Therapeutics for Brain Injury. Advanced Healthcare Materials, 7, 1700668.CrossRefGoogle Scholar
  35. Bhattarai, P., Thomas, A. K., Cosacak, M. I., Papadimitriou, C., Mashkaryan, V., Zhang, Y., et al. (2017). Modeling amyloid-beta42 toxicity and neurodegeneration in adult zebrafish brain. Journal of Visualized Experiments, 128, e56014.Google Scholar
  36. Blain, A. M., Greally, E., McClorey, G., Manzano, R., Betts, C. A., Godfrey, C., et al. (2018). Peptide-conjugated phosphodiamidate oligomer-mediated exon skipping has benefits for cardiac function in mdx and Cmah-/-mdx mouse models of Duchenne muscular dystrophy. PLoS ONE, 13, e0198897.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33, 941–951.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Boisguerin, P., Giorgi, J. M., & Barrere-Lemaire, S. (2013). CPP-conjugated anti-apoptotic peptides as therapeutic tools of ischemia-reperfusion injuries. Current Pharmaceutical Design, 19, 2970–2978.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Boisguerin, P., O’Donovan, L., Gait, M. J., & Lebleu, B. (2015). In vitro assays to assess exon skipping in duchenne muscular dystrophy. Methods in Molecular Biology, 1324, 317–329.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Boisguerin, P., Redt-Clouet, C., Franck-Miclo, A., Licheheb, S., Nargeot, J., Barrere-Lemaire, S., et al. (2011). Systemic delivery of BH4 anti-apoptotic peptide using CPPs prevents cardiac ischemia-reperfusion injuries in vivo. J Control Release, 156, 146–153.PubMedCrossRefGoogle Scholar
  41. Bonny, C., Oberson, A., Negri, S., Sauser, C., & Schorderet, D. F. (2001). Cell-permeable peptide inhibitors of JNK: Novel blockers of beta-cell death. Diabetes, 50, 77–82.PubMedCrossRefGoogle Scholar
  42. Borrelli, A., Tornesello, A. L., Tornesello, M. L., & Buonaguro, F. M. (2018). Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules, 23, 295.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Borsello, T., Clarke, P. G., Hirt, L., Vercelli, A., Repici, M., Schorderet, D. F., et al. (2003). A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nature Medicine, 9, 1180–1186.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Bremer, C., Tung, C. H., & Weissleder, R. (2001). In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Medicine, 7, 743–748.PubMedCrossRefGoogle Scholar
  45. Brezden, A., Mohamed, M. F., Nepal, M., Harwood, J. S., Kuriakose, J., Seleem, M. N., et al. (2016). Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. Journal of the American Chemical Society, 138, 10945–10949.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Bright, R., Raval, A. P., Dembner, J. M., Perez-Pinzon, M. A., Steinberg, G. K., Yenari, M. A., et al. (2004). Protein kinase C delta mediates cerebral reperfusion injury in vivo. Journal of Neuroscience, 24, 6880–6888.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Brunetti, J., Riolo, G., Gentile, M., Bernini, A., Paccagnini, E., Falciani, C., et al. (2018). Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging. Journal of Nanobiotechnology, 16, 21.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Bruno, B. J., Miller, G. D., & Lim, C. S. (2013). Basics and recent advances in peptide and protein drug delivery. Therapeutic Delivery, 4, 1443–1467.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Buckel, L., Savariar, E. N., Crisp, J. L., Jones, K. A., Hicks, A. M., Scanderbeg, D. J., et al. (2015). Tumor radiosensitization by monomethyl auristatin E: Mechanism of action and targeted delivery. Cancer Research, 75, 1376–1387.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Budagavi, D. P., & Chugh, A. (2018). Antibacterial properties of Latarcin 1 derived cell-penetrating peptides. European Journal of Pharmaceutical Sciences, 115, 43–49.PubMedCrossRefGoogle Scholar
  51. Burke, B. P., Cawthorne, C., & Archibald, S. J. (2017). Multimodal nanoparticle imaging agents: Design and applications. Philosophical Transactions of the Royal Society A: Physical and Engineering Sciences, 375, 20170261.CrossRefGoogle Scholar
  52. Cao, J., Ge, R., Zhang, M., Xia, J., Han, S., Lu, W., et al. (2018a). A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy. Nanoscale, 19, 9021–9037.CrossRefGoogle Scholar
  53. Cao, L., Li, B., Yi, P., Zhang, H., Dai, J., Tan, B., et al. (2014). The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides. Biomaterials, 35, 4168–4174.PubMedCrossRefGoogle Scholar
  54. Cao, G., Pei, W., Ge, H., Liang, Q., Luo, Y., Sharp, F. R., et al. (2002). In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. Journal of Neuroscience, 22, 5423–5431.PubMedCrossRefGoogle Scholar
  55. Cao, X. W., Yang, X. Z., Du, X., Fu, L. Y., Zhang, T. Z., Shan, H. W., et al. (2018b). Structure optimization to improve the delivery efficiency and cell selectivity of a tumor-targeting cell-penetrating peptide. Journal of Drug Targeting, 26, 1–28.CrossRefGoogle Scholar
  56. Carnevale, K. J. F., Muroski, M. E., Vakil, P. N., Foley, M. E., Laufersky, G., Kenworthy, R., et al. (2018). Selective uptake into drug resistant mammalian cancer by cell penetrating peptide-mediated delivery. Bioconjugate Chemistry, 29, 3273–3284.PubMedCrossRefGoogle Scholar
  57. Carter, V., Underhill, A., Baber, I., Sylla, L., Baby, M., Larget-Thiery, I., et al. (2013). Killer bee molecules: Antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathogens, 9, e1003790.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Castillo, J. I., Rownicki, M., Wojciechowska, M., & Trylska, J. (2018). Antimicrobial synergy between mRNA targeted peptide nucleic acid and antibiotics in E. coli. Bioorganic & Medicinal Chemistry Letters, 28, 3094–3098.CrossRefGoogle Scholar
  59. Cates, C. C., Arias, A. D., Nakayama Wong, L. S., Lame, M. W., Sidorov, M., Cayanan, G., et al. (2016). Regression/eradication of gliomas in mice by a systemically-deliverable ATF5 dominant-negative peptide. Oncotarget, 7, 12718–12730.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Chaloin, L., Bigey, P., Loup, C., Marin, M., Galeotti, N., Piechaczyk, M., et al. (2001). Improvement of porphyrin cellular delivery and activity by conjugation to a carrier peptide. Bioconjugate Chemistry, 12, 691–700.PubMedCrossRefGoogle Scholar
  61. Chen, S., Cui, J., Jiang, T., Olson, E. S., Cai, Q. Y., Yang, M., et al. (2017a). Gelatinase activity imaged by activatable cell-penetrating peptides in cell-based and in vivo models of stroke. Journal of Cerebral Blood Flow and Metabolism, 37, 188–200.PubMedCrossRefGoogle Scholar
  62. Chen, B., Friedman, B., Whitney, M. A., Winkle, J. A., Lei, I. F., Olson, E. S., et al. (2012). Thrombin activity associated with neuronal damage during acute focal ischemia. Journal of Neuroscience, 32, 7622–7631.PubMedCrossRefGoogle Scholar
  63. Chen, L., Hahn, H., Wu, G., Chen, C. H., Liron, T., Schechtman, D., et al. (2001). Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proceedings of the National Academy of Sciences of the United States of America, 98, 11114–11119.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Chen, H., Li, X., Liu, F., Zhang, H., & Wang, Z. (2017b). Renal clearable peptide functionalized nagdf4 nanodots for high-efficiency tracking orthotopic colorectal tumor in mouse. Molecular Pharmaceutics, 14, 3134–3141.PubMedCrossRefGoogle Scholar
  65. Chen, M., Won, D. J., Krajewski, S., & Gottlieb, R. A. (2002). Calpain and mitochondria in ischemia/reperfusion injury. Journal of Biological Chemistry, 277, 29181–29186.PubMedCrossRefGoogle Scholar
  66. Cheng, H., Zhu, J. Y., Xu, X. D., Qiu, W. X., Lei, Q., Han, K., et al. (2015). Activable cell-penetrating peptide conjugated prodrug for tumor targeted drug delivery. ACS Applied Materials & Interfaces, 7, 16061–16069.CrossRefGoogle Scholar
  67. Cornelissen, B., Able, S., Kartsonaki, C., Kersemans, V., Allen, P. D., Cavallo, F., et al. (2014). Imaging DNA damage allows detection of preneoplasia in the BALB-neuT model of breast cancer. Journal of Nuclear Medicine, 55, 2026–2031.PubMedCrossRefGoogle Scholar
  68. Covic, L., & Kuliopulos, A. (2018). Protease-activated receptor 1 as therapeutic target in breast, lung, and ovarian cancer: Pepducin approach. International Journal of Molecular Sciences, 19, 2237.PubMedCentralCrossRefPubMedGoogle Scholar
  69. Credence Research, I. (2017). Peptide therapeutics market: Global industry size, share, growth, opportunities, outlook, analysis and forecast 2016 to 2024. Report Code: 58361-02-17.Google Scholar
  70. Crisp, J. L., Savariar, E. N., Glasgow, H. L., Ellies, L. G., Whitney, M. A., & Tsien, R. Y. (2014). Dual targeting of integrin alphavbeta3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Molecular Cancer Therapeutics, 13, 1514–1525.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Crombez, L., Morris, M. C., Heitz, F., & Divita, G. (2011). A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery. Methods in Molecular Biology, 764, 59–73.PubMedCrossRefGoogle Scholar
  72. Curic, A., Moschwitzer, J. P., & Fricker, G. (2017). Development and characterization of novel highly-loaded itraconazole poly(butyl cyanoacrylate) polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 114, 175–185.PubMedCrossRefGoogle Scholar
  73. D’Amario, D., Amodeo, A., Adorisio, R., Tiziano, F. D., Leone, A. M., Perri, G., et al. (2017). A current approach to heart failure in Duchenne muscular dystrophy. Heart (British Cardiac Society), 103, 1770–1779.Google Scholar
  74. de la Torre, C., Dominguez-Berrocal, L., Murguia, J. R., Marcos, M. D., Martinez-Manez, R., Bravo, J., et al. (2017). Polylysine-capped mesoporous silica nanoparticles as carrier of the C9h peptide to induce apoptosis in cancer cells. Chemistry, 24, 1890–1897.CrossRefGoogle Scholar
  75. Delfin, D. A., Xu, Y., Peterson, J. M., Guttridge, D. C., Rafael-Fortney, J. A., & Janssen, P. M. (2011). Improvement of cardiac contractile function by peptide-based inhibition of NF-kappaB in the utrophin/dystrophin-deficient murine model of muscular dystrophy. Journal of Translational Medicine, 9, 68.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Deng, C., Zhang, Q., Fu, Y., Sun, X., Gong, T., & Zhang, Z. (2017). Coadministration of oligomeric hyaluronic acid-modified liposomes with tumor-penetrating peptide-iRGD enhances the antitumor efficacy of doxorubicin against melanoma. ACS Applied Materials & Interfaces, 9, 1280–1292.CrossRefGoogle Scholar
  77. Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Reviews, 25, 9–34.PubMedCrossRefGoogle Scholar
  78. Deshpande, P., Jhaveri, A., Pattni, B., Biswas, S., & Torchilin, V. (2018). Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Delivery, 25, 517–532.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Deuss, P. J., Arzumanov, A. A., Williams, D. L., & Gait, M. J. (2013). Parallel synthesis and splicing redirection activity of cell-penetrating peptide conjugate libraries of a PNA cargo. Organic & Biomolecular Chemistry, 11, 7621–7630.CrossRefGoogle Scholar
  80. Dias, S. A., Freire, J. M., Perez-Peinado, C., Domingues, M. M., Gaspar, D., Vale, N., et al. (2017). New potent membrane-targeting antibacterial peptides from viral capsid proteins. Frontiers in Microbiology, 8, 775.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ding, J., Liang, T., Min, Q., Jiang, L., & Zhu, J. J. (2018). “Stealth and Fully-Laden” Drug carriers: Self-assembled nanogels encapsulated with epigallocatechin gallate and siRNA for drug-resistant breast cancer therapy. ACS Applied Materials & Interfaces, 10, 9938–9948.CrossRefGoogle Scholar
  82. Ding, C., Wu, K., Wang, W., Guan, Z., Wang, L., Wang, X., et al. (2017). Synthesis of a cell penetrating peptide modified superparamagnetic iron oxide and MRI detection of bladder cancer. Oncotarget, 8, 4718–4729.PubMedGoogle Scholar
  83. Dissanayake, S., Denny, W. A., Gamage, S., & Sarojini, V. (2017). Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. Journal of Controlled Release, 250, 62–76.PubMedCrossRefGoogle Scholar
  84. Dominguez-Prieto, M., Velasco, A., Vega, L., Tabernero, A., & Medina, J. M. (2017). Aberrant co-localization of synaptic proteins promoted by Alzheimer’s disease amyloid-beta peptides: Protective effect of human serum albumin. Journal of Alzheimer’s Disease, 55, 171–182.PubMedCrossRefGoogle Scholar
  85. Dong, H., Zhang, Y., Song, L., Kim, D. S., Wu, H., Yang, L., et al. (2016). Cell-permeable peptide blocks TLR4 signaling and improves islet allograft survival. Cell Transplantation, 25, 1319–1329.PubMedCrossRefGoogle Scholar
  86. Dubuc, C., Savard, M., Bovenzi, V., Lessard, A., Fortier, A., Cote, J., et al. (2018). Targeting intracellular B2 receptors using novel cell-penetrating antagonists to arrest growth and induce apoptosis in human triple-negative breast cancer. Oncotarget, 9, 9885–9906.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Dutta, D., Debnath, M., Muller, D., Paul, R., Das, T., Bessi, I., et al. (2018). Cell penetrating thiazole peptides inhibit c-MYC expression via site-specific targeting of c-MYC G-quadruplex. Nucleic Acids Research, 46, 5355–5365.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Echigoya, Y., Nakamura, A., Nagata, T., Urasawa, N., Lim, K. R. Q., Trieu, N., et al. (2017). Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 114, 4213–4218.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Edwards, A. B., Anderton, R. S., Knuckey, N. W., & Meloni, B. P. (2017). Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model. Molecular and Cellular Biochemistry, 426, 75–85.PubMedCrossRefGoogle Scholar
  90. Edwards, A. B., Anderton, R. S., Knuckey, N. W., & Meloni, B. P. (2018). Perinatal hypoxic-ischemic encephalopathy and neuroprotective peptide therapies: A case for cationic arginine-rich peptides (CARPs). Brain Sciences, 8, 147.PubMedCentralCrossRefPubMedGoogle Scholar
  91. Eguchi, A., & Dowdy, S. F. (2010). Efficient siRNA delivery by novel PTD-DRBD fusion proteins. Cell Cycle, 9, 424–425.PubMedCrossRefGoogle Scholar
  92. Eguchi, A., Meade, B. R., Chang, Y. C., Fredrickson, C. T., Willert, K., Puri, N., et al. (2009). Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nature Biotechnology, 27, 567–571.PubMedPubMedCentralCrossRefGoogle Scholar
  93. El Chamy Maluf, S., Dalmas, C., Oliveira, E. B., Melo, P. M., Carmona, A. K., Gazarini, M. L., et al. (2016). Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides, 78, 11–16.PubMedPubMedCentralCrossRefGoogle Scholar
  94. El-Andaloussi, S., Lehto, T., Mäger, I., Rosenthal-Aizman, K., Oprea, I. I., Simonson, O. E., et al. (2011). Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 39, 3972–3987.CrossRefGoogle Scholar
  95. Ellert-Miklaszewska, A., Poleszak, K., & Kaminska, B. (2017). Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Medicinal Chemistry, 9, 199–221.PubMedCrossRefGoogle Scholar
  96. Endres, P. J., Macrenaris, K. W., Vogt, S., & Meade, T. J. (2008). Cell-permeable MR contrast agents with increased intracellular retention. Bioconjugate Chemistry, 19, 2049–2059.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Eriksson, O. S., Georg, M., Sjolinder, H., Sillard, R., Lindberg, S., Langel, Ü., et al. (2013). Identification of cell-penetrating peptides that are bactericidal to Neisseria meningitidis and prevent inflammatory responses upon infection. Antimicrobial Agents and Chemotherapy, 57, 3704–3712.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Falanga, A., & Galdiero, S. (2018). Peptide chemistry encounters nanomedicine: Recent applications and upcoming scenarios in cancer. Future Medicinal Chemistry, 10, 1877–1880.PubMedCrossRefGoogle Scholar
  99. Fanutza, T., del Prete, D., Ford, M. J., Castillo, P. E., & D’Adamio, L. (2015). APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. Elife, 4, e09743.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Felsen, C. N., Savariar, E. N., Whitney, M., & Tsien, R. Y. (2014). Detection and monitoring of localized matrix metalloproteinase upregulation in a murine model of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology, 306, L764–L774.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Feni, L., & Neundorf, I. (2017). The current role of cell-penetrating peptides in cancer therapy. Advances in Experimental Medicine and Biology, 1030, 279–295.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Fidel, J., Kennedy, K. C., Dernell, W. S., Hansen, S., Wiss, V., Stroud, M. R., et al. (2015). Preclinical validation of the utility of BLZ-100 in providing fluorescence contrast for imaging spontaneous solid tumors. Cancer Research, 75, 4283–4291.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Figueira, T. N., Augusto, M. T., Rybkina, K., Stelitano, D., Noval, M. G., Harder, O. E., et al. (2018). Effective in vivo targeting of influenza virus through a cell-penetrating/fusion inhibitor tandem peptide anchored to plasma membrane. Bioconjugate Chemistry, 29, 3362–3376.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Fominaya, J., Bravo, J., & Rebollo, A. (2015). Strategies to stabilize cell penetrating peptides for in vivo applications. Therapeutic Delivery, 6, 1171–1194.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery Today, 20, 122–128.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Freimann, K., Arukuusk, K., Kurrikoff, K., Vasconselos, L. D. F., Veiman, K.-L., Uusna, J., et al. (2016). Optimization of in vivo pDNA gene delivery with NickFect peptide vectors. Journal of Control Release, 241, 135–143.CrossRefGoogle Scholar
  107. Freire, J. M., Rego de Figueiredo, I., Valle, J., Veiga, A. S., Andreu, D., Enguita, F. J., et al. (2017). siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. Journal of Control Release, 245, 127–136.CrossRefGoogle Scholar
  108. Friedman, B., Whitney, M. A., Savariar, E. N., Caneda, C., Steinbach, P., Xiong, Q., et al. (2018). Detection of Subclinical arthritis in mice by a thrombin receptor-derived imaging agent. Arthritis & Rheumatology (Hoboken, NJ), 70, 69–79.CrossRefGoogle Scholar
  109. Gamir-Morralla, A., Lopez-Menendez, C., Ayuso-Dolado, S., Tejeda, G. S., Montaner, J., Rosell, A., et al. (2015). Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity. Cell Death and Disease, 6, e1939.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Gan, B. K., Yong, C. Y., Ho, K. L., Omar, A. R., Alitheen, N. B., & Tan, W. S. (2018). Targeted delivery of cell penetrating peptide virus-like nanoparticles to skin cancer cells. Scientific Reports, 8, 8499.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Garay, H., Espinosa, L. A., Perera, Y., Sanchez, A., Diago, D., Perea, S. E., et al. (2018). Characterization of low-abundance species in the active pharmaceutical ingredient of CIGB-300: A clinical-grade anticancer synthetic peptide. Journal of Peptide Science, 24, e3081.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Godfrey, C., Muses, S., McClorey, G., Wells, K. E., Coursindel, T., Terry, R. L., et al. (2015). How much dystrophin is enough: The physiological consequences of different levels of dystrophin in the mdx mouse. Human Molecular Genetics, 24, 4225–4237.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Gomarasca, M., Martins, T. F., Greune, L., Hardwidge, P. R., Schmidt, M. A., & Ruter, C. (2017). Bacterium-derived cell-penetrating peptides deliver gentamicin to kill intracellular pathogens. Antimicrobial Agents and Chemotherapy, 61, e02545.Google Scholar
  114. Gomes, B., Augusto, M. T., Felicio, M. R., Hollmann, A., Franco, O. L., Goncalves, S., et al. (2018). Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnology Advances, 36, 415–429.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Goswami, D., Vitorino, H. A., Machini, M. T., & Esposito, B. P. (2015). Self-assembled penetratin-deferasirox micelles as potential carriers for hydrophobic drug delivery. Biopolymers, 104, 712–719.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Govindarajan, S., Sivakumar, J., Garimidi, P., Rangaraj, N., Kumar, J. M., Rao, N. M., et al. (2012). Targeting human epidermal growth factor receptor 2 by a cell-penetrating peptide-affibody bioconjugate. Biomaterials, 33, 2570–2582.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Greer, K. L., Lochmuller, H., Flanigan, K., Fletcher, S., & Wilton, S. D. (2014). Targeted exon skipping to correct exon duplications in the dystrophin gene. Molecular Therapy Nucleic Acids, 3, e155.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Gronewold, A., Horn, M., Randelovic, I., Tovari, J., Munoz Vazquez, S., Schomacker, K., et al. (2017). Characterization of a cell-penetrating peptide with potential anticancer activity. ChemMedChem, 12, 42–49.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Guidotti, G., Brambilla, L., & Rossi, D. (2017). Cell-penetrating peptides: From basic research to clinics. Trends in Pharmacological Sciences, 38, 406–424.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Guo, Y. M., Liu, M., Yang, J. L., Guo, X. J., Wang, S. C., Duan, X. Y., et al. (2007). Intercellular imaging by a polyarginine derived cell penetrating peptide labeled magnetic resonance contrast agent, diethylenetriamine pentaacetic acid gadolinium. Chinese Medical Journal (English), 120, 50–55.CrossRefGoogle Scholar
  121. Guo, F., Wu, J., Wu, W., Huang, D., Yan, Q., Yang, Q., et al. (2018). PEGylated self-assembled enzyme-responsive nanoparticles for effective targeted therapy against lung tumors. Journal of Nanobiotechnology, 16, 57.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Gurbel, P. A., Bliden, K. P., Turner, S. E., Tantry, U. S., Gesheff, M. G., Barr, T. P., et al. (2016). Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 189–197.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Guscott, B., Balklava, Z., Safrany, S. T., & Wassmer, T. (2016). A cell-permeable tool for analysing APP intracellular domain function and manipulation of PIKfyve activity. Bioscience Reports, 36, e00319.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Gustafsson, A. B., Sayen, M. R., Williams, S. D., Crow, M. T., & Gottlieb, R. A. (2002). TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation, 106, 735–739.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Hamilton, A. M., Aidoudi-Ahmed, S., Sharma, S., Kotamraju, V. R., Foster, P. J., Sugahara, K. N., et al. (2015). Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain. Journal of Molecular Medicine, 93, 991–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Hammond, S. M., Hazell, G., Shabanpoor, F., Saleh, A. F., Bowerman, M., Sleigh, J. N., et al. (2016). Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of America, 113, 10962–10967.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Handy, D. E., & Loscalzo, J. (2017). Responses to reductive stress in the cardiovascular system. Free Radical Biology and Medicine, 109, 114–124.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Harada, H., Kizaka-Kondoh, S., & Hiraoka, M. (2006). Antitumor protein therapy; application of the protein transduction domain to the development of a protein drug for cancer treatment. Breast Cancer, 13, 16–26.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Hauff, S. J., Raju, S. C., Orosco, R. K., Gross, A. M., Diaz-Perez, J. A., Savariar, E., et al. (2014). Matrix-metalloproteinases in head and neck carcinoma-cancer genome atlas analysis and fluorescence imaging in mice. Otolaryngology—Head and Neck Surgery, 151, 612–618.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Hauser, A. K., Anderson, K. W., & Hilt, J. Z. (2016a). Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells. Nanomedicine (London), 11, 1769–1785.CrossRefGoogle Scholar
  131. Hauser, A. K., Mitov, M. I., Daley, E. F., McGarry, R. C., Anderson, K. W., & Hilt, J. Z. (2016b). Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials, 105, 127–135.PubMedPubMedCentralCrossRefGoogle Scholar
  132. He, S. W., Wang, J. J., Du, X., Yue, B., Wang, G. H., Zhou, S., et al. (2018). A teleost TFPI-2 peptide that possesses a broad antibacterial spectrum and immune-stimulatory properties. Fish & Shellfish Immunology, 82, 469–475.CrossRefGoogle Scholar
  133. Hearst, S. M., Shao, Q., Lopez, M., Raucher, D., & Vig, P. J. (2014). The design and delivery of a PKA inhibitory polypeptide to treat SCA1. Journal of Neurochemistry, 131, 101–114.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Hearst, S. M., Walker, L. R., Shao, Q., Lopez, M., Raucher, D., & Vig, P. J. (2011). The design and delivery of a thermally responsive peptide to inhibit S100B-mediated neurodegeneration. Neuroscience, 197, 369–380.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Heffernan, C., Sumer, H., Guillemin, G. J., Manuelpillai, U., & Verma, P. J. (2012). Design and screening of a glial cell-specific, cell penetrating peptide for therapeutic applications in multiple sclerosis. PLoS ONE, 7, e45501.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Heo, K., Kim, J. S., Kim, K., Kim, H., Choi, J., Yang, K., et al. (2013). Cell-penetrating H4 tail peptides potentiate p53-mediated transactivation via inhibition of G9a and HDAC1. Oncogene, 32, 2510–2520.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Hingorani, D. V., Lemieux, A. J., Acevedo, J. R., Glasgow, H. L., Kedarisetty, S., Whitney, M. A., et al. (2017). Early detection of squamous cell carcinoma in carcinogen induced oral cancer rodent model by ratiometric activatable cell penetrating peptides. Oral Oncology, 71, 156–162.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Hingorani, D. V., Lippert, C. N., Crisp, J. L., Savariar, E. N., Hasselmann, J. P. C., Kuo, C., et al. (2018). Impact of MMP-2 and MMP-9 enzyme activity on wound healing, tumor growth and RACPP cleavage. PLoS ONE, 13, e0198464.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Holm, T., Netzereab, S., Hansen, M., Langel, Ü., & Hällbrink, M. (2005). Uptake of cell-penetrating peptides in yeasts. FEBS Letters, 579, 5217–5222.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Horvati, K., Bacsa, B., Mlinko, T., Szabo, N., Hudecz, F., Zsila, F., et al. (2017). Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: Aspects of experimental setup. Amino Acids, 49, 1053–1067.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Hosseini, A., Lattanzio, F. A., Samudre, S. S., Disandro, G., Jr., Sheppard, J. D., Jr., & Williams, P. B. (2012). Efficacy of a phosphorodiamidate morpholino oligomer antisense compound in the inhibition of corneal transplant rejection in a rat cornea transplant model. Journal of Ocular Pharmacology and Therapeutics, 28, 194–201.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Hou, B., Zheng, B., Yang, W., Dong, C., Wang, H., & Chang, J. (2017). Construction of near infrared light triggered nanodumbbell for cancer photodynamic therapy. Journal of Colloid and Interface Science, 494, 363–372.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Howl, J., Howl, L., & Jones, S. (2018). The cationic tetradecapeptide mastoparan as a privileged structure for drug discovery: Enhanced antimicrobial properties of mitoparan analogues modified at position-14. Peptides, 101, 95–105.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Hu, C., Chen, X., Huang, Y., & Chen, Y. (2018a). Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Scientific Reports, 8, 2274.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Hu, C., Chen, X., Huang, Y., & Chen, Y. (2018b). Co-administration of kla-TAT peptide and iRGD to enhance the permeability on A549 3D multiple sphere cells and accumulation on xenograft mice. Chemical Biology & Drug Design, 92, 1567–1575.CrossRefGoogle Scholar
  146. Hu, M., Chen, P., Wang, J., Chan, C., Scollard, D. A., & Reilly, R. M. (2006a). Site-specific conjugation of HIV-1 tat peptides to IgG: A potential route to construct radioimmunoconjugates for targeting intracellular and nuclear epitopes in cancer. European Journal of Nuclear Medicine and Molecular Imaging, 33, 301–310.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Hu, M., Chen, P., Wang, J., Scollard, D. A., Vallis, K. A., & Reilly, R. M. (2007). 123I-labeled HIV-1 tat peptide radioimmunoconjugates are imported into the nucleus of human breast cancer cells and functionally interact in vitro and in vivo with the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1). European Journal of Nuclear Medicine and Molecular Imaging, 34, 368–377.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Hu, M., Wang, J., Chen, P., & Reilly, R. M. (2006b). HIV-1 Tat peptide immunoconjugates differentially sensitize breast cancer cells to selected antiproliferative agents that induce the cyclin-dependent kinase inhibitor p21WAF-1/CIP-1. Bioconjugate Chemistry, 17, 1280–1287.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Hu, H., Wang, J., Wang, H., Tan, T., Li, J., Wang, Z., et al. (2018c). Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics, 8, 3597–3610.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Hua, N., Baik, F., Pham, T., Phinikaridou, A., Giordano, N., Friedman, B., et al. (2015). Identification of high-risk plaques by MRI and fluorescence imaging in a rabbit model of atherothrombosis. PLoS One, 10, e0139833.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Huang, G. Q., Wang, J. N., Tang, J. M., Zhang, L., Zheng, F., Yang, J. Y., et al. (2011). The combined transduction of copper, zinc-superoxide dismutase and catalase mediated by cell-penetrating peptide, PEP-1, to protect myocardium from ischemia-reperfusion injury. Journal of Translational Medicine, 9, 73.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Hunt, H., Simon-Gracia, L., Tobi, A., Kotamraju, V. R., Sharma, S., Nigul, M., et al. (2017). Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. Journal of Control Release, 260, 142–153.CrossRefGoogle Scholar
  153. Hussain, T., Savariar, E. N., Diaz-Perez, J. A., Messer, K., Pu, M., Tsien, R. Y., et al. (2014). Surgical molecular navigation with ratiometric activatable cell penetrating peptide for intraoperative identification and resection of small salivary gland cancers. Head Neck, 38, 715–723.CrossRefGoogle Scholar
  154. Ildefonso, C. J., Jaime, H., Brown, E. E., Iwata, R. L., Ahmed, C. M., Massengill, M. T., et al. (2016). Targeting the Nrf2 signaling pathway in the retina with a gene-delivered secretable and cell-penetrating peptide. Investigative Ophthalmology & Visual Science, 57, 372–386.CrossRefGoogle Scholar
  155. Ildefonso, C. J., Jaime, H., Rahman, M. M., Li, Q., Boye, S. E., Hauswirth, W. W., et al. (2015). Gene delivery of a viral anti-inflammatory protein to combat ocular inflammation. Human Gene Therapy, 26, 59–68.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Imani, R., Shao, W., Taherkhani, S., Emami, S. H., Prakash, S., & Faghihi, S. (2016). Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids Surfaces B: Biointerfaces, 147, 315–325.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Indrigo, E., Clavadetscher, J., Chankeshwara, S. V., Megia-Fernandez, A., Lilienkampf, A., & Bradley, M. (2017). Intracellular delivery of a catalytic organometallic complex. Chemical Communications (Cambridge, England), 53, 6712–6715.CrossRefGoogle Scholar
  158. Jagot-Lacoussiere, L., Kotula, E., Villoutreix, B. O., Bruzzoni-Giovanelli, H., & Poyet, J. L. (2016). A cell-penetrating peptide targeting AAC-11 specifically induces cancer cells death. Cancer Research, 76, 5479–5490.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Jaraiz-Rodriguez, M., Tabernero, M. D., Gonzalez-Tablas, M., Otero, A., Orfao, A., Medina, J. M., et al. (2017). A short region of Connexin43 reduces human glioma stem cell migration, invasion, and survival through Src, PTEN, and FAK. Stem Cell Reports, 9, 451–463.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Jiang, Q. Y., Lai, L. H., Shen, J., Wang, Q. Q., Xu, F. J., & Tang, G. P. (2011). Gene delivery to tumor cells by cationic polymeric nanovectors coupled to folic acid and the cell-penetrating peptide octaarginine. Biomaterials, 32, 7253–7262.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Jiang, T., Olson, E. S., Nguyen, Q. T., Roy, M., Jennings, P. A., & Tsien, R. Y. (2004). Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 101, 17867–17872.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Jin, C., Bai, L., Lin, L., Wang, S., & Yin, X. (2017). Paclitaxel-loaded nanoparticles decorated with bivalent fragment HAb18 F(ab′)2 and cell penetrating peptide for improved therapeutic effect on hepatocellular carcinoma. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1–9.Google Scholar
  163. Jin, Z., Wang, P., Chen, J., He, L., Xiao, L., Yong, K., et al. (2018). A tumor-specific tissue-penetrating peptide enhances the efficacy of chemotherapy drugs in gastric cancer. Yonsei Medical Journal, 59, 595–601.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Jing, H., Cheng, W., Li, S., Wu, B., Leng, X., Xu, S., et al. (2016). Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 146, 387–395.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Joshi, R., Feldmann, V., Koestner, W., Detje, C., Gottschalk, S., Mayer, H. A., et al. (2013). Multifunctional silica nanoparticles for optical and magnetic resonance imaging. Biological Chemistry, 394, 125–135.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Jung, H. J., Park, Y., Hahm, K. S., & Lee, D. G. (2006). Biological activity of Tat (47-58) peptide on human pathogenic fungi. Biochemical and Biophysical Research Communications, 345, 222–228.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Kacsinta, A. D., & Dowdy, S. F. (2016). Current views on inducing synthetic lethal RNAi responses in the treatment of cancer. Expert Opinion on Biological Therapy, 16, 161–172.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Kamei, N. (2017). Nose-to-brain delivery of peptide drugs enhanced by coadministration of cell-penetrating peptides: Therapeutic potential for dementia. Yakugaku Zasshi, 137, 1247–1253.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Kang, S. H., Cho, M. J., & Kole, R. (1998). Up-regulation of luciferase gene expression with antisense oligonucleotides: Implications and applications in functional assay development. Biochemistry, 37, 6235–6239.CrossRefGoogle Scholar
  170. Kang, J. H., Jung, M. Y., Yin, X., Andrianifahanana, M., Hernandez, D. M., & Leof, E. B. (2017). Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF-beta signaling. Journal of Clinical Investigation, 127, 2541–2554.PubMedCrossRefGoogle Scholar
  171. Kang, X., Zheng, Z., Liu, Z., Wang, H., Zhao, Y., Zhang, W., et al. (2018). Liposomal codelivery of doxorubicin and andrographolide inhibits breast cancer growth and metastasis. Molecular Pharmaceutics, 15, 1618–1626.PubMedCrossRefGoogle Scholar
  172. Karandish, F., Froberg, J., Borowicz, P., Wilkinson, J. C., Choi, Y., & Mallik, S. (2017). Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors. Colloids and Surfaces B: Biointerfaces, 163, 225–235.PubMedCrossRefGoogle Scholar
  173. Kaspar, A. A., & Reichert, J. M. (2013). Future directions for peptide therapeutics development. Drug Discovery Today, 18, 807–817.PubMedCrossRefGoogle Scholar
  174. Kebebe, D., Liu, Y., Wu, Y., Vilakhamxay, M., Liu, Z., & Li, J. (2018). Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. International Journal of Nanomedicine, 13, 1425–1442.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Kersemans, V., & Cornelissen, B. (2010). Targeting the tumour: Cell penetrating peptides for molecular imaging and radiotherapy. Pharmaceuticals (Basel), 3, 600–620.CrossRefGoogle Scholar
  176. Kim, W. J., Christensen, L. V., Jo, S., Yockman, J. W., Jeong, J. H., Kim, Y. H., et al. (2006). Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Molecular Therapy, 14, 343–350.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Kim, M. J., Hwang, Y. H., Kim, Y. H., & Lee, D. Y. (2017). Immunomodulation of cell-penetrating tat-metallothionein for successful outcome of xenotransplanted pancreatic islet. Journal of Drug Targeting, 25, 350–359.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Kim, S. H., Jung, G., Kim, S., & Koo, J. W. (2018). Novel peptide vaccine GV1001 rescues hearing in kanamycin/furosemide-treated mice. Frontiers in cellular Neuroscience, 12, 3.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Kim, H., Moodley, S., & Liu, M. (2015a). TAT cell-penetrating peptide modulates inflammatory response and apoptosis in human lung epithelial cells. Drug Delivery and Translational Research, 5, 275–278.PubMedCrossRefGoogle Scholar
  180. Kim, M. J., Park, M., Kim, D. W., Shin, M. J., Son, O., Jo, H. S., et al. (2015b). Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson’s disease model. Biomaterials, 64, 45–56.PubMedCrossRefGoogle Scholar
  181. Kizil, C., Iltzsche, A., Thomas, A. K., Bhattarai, P., Zhang, Y., & Brand, M. (2015). Efficient cargo delivery into adult brain tissue using short cell-penetrating peptides. PLoS ONE, 10, e0124073.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Kozaki, I., Shimizu, K., & Honda, H. (2017). Effective modification of cell death-inducing intracellular peptides by means of a photo-cleavable peptide array-based screening system. Journal of Bioscience and Bioengineering, 124, 209–214.PubMedCrossRefGoogle Scholar
  183. Kuang, H., Ku, S. H., & Kokkoli, E. (2017). The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Advanced Drug Delivery Reviews, 110–111, 80–101.PubMedCrossRefGoogle Scholar
  184. Kulkarni, P., Haldar, M. K., Karandish, F., Confeld, M., Hossain, R., Borowicz, P., et al. (2018). Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug delivery to solid tumors. Chemistry, 24, 12490–12494.PubMedCrossRefGoogle Scholar
  185. Kumar, C. S., Dey, D., Ghosh, S., & Banerjee, M. (2017). Breach: Host membrane penetration and entry by nonenveloped viruses. Trends in Microbiology, 26, 525–537.PubMedCrossRefGoogle Scholar
  186. Kumar, P., Wu, H., McBride, J. L., Jung, K. E., Kim, M. H., Davidson, B. L., et al. (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nature, 448, 39–43.PubMedCrossRefGoogle Scholar
  187. Kurrikoff, K., Gestin, M., & Langel, Ü. (2016). Recent in vivo advances in cell-penetrating peptide-assisted drug delivery. Expert Opinion on Drug Delivery, 13, 373–387.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Lai, S., Centi, S., Borri, C., Ratto, F., Cavigli, L., Micheletti, F., et al. (2017). A multifunctional organosilica cross-linker for the bio-conjugation of gold nanorods. Colloids and Surfaces B: Biointerfaces, 157, 174–181.PubMedCrossRefGoogle Scholar
  189. Lai, P. K., & Kaznessis, Y. N. (2018). Insights into membrane translocation of protegrin antimicrobial peptides by multistep molecular dynamics simulations. ACS Omega, 3, 6056–6065.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Lebleu, B., Moulton, H. M., Abes, R., Ivanova, G. D., Abes, S., Stein, D. A., et al. (2008). Cell penetrating peptide conjugates of steric block oligonucleotides. Advanced Drug Delivery Reviews, 60, 517–529.PubMedCrossRefGoogle Scholar
  191. Lee, D., Noh, I., Yoo, J., Rejinold, N. S., & Kim, Y. C. (2017). pH-controllable cell-penetrating polypeptide that exhibits cancer targeting. Acta Biomaterialia, 57, 187–196.PubMedCrossRefGoogle Scholar
  192. Lee, H. J., & Pardridge, W. M. (2001). Pharmacokinetics and delivery of tat and tat-protein conjugates to tissues in vivo. Bioconjugate Chemistry, 12, 995–999.PubMedCrossRefGoogle Scholar
  193. Lee, J. Y., Suh, J. S., Kim, J. M., Kim, J. H., Park, H. J., Park, Y. J., et al. (2015). Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity. International Journal of Nanomedicine, 10, 5423–5434.PubMedPubMedCentralGoogle Scholar
  194. Lehto, T., Castillo Alvarez, A., Gauck, S., Gait, M. J., Coursindel, T., Wood, M. J., et al. (2014). Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Research, 42, 3207–3217.PubMedCrossRefGoogle Scholar
  195. Lelle, M., Freidel, C., Kaloyanova, S., Tabujew, I., Schramm, A., Musheev, M., et al. (2017). Overcoming drug resistance by cell-penetrating peptide-mediated delivery of a doxorubicin dimer with high DNA-binding affinity. European Journal of Medicinal Chemistry, 130, 336–345.PubMedCrossRefGoogle Scholar
  196. Lev, N., Barhum, Y., Ben-Zur, T., Aharony, I., Trifonov, L., Regev, N., et al. (2015). A DJ-1 based peptide attenuates dopaminergic degeneration in mice models of Parkinson’s disease via enhancing Nrf2. PLoS ONE, 10, e0127549.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T., et al. (2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 18, 410–414.PubMedCrossRefGoogle Scholar
  198. Li, S. Y., Cheng, H., Qiu, W. X., Liu, L. H., Chen, S., Hu, Y., et al. (2015a). Protease-activable cell-penetrating peptide-protoporphyrin conjugate for targeted photodynamic therapy in vivo. ACS Applied Materials & Interfaces, 7, 28319–28329.CrossRefGoogle Scholar
  199. Li, K., Ding, D., Prashant, C., Qin, W., Yang, C. T., Tang, B. Z., et al. (2013). Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study. Advanced Healthcare Materials, 2, 1600–1605.PubMedCrossRefGoogle Scholar
  200. Li, M., Han, M., Sun, Y., Hua, Y., Chen, G., & Zhang, L. (2018a). Oligoarginine mediated collagen/chitosan gel composite for cutaneous wound healing. International Journal of Biological Macromolecules, 122, 1120–1127.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Li, H., He, J., Yi, H., Xiang, G., Chen, K., Fu, B., et al. (2015b). siRNA suppression of hTERT using activatable cell-penetrating peptides in hepatoma cells. Bioscience Reports, 35, e00181.PubMedPubMedCentralGoogle Scholar
  202. Li, S., Hou, H., Mori, T., Sawmiller, D., Smith, A., Tian, J., et al. (2015c). Swedish mutant APP-based BACE1 binding site peptide reduces APP beta-cleavage and cerebral Abeta levels in Alzheimer’s mice. Scientific Reports, 5, 11322.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Li, Z., Wang, X., Teng, D., Mao, R., Hao, Y., Yang, N., et al. (2017). Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin6/Tat11. European Journal of Medicinal Chemistry, 145, 263–272.PubMedCrossRefPubMedCentralGoogle Scholar
  204. Li, Y., Zhang, X., Luo, W., Wang, D., Yang, L., Wang, J., et al. (2018b). Dual-functionalized nanoparticles loaded microbubbles for enhancement of drug uptake. Ultrasonics, 87, 82–90.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Li, Y., Zheng, X., Cao, Z., Xu, W., Zhang, J., & Gong, M. (2012). Self-assembled peptide (CADY-1) improved the clinical application of doxorubicin. International Journal of Pharmaceutics, 434, 209–214.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Li, X., Zheng, L., Xia, Q., Liu, L., Mao, M., Zhou, H., Zhao, Y., & Shi, J. (2018b). A novel cell-penetrating peptide protects against neuron apoptosis after cerebral ischemia by inhibiting the nuclear translocation of annexin A1. Cell Death & Differentiation.Google Scholar
  207. Lin, C., Zhang, X., Chen, H., Bian, Z., Zhang, G., Riaz, M. K., et al. (2018). Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Delivery, 25, 256–266.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Lindgren, M., Rosenthal-Aizman, K., Saar, K., Eiriksdottir, E., Jiang, Y., Sassian, M., et al. (2006). Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochemical Pharmacology, 71, 416–425.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., et al. (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nature Cell Biology, 14, 177–185.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Liu, M., Guo, Y. M., Wang, P., Guo, X. J., Yang, J. L., Wang, S. C., et al. (2007). Characteristics and in vitro imaging study of matrix metalloproteinase-2 targeting activable cell-penetrating peptide. Zhonghua Yi Xue Za Zhi, 87, 233–239.PubMedPubMedCentralGoogle Scholar
  211. Liu, X., Lin, P., Perrett, I., Lin, J., Liao, Y. P., Chang, C. H., et al. (2017a). Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. Journal of Clinical Investigation, 127, 2007–2018.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Liu, C., Liu, X. N., Wang, G. L., Hei, Y., Meng, S., Yang, L. F., et al. (2017b). A dual-mediated liposomal drug delivery system targeting the brain: Rational construction, integrity evaluation across the blood-brain barrier, and the transporting mechanism to glioma cells. International Journal of Nanomedicine, 12, 2407–2425.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Liu, Y., Lu, Z., Mei, L., Yu, Q., Tai, X., Wang, Y., et al. (2017c). Tandem peptide based on structural modification of poly-arginine for enhancing tumor targeting efficiency and therapeutic effect. ACS Applied Materials & Interfaces, 9, 2083–2092.CrossRefGoogle Scholar
  214. Liu, Y., Xia, X., Xu, L., & Wang, Y. (2013). Design of hybrid beta-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials, 34, 237–250.PubMedCrossRefPubMedCentralGoogle Scholar
  215. Löfgren, K., Wahlström, A., Lundberg, P., Langel, Ü., Gräslund, A., & Bedecs, K. (2008). Antiprion properties of prion protein-derived cell-penetrating peptides. The FASEB Journal, 22, 2177–2184.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Luo, Z., Cao, X. W., Li, C., Wu, M. D., Yang, X. Z., Zhao, J., et al. (2016). The heparin-binding domain of HB-EGF as an efficient cell-penetrating peptide for drug delivery. Journal of Peptide Science, 22, 689–699.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Lux, J., Vezeridis, A. M., Hoyt, K., Adams, S. R., Armstrong, A. M., Sirsi, S. R., et al. (2017). Thrombin-activatable microbubbles as potential ultrasound contrast agents for the detection of acute thrombosis. ACS Applied Materials & Interfaces, 9, 37587–37596.CrossRefGoogle Scholar
  218. Lv, M., Wang, M., Lu, K., Duan, B., & Zhao, Y. (2017). Non-covalent interaction between CA-TAT and calf thymus DNA: Deciphering the binding mode by in vitro studies. International Journal of Biological Macromolecules, 114, 1354–1360.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Lyu, L., Huang, L. Q., Huang, T., Xiang, W., Yuan, J. D., & Zhang, C. H. (2018). Cell-penetrating peptide conjugates of gambogic acid enhance the antitumor effect on human bladder cancer EJ cells through ROS-mediated apoptosis. Drug Design, Development and Therapy, 12, 743–756.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Ma, N., Liu, P., He, N., Gu, N., Wu, F. G., & Chen, Z. (2017a). Action of gold nanospikes-based nanoradiosensitizers: Cellular internalization, radiotherapy, and autophagy. ACS Applied Materials & Interfaces, 17, 31526–31542.CrossRefGoogle Scholar
  221. Ma, N., Liu, P., He, N., Gu, N., Wu, F. G., & Chen, Z. (2017b). Action of gold nanospikes-based nanoradiosensitizers: Cellular internalization, radiotherapy, and autophagy. ACS Applied Materials & Interfaces, 9, 31526–31542.CrossRefGoogle Scholar
  222. Maderna, E., Colombo, L., Cagnotto, A., Di Fede, G., Indaco, A., Tagliavini, F., Salmona, M., & Giaccone, G. (2018). In situ tissue labeling of cerebral amyloid using HIV-related tat peptide. Molecular Neurobiology.Google Scholar
  223. Madigan, M., Bender, K., Buckley, D., Sattley, W., & Da, S. (2017). Brock biology of microorganisms (14th ed.). London: Pearson.Google Scholar
  224. Mäe, M., Myrberg, H., El-Andaloussi, S., & Langel, Ü. (2008). Design of a tumor homing cell-penetrating peptide for drug delivery. International Journal of Peptide Research and Therapeutics, 15, 11–15.CrossRefGoogle Scholar
  225. Mäe, M., Rautsi, O., Enbäck, J., Hällbrink, M., Rosenthal Aizman, K., Lindgren, M., et al. (2012). Tumour targeting with rationally modified cell-penetrating peptides. International Journal of Peptide Research and Therapeutics, 18, 361–371.CrossRefGoogle Scholar
  226. Mäger, I., Meyer, A. H., Li, J., Lenter, M., Hildebrandt, T., Leparc, G., et al. (2017). Targeting blood-brain-barrier transcytosis—perspectives for drug delivery. Neuropharmacology, 120, 4–7.PubMedPubMedCentralCrossRefGoogle Scholar
  227. Majumder, P., Bhunia, S., & Chaudhuri, A. (2018). A lipid-based cell penetrating nano-assembly for RNAi-mediated anti-angiogenic cancer therapy. Chemical Communications (Cambridge, England), 54, 1489–1492.CrossRefGoogle Scholar
  228. Malhotra, M., Tomaro-Duchesneau, C., & Prakash, S. (2013). Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials, 34, 1270–1280.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Malone, C. D., Olson, E. S., Mattrey, R. F., Jiang, T., Tsien, R. Y., & Nguyen, Q. T. (2015). Tumor detection at 3 Tesla with an activatable cell penetrating peptide dendrimer (ACPPD-Gd), a T1 magnetic resonance (MR) molecular imaging agent. PLoS ONE, 10, e0137104.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Mann, A. P., Scodeller, P., Hussain, S., Braun, G. B., Molder, T., Toome, K., et al. (2017). Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer’s disease. Nature Communications, 8, 1403.PubMedPubMedCentralCrossRefGoogle Scholar
  231. Mann, A. P., Scodeller, P., Hussain, S., Joo, J., Kwon, E., Braun, G. B., et al. (2016). A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nature Communications, 7, 11980.PubMedPubMedCentralCrossRefGoogle Scholar
  232. Mansur, A. A. P., Carvalho, S. M., Lobato, Z. I. P., Leite, M. F., Cunha, A. D. S., Jr., & MANSUR, H. S. (2018). Design and development of polysaccharide-doxorubicin-peptide bioconjugates for dual synergistic effects of integrin-targeted and cell-penetrating peptides for cancer chemotherapy. Bioconjugate Chemistry, 29, 1973–2000.PubMedCrossRefPubMedCentralGoogle Scholar
  233. Mantis, C., Kandela, I., & Aird, F. (2017). Replication study: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Elife, 6, e17584.PubMedPubMedCentralCrossRefGoogle Scholar
  234. Marcelli, S., Ficulle, E., Iannuzzi, F., Kovari, E., Nistico, R., & Feligioni, M. (2017a). Targeting SUMO-1ylation contrasts synaptic dysfunction in a mouse model of Alzheimer’s disease. Molecular Neurobiology, 54, 6609–6623.PubMedCrossRefPubMedCentralGoogle Scholar
  235. Marcelli, S., Ficulle, E., Piccolo, L., Corbo, M., & Feligioni, M. (2017b). An overview of the possible therapeutic role of SUMOylation in the treatment of Alzheimer’s disease. Pharmacological Research, 130, 420–437.PubMedCrossRefPubMedCentralGoogle Scholar
  236. Marqus, S., Pirogova, E., & Piva, T. J. (2017). Evaluation of the use of therapeutic peptides for cancer treatment. Journal of Biomedical Science, 24, 017–0328.CrossRefGoogle Scholar
  237. Martorana, F., Brambilla, L., Valori, C. F., Bergamaschi, C., Roncoroni, C., Aronica, E., et al. (2012). The BH4 domain of Bcl-X(L) rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. Human Molecular Genetics, 21, 826–840.PubMedCrossRefPubMedCentralGoogle Scholar
  238. Masman, M. F., Rodríguez, A. M., Raimondi, M., Zacchino, S. A., Luiten, P. G. M., Somlai, C., et al. (2009). Penetratin and derivatives acting as antifungal agents. European Journal of Medicinal Chemistry, 44, 212–228.PubMedCrossRefPubMedCentralGoogle Scholar
  239. Mason, S. D., & Joyce, J. A. (2011). Proteolytic networks in cancer. Trends in Cell Biology, 21, 228–237.PubMedCrossRefPubMedCentralGoogle Scholar
  240. Masserini, M. (2013). Nanoparticles for brain drug delivery. ISRN Biochemistry, 2013, 238428.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Massey, A. S., Pentlavalli, S., Cunningham, R., McCrudden, C. M., McErlean, E. M., Redpath, P., et al. (2016). Potentiating the anticancer properties of bisphosphonates by nanocomplexation with the cationic amphipathic peptide, RALA. Molecular Pharmaceutics, 13, 1217–1228.PubMedCrossRefPubMedCentralGoogle Scholar
  242. Matés, J. M. (2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153, 83–104.PubMedCrossRefPubMedCentralGoogle Scholar
  243. McKeon, A. M., Noonan, J., Devocelle, M., Murphy, B. M., & Griffith, D. M. (2017). Platinum(iv) oxaliplatin-peptide conjugates targeting memHsp70+ phenotype in colorectal cancer cells. Chemical Communications (Cambridge, England), 53, 11318–11321.CrossRefGoogle Scholar
  244. McMasters, J., Poh, S., Lin, J. B., & Panitch, A. (2017). Delivery of anti-inflammatory peptides from hollow PEGylated poly(NIPAM) nanoparticles reduces inflammation in an ex vivo osteoarthritis model. Journal of Control Release, 258, 161–170.CrossRefGoogle Scholar
  245. Meade, A. J., Meloni, B. P., Mastaglia, F. L., Watt, P. M., & Knuckey, N. W. (2010). AP-1 inhibitory peptides attenuate in vitro cortical neuronal cell death induced by kainic acid. Brain Research, 1360, 8–16.PubMedCrossRefPubMedCentralGoogle Scholar
  246. Meloni, B. P., Milani, D., Cross, J. L., Clark, V. W., Edwards, A. B., Anderton, R. S., et al. (2017). Assessment of the neuroprotective effects of arginine-rich protamine peptides, poly-arginine peptides (R12-Cyclic, R22) and arginine-tryptophan-containing peptides following in vitro excitotoxicity and/or permanent middle cerebral artery occlusion in rats. Neuromolecular Medicine, 19, 271–285.PubMedCrossRefPubMedCentralGoogle Scholar
  247. Merchant, N., Nagaraju, G. P., Rajitha, B., Lammata, S., Jella, K. K., Buchwald, Z. S., et al. (2017). Matrix metalloproteinases: Their functional role in lung cancer. Carcinogenesis, 38, 766–780.PubMedCrossRefPubMedCentralGoogle Scholar
  248. Metildi, C. A., Felsen, C. N., Savariar, E. N., Nguyen, Q. T., Kaushal, S., Hoffman, R. M., et al. (2015). Ratiometric activatable cell-penetrating peptides label pancreatic cancer, enabling fluorescence-guided surgery, which reduces metastases and recurrence in orthotopic mouse models. Annals of Surgical Oncology, 22, 2082–2087.PubMedCrossRefPubMedCentralGoogle Scholar
  249. Meyer-Losic, F., Nicolazzi, C., Quinonero, J., Ribes, F., Michel, M., Dubois, V., et al. (2008). DTS-108, a novel peptidic prodrug of SN38: In vivo efficacy and toxicokinetic studies. Clinical Cancer Research, 14, 2145–2153.PubMedPubMedCentralCrossRefGoogle Scholar
  250. Miampamba, M., Liu, J., Harootunian, A., Gale, A. J., Baird, S., Chen, S. L., et al. (2017). Sensitive in vivo visualization of breast cancer using ratiometric protease-activatable fluorescent imaging agent, AVB-620. Theranostics, 7, 3369–3386.PubMedPubMedCentralCrossRefGoogle Scholar
  251. Michiue, H., Eguchi, A., Scadeng, M., & Dowdy, S. F. (2009). Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma. Cancer Biology & Therapy, 8, 2306–2313.Google Scholar
  252. Milosavljevic, V., Haddad, Y., Merlos Rodrigo, M. A., Moulick, A., Polanska, H., Hynek, D., et al. (2016). The zinc-schiff base-novicidin complex as a potential prostate cancer therapy. PLoS One, 11, e0163983.PubMedPubMedCentralCrossRefGoogle Scholar
  253. Mishra, R., Su, W., Pohmann, R., Pfeuffer, J., Sauer, M. G., Ugurbil, K., et al. (2009). Cell-penetrating peptides and peptide nucleic acid-coupled MRI contrast agents: Evaluation of cellular delivery and target binding. Bioconjugate Chemistry, 20, 1860–1868.CrossRefGoogle Scholar
  254. Mizuguchi, T., Ohashi, N., Matsumoto, D., Hashimoto, C., Nomura, W., Yamamoto, N., et al. (2017). Development of anti-HIV peptides based on a viral capsid protein. Biopolymers, 108, e22920.CrossRefGoogle Scholar
  255. Mohammadi, S., Zakeri-Milani, P., Golkar, N., Farkhani, S. M., Shirani, A., Shahbazi Mojarrad, J., et al. (2017). Synthesis and cellular characterization of various nano-assemblies of cell penetrating peptide-epirubicin-polyglutamate conjugates for the enhancement of antitumor activity. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1–14.Google Scholar
  256. Mondal, S. B., Gao, S., Zhu, N., Liang, R., Gruev, V., & Achilefu, S. (2014). Real-time fluorescence image-guided oncologic surgery. Advances in Cancer Research, 124, 171–211.PubMedPubMedCentralCrossRefGoogle Scholar
  257. Morales-Zavala, F., Casanova-Morales, N., Gonzalez, R. B., Chandia-Cristi, A., Estrada, L. D., Alvizu, I., et al. (2018). Functionalization of stable fluorescent nanodiamonds towards reliable detection of biomarkers for Alzheimer’s disease. Journal of Nanobiotechnology, 16, 60.PubMedPubMedCentralCrossRefGoogle Scholar
  258. Morimoto, B. H. (2017). Therapeutic peptides for CNS indications: Progress and challenges. Bioorganic & Medicinal Chemistry, 26, 2859–2862.CrossRefGoogle Scholar
  259. Moulton, H. M. (2013). In vivo delivery of morpholino oligos by cell-penetrating peptides. Current Pharmaceutical Design, 19, 2963–2969.PubMedCrossRefPubMedCentralGoogle Scholar
  260. Mourad, N. I., & Gianello, P. (2017). Gene editing, gene therapy, and cell xenotransplantation: Cell transplantation across species. Current Transplantation Reports, 4, 193–200.PubMedPubMedCentralCrossRefGoogle Scholar
  261. Mukundan, V., Maksoudian, C., Vogel, M. C., Chehade, I., Katsiotis, M. S., Alhassan, S. M., et al. (2017). Cytotoxicity of prion protein-derived cell-penetrating peptides is modulated by pH but independent of amyloid formation. Archives of Biochemistry and Biophysics, 613, 31–42.PubMedCrossRefPubMedCentralGoogle Scholar
  262. Murata, Y., Jo, J. I., & Tabata, Y. (2017). Preparation of gelatin nanospheres incorporating quantum dots and iron oxide nanoparticles for multimodal cell imaging. Journal of Biomaterials Science, Polymer Edition, 28, 555–568.CrossRefGoogle Scholar
  263. Mussa Farkhani, S., Asoudeh Fard, A., Zakeri-Milani, P., Shahbazi Mojarrad, J., & Valizadeh, H. (2017). Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides. Artificial Cells, Nanomedicine and Biotechnology, 45, 1029–1035.CrossRefGoogle Scholar
  264. Myrberg, H., Zhang, L., Mäe, M., & Langel, Ü. (2008). Design of a tumor-homing cell-penetrating peptide. Bioconjugate Chemistry, 19, 70–75.PubMedPubMedCentralCrossRefGoogle Scholar
  265. Nakamura, K., Murakami, M., Miura, D., Yunoki, K., Enko, K., Tanaka, M., et al. (2011). Beta-blockers and oxidative stress in patients with heart failure. Pharmaceuticals (Basel), 4, 1088–1100.CrossRefGoogle Scholar
  266. Nakase, I., Konishi, Y., Ueda, M., Saji, H., & Futaki, S. (2012). Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo. Journal of Control Release, 159, 181–188.CrossRefGoogle Scholar
  267. Nam, H. Y., Kim, J., Kim, S. W., & Bull, D. A. (2012). Cell targeting peptide conjugation to siRNA polyplexes for effective gene silencing in cardiomyocytes. Molecular Pharmaceutics, 9, 1302–1309.PubMedCrossRefPubMedCentralGoogle Scholar
  268. Nasrollahi, S. A., Taghibiglou, C., Azizi, E., & Farboud, E. S. (2012). Cell-penetrating peptides as a novel transdermal drug delivery system. Chemical Biology & Drug Design, 80, 639–646.CrossRefGoogle Scholar
  269. Ndeboko, B., Hantz, O., Lemamy, G. J., & Cova, L. (2018). Developments in Cell-penetrating peptides as antiviral agents and as vehicles for delivery of peptide nucleic acid targeting hepadnaviral replication pathway. Biomolecules, 8, 55.PubMedCentralCrossRefGoogle Scholar
  270. Nekhotiaeva, N., Elmquist, A., Rajarao, G. K., Hällbrink, M., Langel, Ü., & Good, L. (2004). Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. The FASEB Journal, 18, 394–396.PubMedPubMedCentralCrossRefGoogle Scholar
  271. Ng, K. E., Amin, M. C., Katas, H., Amjad, M. W., Butt, A. M., Kesharwani, P., et al. (2016). pH-responsive triblock copolymeric micelles decorated with a cell-penetrating peptide provide efficient doxorubicin delivery. Nanoscale Research Letters, 11, 539.PubMedPubMedCentralCrossRefGoogle Scholar
  272. Nguyen, J., Hossain, S. S., Cooke, J. R. N., Ellis, J. A., Deci, M. B., Emala, C. W., et al. (2017). Flow arrest intra-arterial delivery of small TAT-decorated and neutral micelles to gliomas. Journal of Neuro-Oncology, 133, 77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  273. Niu, X., Gao, Z., Qi, S., Su, L., Yang, N., Luan, X., et al. (2018). Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. International Journal of Nanomedicine, 13, 4895–4911.PubMedPubMedCentralCrossRefGoogle Scholar
  274. O’Donovan, L., Okamoto, I., Arzumanov, A. A., Williams, D. L., Deuss, P., & Gait, M. J. (2015). Parallel synthesis of cell-penetrating peptide conjugates of PMO toward exon skipping enhancement in Duchenne muscular dystrophy. Nucleic Acid Therapeutics, 25, 1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  275. Oh, M., Hu, C., Urfano, S. F., Arostegui, M., & Slowinska, K. (2016). Thermoresponsive collagen/cell penetrating hybrid peptide as nanocarrier in targeting-free cell selection and uptake. Analytical Chemistry, 88, 9654–9661.PubMedPubMedCentralCrossRefGoogle Scholar
  276. Olson, E. S., Aguilera, T. A., Jiang, T., Ellies, L. G., Nguyen, Q. T., Wong, E. H., et al. (2009). In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integrative Biology (Cambridge), 1, 382–393.CrossRefGoogle Scholar
  277. Olson, E. S., Whitney, M. A., Friedman, B., Aguilera, T. A., Crisp, J. L., Baik, F. M., et al. (2012). In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity. Integrative Biology (Cambridge), 4, 595–605.CrossRefGoogle Scholar
  278. Orosco, R. K., Savariar, E. N., Weissbrod, P. A., Diaz-Perez, J. A., Bouvet, M., Tsien, R. Y., et al. (2016). Molecular targeting of papillary thyroid carcinoma with fluorescently labeled ratiometric activatable cell penetrating peptides in a transgenic murine model. Journal of Surgical Oncology, 113, 138–143.PubMedPubMedCentralCrossRefGoogle Scholar
  279. Ozaki, M., Ozawa, T., & Yamada, Y. (2015). Development of a new in vivo optical probe for biological diagnosis and therapy. In: K. Nakao, N. Minato, & S. Uemoto (Eds.), Innovative medicine: Basic research and development. Tokyo: Springer. Copyright 2015, The Author(s).Google Scholar
  280. Palm, C., Jayamanne, M., Kjellander, M., & Hallbrink, M. (2007). Peptide degradation is a critical determinant for cell-penetrating peptide uptake. Biochimica et Biophysica Acta, 1768, 1769–1776.PubMedPubMedCentralCrossRefGoogle Scholar
  281. Palm, C., Netzereab, S., & Hallbrink, M. (2006). Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides, 27, 1710–1716.PubMedCrossRefGoogle Scholar
  282. Pan, J., He, H., Su, Y., Zheng, G., Wu, J., Liu, S., et al. (2016). GST-TAT-SOD: Cell permeable bifunctional antioxidant enzyme-a potential selective radioprotector. Oxidative Medicine and Cellular Longevity, 2016, 5935080.PubMedPubMedCentralCrossRefGoogle Scholar
  283. Papale, A., Morella, I. M., Indrigo, M. T., Bernardi, R. E., Marrone, L., Marchisella, F., et al. (2016). Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors. Elife, 5, e17111.PubMedPubMedCentralCrossRefGoogle Scholar
  284. Parenteau, J., Klinck, R., Good, L., Langel, Ü., Wellinger, R. J., & Elela, S. A. (2005). Free uptake of cell-penetrating peptides by fission yeast. FEBS Letters, 579, 4873–4878.PubMedCrossRefGoogle Scholar
  285. Park, C. K., Kim, Y. H., Hwangbo, S., & Cho, H. (2017). Photodynamic therapy by conjugation of cell-penetrating peptide with fluorochrome. International Journal of Nanomedicine, 12, 8185–8196.PubMedPubMedCentralCrossRefGoogle Scholar
  286. Pärn, K., Eriste, E., & Langel, Ü. (2015). The antimicrobial and antiviral applications of cell-penetrating peptides. Methods in Molecular Biology, 1324, 223–245.PubMedPubMedCentralCrossRefGoogle Scholar
  287. Parviz, Y., Vijayan, S., & Lavi, S. (2017). A review of strategies for infarct size reduction during acute myocardial infarction. Cardiovascular Revascularization Medicine: Including Molecular Interventions, 18, 374–383.CrossRefGoogle Scholar
  288. Pasquereau-Kotula, E., Habault, J., Kroemer, G., & Poyet, J. L. (2018). The anticancer peptide RT53 induces immunogenic cell death. PLoS ONE, 13, e0201220.PubMedPubMedCentralCrossRefGoogle Scholar
  289. Patel, R. R., Sundin, G. W., Yang, C. H., Wang, J., Huntley, R. B., Yuan, X., et al. (2017). Exploration of using antisense peptide nucleic acid (PNA)-cell penetrating peptide (CPP) as a novel bactericide against fire blight pathogen erwinia amylovora. Frontiers in Microbiology, 8, 687.PubMedPubMedCentralGoogle Scholar
  290. Patel, L. N., Zaro, J. L., & Shen, W. C. (2007). Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives. Pharmaceutical Research, 24, 1977–1992.PubMedCrossRefGoogle Scholar
  291. Paul, A., Nayan, M., Khan, A. A., Shum-Tim, D., & Prakash, S. (2012). Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: Investigation in rat heart with acute infarction. International Journal of Nanomedicine, 7, 663–682.PubMedPubMedCentralCrossRefGoogle Scholar
  292. Peng, F., Tu, Y., Adhikari, A., Hintzen, J. C., Lowik, D. W., & Wilson, D. A. (2017). A peptide functionalized nanomotor as an efficient cell penetrating tool. Chemical Communications (Cambridge, England), 53, 1088–1091.CrossRefGoogle Scholar
  293. Pepe, S., Mentzer, R. M., Jr., & Gottlieb, R. A. (2014). Cell-permeable protein therapy for complex I dysfunction. Journal of Bioenergetics and Biomembranes, 46, 337–345.PubMedPubMedCentralCrossRefGoogle Scholar
  294. Perillo, E., Herve-Aubert, K., Allard-Vannier, E., Falanga, A., Galdiero, S., & Chourpa, I. (2017). Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. Journal of Colloid and Interface Science, 499, 209–217.PubMedCrossRefPubMedCentralGoogle Scholar
  295. Perry, C. N., Huang, C., Liu, W., Magee, N., Carreira, R. S., & Gottlieb, R. A. (2011). Xenotransplantation of mitochondrial electron transfer enzyme, Ndi1, in myocardial reperfusion injury. PLoS ONE, 6, e16288.PubMedPubMedCentralCrossRefGoogle Scholar
  296. Pittala, S., Krelin, Y., & Shoshan-Barmatz, V. (2018). Targeting liver cancer and associated pathologies in mice with a mitochondrial VDAC1-based peptide. Neoplasia (New York, NY), 20, 594–609.CrossRefGoogle Scholar
  297. Polette, M., Nawrocki-Raby, B., Gilles, C., Clavel, C., & Birembaut, P. (2004). Tumour invasion and matrix metalloproteinases. Critical Reviews in Oncology/Hematology, 49, 179–186.PubMedCrossRefGoogle Scholar
  298. Ponnappan, N., Budagavi, D. P., & Chugh, A. (2017). CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochimica et Biophysica Acta, 1859, 167–176.PubMedCrossRefGoogle Scholar
  299. Qin, H., Ding, Y., Mujeeb, A., Zhao, Y., & Nie, G. (2017). Tumor microenvironment targeting and responsive peptide-based nanoformulations for improved tumor therapy. Molecular Pharmacology, 92, 219–231.PubMedCrossRefGoogle Scholar
  300. Qiu, Y., Yu, Q., Liu, Y., Tang, J., Wang, X., Lu, Z., et al. (2018). Dual receptor targeting cell penetrating peptide modified liposome for glioma and breast cancer postoperative recurrence therapy. Pharmaceutical Research, 35, 130.PubMedCrossRefGoogle Scholar
  301. Radwani, H., Lopez-Gonzalez, M. J., Cattaert, D., Roca-Lapirot, O., Dobremez, E., Bouali-Benazzouz, R., et al. (2016). Cav1.2 and Cav1.3 L-type calcium channels independently control short- and long-term sensitization to pain. The Journal of Physiology, 594, 6607–6626.PubMedPubMedCentralCrossRefGoogle Scholar
  302. Rahman, M. S., Choi, Y. H., Choi, Y. S., & Yoo, J. C. (2017). Glycin-rich antimicrobial peptide YD1 from B. amyloliquefaciens, induced morphological alteration in and showed affinity for plasmid DNA of E. coli. AMB Express, 7, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  303. Rajendrakumar, S. K., Cherukula, K., Park, H. J., Uthaman, S., Jeong, Y. Y., Lee, B. I., et al. (2018). Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. Journal of Control Release, 276, 72–83.CrossRefGoogle Scholar
  304. Raju, S. C., Hauff, S. J., Lemieux, A. J., Orosco, R. K., Gross, A. M., Nguyen, L. T., et al. (2015). Combined TP53 mutation/3p loss correlates with decreased radiosensitivity and increased matrix-metalloproteinase activity in head and neck carcinoma. Oral Oncology, 51, 470–475.PubMedPubMedCentralCrossRefGoogle Scholar
  305. Rassu, G., Soddu, E., Posadino, A. M., Pintus, G., Sarmento, B., Giunchedi, P., et al. (2017). Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids and Surfaces B: Biointerfaces, 152, 296–301.PubMedCrossRefGoogle Scholar
  306. Regberg, J., Srimanee, A., & Langel, Ü. (2012). Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel), 5, 991–1007.CrossRefGoogle Scholar
  307. Rejinold, N. S., Han, Y., Yoo, J., Seok, H. Y., Park, J. H., & Kim, Y. C. (2018). Evaluation of cell penetrating peptide coated Mn:ZnS nanoparticles for paclitaxel delivery to cancer cells. Scientific Reports, 8, 1899.PubMedPubMedCentralCrossRefGoogle Scholar
  308. Ren, Y., Sagers, J. E., Landegger, L. D., Bhatia, S. N., & Stankovic, K. M. (2017). Tumor-penetrating delivery of siRNA against TNFalpha to human vestibular schwannomas. Scientific Reports, 7, 12922.PubMedPubMedCentralCrossRefGoogle Scholar
  309. Reyes-Cortes, R., Acosta-Smith, E., Mondragon-Flores, R., Nazmi, K., Bolscher, J. G., Canizalez-Roman, A., et al. (2017). Antibacterial and cell penetrating effects of LFcin17-30, LFampin265-284, and LF chimera on enteroaggregative Escherichia coli. Biochemistry and Cell Biology = Biochimie et biologie cellulaire, 95, 76–81.PubMedCrossRefGoogle Scholar
  310. Rezaei Araghi, R., Bird, G. H., Ryan, J. A., Jenson, J. M., Godes, M., Pritz, J. R., et al. (2018). Iterative optimization yields Mcl-1-targeting stapled peptides with selective cytotoxicity to Mcl-1-dependent cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 115, E886–E895.PubMedPubMedCentralCrossRefGoogle Scholar
  311. Rompicharla, S. V. K., Kumari, P., Ghosh, B., & Biswas, S. (2018). Octa-arginine modified poly(amidoamine) dendrimers for improved delivery and cytotoxic effect of paclitaxel in cancer. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1–13.CrossRefGoogle Scholar
  312. Rosenthal, E. L., Warram, J. M., de Boer, E., Chung, T. K., Korb, M. L., Brandwein-Gensler, M., et al. (2015). Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clinical Cancer Research, 21, 3658–3666.PubMedPubMedCentralCrossRefGoogle Scholar
  313. Rothbard, J. B., Garlington, S., Lin, Q., Kirschberg, T., Kreider, E., McGrane, P. L., et al. (2000). Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nature Medicine, 6, 1253–1257.PubMedPubMedCentralCrossRefGoogle Scholar
  314. Rousselle, C., Clair, P., Lefauconnier, J. M., Kaczorek, M., Scherrmann, J. M., & Temsamani, J. (2000). New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Molecular Pharmacology, 57, 679–686.CrossRefGoogle Scholar
  315. Rousselle, C., Smirnova, M., Clair, P., Lefauconnier, J. M., Chavanieu, A., Calas, B., et al. (2001). Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: Saturation kinetics and specificity. Journal of Pharmacology and Experimental Therapeutics, 296, 124–131.PubMedPubMedCentralGoogle Scholar
  316. Rownicki, M., Wojciechowska, M., Wierzba, A. J., Czarnecki, J., Bartosik, D., Gryko, D., et al. (2017). Vitamin B12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Scientific Reports, 7, 7644.PubMedPubMedCentralCrossRefGoogle Scholar
  317. Ruter, C., & Schmidt, M. A. (2017). Cell-penetrating bacterial effector proteins: Better tools than targets. Trends in Biotechnology, 35, 109–120.PubMedCrossRefPubMedCentralGoogle Scholar
  318. Salzano, G., Costa, D. F., Sarisozen, C., Luther, E., Mattheolabakis, G., Dhargalkar, P. P., et al. (2016). Mixed nanosized polymeric micelles as promoter of doxorubicin and miRNA-34a co-delivery triggered by dual stimuli in tumor tissue. Small (Weinheim an der Bergstrasse, Germany), 12, 4837–4848.CrossRefGoogle Scholar
  319. Samuels, S., Alwan, Z., Egnin, M., Jaynes, J., Connell, T. D., Bernard, G. C., & Nashar, T. (2017). Novel therapeutic approach for inhibition of HIV-1 using cell-penetrating peptide and bacterial toxins. Journal of AIDS & Clinical Research, 8.Google Scholar
  320. Santos, R. S., Figueiredo, C., Azevedo, N. F., Braeckmans, K., & de Smedt, S. C. (2017). Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Advanced Drug Delivery Reviews, 136, 28–48.PubMedPubMedCentralGoogle Scholar
  321. Sardone, V., Zhou, H., Muntoni, F., Ferlini, A., & Falzarano, M. S. (2017). Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules, 22, 563.PubMedCentralCrossRefGoogle Scholar
  322. Sarko, D. K., & McKinney, C. E. (2017). Exosomes: Origins and therapeutic potential for neurodegenerative disease. Frontiers in Neuroscience, 11, 82.PubMedPubMedCentralCrossRefGoogle Scholar
  323. Sasaki-Hamada, S., Funane, T., Nakao, Y., Sasaki, R., Nagai, M., Ueta, Y., et al. (2018). Intranasal administration of neuromedin U derivatives containing cell-penetrating peptides and a penetration-accelerating sequence induced memory improvements in mice. Peptides, 99, 241–246.PubMedCrossRefPubMedCentralGoogle Scholar
  324. Sasaki-Hamada, S., Nakamura, R., Nakao, Y., Akimoto, T., Sanai, E., Nagai, M., et al. (2017). Antidepressant-like effects exerted by the intranasal administration of a glucagon-like peptide-2 derivative containing cell-penetrating peptides and a penetration-accelerating sequence in mice. Peptides, 87, 64–70.PubMedCrossRefPubMedCentralGoogle Scholar
  325. Savariar, E. N., Felsen, C. N., Nashi, N., Jiang, T., Ellies, L. G., Steinbach, P., et al. (2013). Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides. Cancer Research, 73, 855–864.PubMedCrossRefPubMedCentralGoogle Scholar
  326. Sawant, R. R., Patel, N. R., & Torchilin, V. P. (2013). Therapeutic delivery using cell-penetrating peptides. European Journal of Nanomedicine, 5, 141–158.CrossRefGoogle Scholar
  327. Schonder, K. S. (2011). Pharmacology of immunosuppressive medications in solid organ transplantation. Critical Care Nursing Clinics of North America, 23, 405–423.PubMedCrossRefPubMedCentralGoogle Scholar
  328. Schwarze, S. R., Ho, A., Vocero-Akbani, A., & Dowdy, S. F. (1999). In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science, 285, 1569–1572.CrossRefGoogle Scholar
  329. Sclip, A., Tozzi, A., Abaza, A., Cardinetti, D., Colombo, I., Calabresi, P., et al. (2014). c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic dysfunction in vivo. Cell Death and Disease, 5, e1019.PubMedCrossRefPubMedCentralGoogle Scholar
  330. Seward, G. K., Wei, Q., & Dmochowski, I. J. (2008). Peptide-mediated cellular uptake of cryptophane. Bioconjugate Chemistry, 19, 2129–2135.PubMedPubMedCentralCrossRefGoogle Scholar
  331. Sha, Y., Vartanian, V., Owen, N., Mengden Koon, S. J., Calkins, M. J., Thompson, C. S., et al. (2018). Modulation of UVB-induced Carcinogenesis by activation of alternative DNA Repair Pathways. Sci Rep, 8, 705.PubMedPubMedCentralCrossRefGoogle Scholar
  332. Shabanpoor, F., McClorey, G., Saleh, A. F., Jarver, P., Wood, M. J., & Gait, M. J. (2015). Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy. Nucleic Acids Research, 43, 29–39.PubMedCrossRefPubMedCentralGoogle Scholar
  333. Shadidi, M., & Sioud, M. (2003). Selective targeting of cancer cells using synthetic peptides. Drug resistance updates: Reviews and commentaries in antimicrobial and anticancer chemotherapy, 6, 363–371.CrossRefGoogle Scholar
  334. Shafiee, F., Rabbani, M., & Jahanian-Najafabadi, A. (2017). Optimization of the expression of DT386-BR2 fusion protein in Escherichia coli using response surface methodology. Advanced Biomedical Research, 6, 22.PubMedPubMedCentralCrossRefGoogle Scholar
  335. Sharma, S., Kotamraju, V. R., Molder, T., Tobi, A., Teesalu, T., & Ruoslahti, E. (2017). Tumor-penetrating nanosystem strongly suppresses breast tumor growth. Nano Letters, 17, 1356–1364.PubMedPubMedCentralCrossRefGoogle Scholar
  336. She, Z. G., Hamzah, J., Kotamraju, V. R., Pang, H. B., Jansen, S., & Ruoslahti, E. (2016). Plaque-penetrating peptide inhibits development of hypoxic atherosclerotic plaque. Journal of Control Release, 238, 212–220.CrossRefGoogle Scholar
  337. Shi, N. Q., Gao, W., Xiang, B., & Qi, X. R. (2012). Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage. International Journal of Nanomedicine, 7, 1613–1621.PubMedPubMedCentralGoogle Scholar
  338. Shi, N. Q., Li, Y., Zhang, Y., Shen, N., Qi, L., Wang, S. R., et al. (2017). Intelligent “Peptide-Gathering Mechanical Arm” Tames Wild “Trojan-Horse” peptides for the controlled delivery of cancer nanotherapeutics. ACS Applied Materials & Interfaces, 9, 41767–41781.CrossRefGoogle Scholar
  339. Shilo, M., Motiei, M., Hana, P., & Popovtzer, R. (2014). Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale, 6, 2146–2152.PubMedCrossRefPubMedCentralGoogle Scholar
  340. Shishodia, S., Majumdar, S., Banerjee, S., & Aggarwal, B. B. (2003). Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: Correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Research, 63, 4375–4383.PubMedPubMedCentralGoogle Scholar
  341. Shteinfer-Kuzmine, A., Amsalem, Z., Arif, T., Zooravlov, A., & Shoshan-Barmatz, V. (2018). Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Molecular Oncology, 12, 1077–1103.PubMedPubMedCentralCrossRefGoogle Scholar
  342. Shteinfer-Kuzmine, A., Arif, T., Krelin, Y., Tripathi, S. S., Paul, A., & Shoshan-Barmatz, V. (2017). Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma. Oncotarget, 8, 31329–31346.PubMedPubMedCentralCrossRefGoogle Scholar
  343. Shu, X., Lev-Ram, V., Olson, E. S., Aguilera, T. A., Jiang, T., Whitney, M., et al. (2011). Spiers memorial lecture. Breeding and building molecular spies. Faraday Discussions, 149, 9. discussion 63–77.PubMedCrossRefPubMedCentralGoogle Scholar
  344. Shvadchak, V., Zgheib, S., Basta, B., Humbert, N., Langedijk, J., Morris, M. C., et al. (2018). Rationally designed peptides as efficient inhibitors of nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Biochemistry, 57, 4562–4573.PubMedCrossRefPubMedCentralGoogle Scholar
  345. Siller, R., Dufour, E., Lycke, M., Wilmut, I., Jung, Y. W., Park, I. H., et al. (2017). Development of an inducible platform for intercellular protein delivery. International Journal of Pharmaceutics, 522, 1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  346. Simion, V., Stan, D., Constantinescu, C. A., Deleanu, M., Dragan, E., Tucureanu, M. M., et al. (2016). Conjugation of curcumin-loaded lipid nanoemulsions with cell-penetrating peptides increases their cellular uptake and enhances the anti-inflammatory effects in endothelial cells. Journal of Pharmacy and Pharmacology, 68, 195–207.PubMedCrossRefPubMedCentralGoogle Scholar
  347. Simon-Gracia, L., Scodeller, P., Fuentes, S. S., Vallejo, V. G., Rios, X., San Sebastian, E., et al. (2018). Application of polymersomes engineered to target p32 protein for detection of small breast tumors in mice. Oncotarget, 9, 18682–18697.PubMedPubMedCentralCrossRefGoogle Scholar
  348. Sims, L. B., Huss, M. K., Frieboes, H. B., & Steinbach-Rankins, J. M. (2017). Distribution of PLGA-modified nanoparticles in 3D cell culture models of hypo-vascularized tumor tissue. Journal of Nanobiotechnology, 15, 67.PubMedPubMedCentralCrossRefGoogle Scholar
  349. Smilansky, A., Dangoor, L., Nakdimon, I., Ben-Hail, D., Mizrachi, D., & Shoshan-Barmatz, V. (2015). The voltage-dependent anion channel 1 mediates amyloid beta toxicity and represents a potential target for alzheimer disease therapy. Journal of Biological Chemistry, 290, 30670–30683.PubMedCrossRefPubMedCentralGoogle Scholar
  350. Snir, J. A., Suchy, M., Bindseil, G. A., Kovacs, M., Chronik, B. A., Hudson, R. H. E., et al. (2018). An aspartyl cathepsin targeted PET agent: Application in an Alzheimer’s disease mouse model. Journal of Alzheimer’s disease, 61, 1241–1252.PubMedCrossRefPubMedCentralGoogle Scholar
  351. Snir, J. A., Suchy, M., Lawrence, K. S., Hudson, R. H., Pasternak, S. H., & Bartha, R. (2015). Prolonged in vivo retention of a cathepsin D targeted optical contrast agent in a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease, 48, 73–87.PubMedCrossRefPubMedCentralGoogle Scholar
  352. Snyder, E. L., & Dowdy, S. F. (2004). Cell penetrating peptides in drug delivery. Pharmaceutical Research, 21, 389–393.PubMedCrossRefPubMedCentralGoogle Scholar
  353. Snyder, E. L., Meade, B. R., Saenz, C. C., & Dowdy, S. F. (2004). Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biology, 2, 17.CrossRefGoogle Scholar
  354. Snyder, E. L., Saenz, C. C., Denicourt, C., Meade, B. R., Cui, X. S., Kaplan, I. M., et al. (2005). Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides. Cancer Research, 65, 10646–10650.PubMedCrossRefPubMedCentralGoogle Scholar
  355. Soddu, E., Rassu, G., Giunchedi, P., Sarmento, B., & Gavini, E. (2015). From naturally-occurring neurotoxic agents to CNS shuttles for drug delivery. European Journal of Pharmaceutical Sciences, 74, 63–76.PubMedCrossRefPubMedCentralGoogle Scholar
  356. Sogaard, C. K., Blindheim, A., Rost, L. M., Petrovic, V., Nepal, A., Bachke, S., et al. (2018a). “Two hits—one stone”; increased efficacy of cisplatin-based therapies by targeting PCNA’s role in both DNA repair and cellular signaling. Oncotarget, 9, 32448–32465.PubMedPubMedCentralGoogle Scholar
  357. Sogaard, C. K., Moestue, S. A., Rye, M. B., Kim, J., Nepal, A., Liabakk, N. B., et al. (2018b). APIM-peptide targeting PCNA improves the efficacy of docetaxel treatment in the TRAMP mouse model of prostate cancer. Oncotarget, 9, 11752–11766.PubMedPubMedCentralGoogle Scholar
  358. Spencer, B., Williams, S., Rockenstein, E., Valera, E., Xin, W., Mante, M., et al. (2016). alpha-synuclein conformational antibodies fused to penetratin are effective in models of Lewy body disease. Annals of Clinical and Translational Neurology, 3, 588–606.PubMedPubMedCentralCrossRefGoogle Scholar
  359. Srimanee, A., Arvanitidou, M., Kim, K., Hallbrink, M., & Langel, U. (2018). Cell-penetrating peptides for siRNA delivery to glioblastomas. Peptides, 104, 62–69.PubMedCrossRefPubMedCentralGoogle Scholar
  360. Stangl, S., Tei, L., De Rose, F., Reder, S., Martinelli, J., Sievert, W., et al. (2018). Preclinical evaluation of the Hsp70 peptide tracer TPP-PEG24-DFO[89Zr] for tumor-specific PET/CT imaging. Cancer Research, 78, 6268–6281.PubMedCrossRefPubMedCentralGoogle Scholar
  361. Stasiuk, G. J., Tamang, S., Imbert, D., Poillot, C., Giardiello, M., Tisseyre, C., et al. (2011). Cell-permeable Ln(III) chelate-functionalized InP quantum dots as multimodal imaging agents. ACS Nano, 5, 8193–8201.PubMedCrossRefPubMedCentralGoogle Scholar
  362. Su, W., Mishra, R., Pfeuffer, J., Wiesmuller, K. H., Ugurbil, K., & Engelmann, J. (2007). Synthesis and cellular uptake of a MR contrast agent coupled to an antisense peptide nucleic acid–cell-penetrating peptide conjugate. Contrast Media & Molecular Imaging, 2, 42–49.CrossRefGoogle Scholar
  363. Suchy, M., Li, A. X., Bartha, R., & Hudson, R. H. (2010a). Synthesis of MRI contrast agents derived from DOTAM-Gly-L-Phe-OH incorporating a disulfide bridge: Conjugation to a cell penetrating peptide and preparation of a dimeric agent. Bioorganic & Medicinal Chemistry Letters, 20, 5521–5526.CrossRefGoogle Scholar
  364. Suchy, M., Ta, R., Li, A. X., Wojciechowski, F., Pasternak, S. H., Bartha, R., et al. (2010b). A paramagnetic chemical exchange-based MRI probe metabolized by cathepsin D: Design, synthesis and cellular uptake studies. Organic & Biomolecular Chemistry, 8, 2560–2566.CrossRefGoogle Scholar
  365. Suh, J. S., Lee, H. J., Nam, H., Jo, B. S., Lee, D. W., Kim, J. H., et al. (2017). Control of cancer stem cell like population by intracellular target identification followed by the treatment with peptide-siRNA complex. Biochemical and Biophysical Research Communications, 491, 827–833.PubMedCrossRefPubMedCentralGoogle Scholar
  366. Sun, P., Huang, W., Kang, L., Jin, M., Fan, B., Jin, H., et al. (2017a). siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. International Journal of Nanomedicine, 12, 3221–3234.PubMedPubMedCentralCrossRefGoogle Scholar
  367. Sun, Z., Li, R., Sun, J., Peng, Y., Xiao, L., Zhang, X., et al. (2017b). Matrix metalloproteinase cleavable nanoparticles for tumor microenvironment and tumor cell dual-targeting drug delivery. ACS Applied Materials & Interfaces, 9, 40614–40627.CrossRefGoogle Scholar
  368. Sun, L., Xie, S., Qi, J., Liu, E., Liu, D., Liu, Q., et al. (2017c). Cell-permeable, MMP-2 activatable, nickel ferrite and his-tagged fusion protein self-assembled fluorescent nanoprobe for tumor magnetic-targeting and imaging. ACS Applied Materials & Interfaces, 9, 39209–39222.CrossRefGoogle Scholar
  369. Suzuki, S., Itakura, S., Matsui, R., Nakayama, K., Nishi, T., Nishimoto, A., et al. (2017). Tumor microenvironment-sensitive liposomes penetrate tumor tissue via attenuated interaction of the extracellular matrix and tumor cells and accompanying actin depolymerization. Biomacromolecules, 18, 535–543.PubMedCrossRefPubMedCentralGoogle Scholar
  370. Swanson, K. I., Clark, P. A., Zhang, R. R., Kandela, I. K., Farhoud, M., Weichert, J. P., et al. (2015). Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative glioma detection. Neurosurgery, 76, 115–123, discussion 123–124.PubMedPubMedCentralCrossRefGoogle Scholar
  371. Ta, R., Suchy, M., Tam, J. H., Li, A. X., Martinez-Santiesteban, F. S., Scholl, T. J., et al. (2013). A dual magnetic resonance imaging/fluorescent contrast agent for Cathepsin-D detection. Contrast Media & Molecular Imaging, 8, 127–139.CrossRefGoogle Scholar
  372. Tailhades, J., Takizawa, H., Gait, M. J., Wellings, D. A., Wade, J. D., Aoki, Y., et al. (2017). Solid-phase synthesis of difficult purine-rich PNAs through selective Hmb incorporation: Application to the total synthesis of cell penetrating peptide-PNAs. Frontiers in Chemistry, 5, 81.PubMedPubMedCentralCrossRefGoogle Scholar
  373. Tajik-Ahmadabad, B., Polyzos, A., Separovic, F., & Shabanpoor, F. (2017). Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. International Journal of Pharmaceutics, 532, 21–28.PubMedCrossRefPubMedCentralGoogle Scholar
  374. Tan, H., Huang, Y., Xu, J., Chen, B., Zhang, P., Ye, Z., et al. (2017). Spider toxin peptide lycosin-I functionalized gold nanoparticles for in vivo tumor targeting and therapy. Theranostics, 7, 3168–3178.PubMedPubMedCentralCrossRefGoogle Scholar
  375. Tanaka, M., Zhu, Y., Shionyu, M., Ota, N., Shibata, N., Watanabe, C., et al. (2018). Ridaifen-F conjugated with cell-penetrating peptides inhibits intracellular proteasome activities and induces drug-resistant cell death. European Journal of Medicinal Chemistry, 146, 636–650.PubMedCrossRefPubMedCentralGoogle Scholar
  376. Tang, Y., Liang, J., Wu, A., Chen, Y., Zhao, P., Lin, T., et al. (2017). Co-delivery of trichosanthin and albendazole by nano-self-assembly for overcoming tumor multidrug-resistance and metastasis. ACS Applied Materials & Interfaces, 9, 26648–26664.CrossRefGoogle Scholar
  377. Tang, B., Zaro, J. L., Shen, Y., Chen, Q., Yu, Y., Sun, P., et al. (2018). Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. Journal of Control Release, 279, 147–156.CrossRefGoogle Scholar
  378. Tansi, F., Kallweit, E., Kaether, C., Kappe, K., Schumann, C., Hilger, I., et al. (2015). Internalization of near-infrared fluorescently labeled activatable cell-penetrating peptide and of proteins into human fibrosarcoma cell line HT-1080. Journal of Cellular Biochemistry, 116, 1222–1231.CrossRefGoogle Scholar
  379. Teimoori, S., Seesuay, W., Jittavisutthikul, S., Chaisri, U., Sookrung, N., Densumite, J., et al. (2016). Human transbodies to VP40 inhibit cellular egress of Ebola virus-like particles. Biochemical and Biophysical Research Communications, 479, 245–252.PubMedCrossRefPubMedCentralGoogle Scholar
  380. Tomizaki, K. Y., Kishioka, K., Kataoka, S., Miyatani, M., Ikeda, T., Komada, M., et al. (2017). Non-covalent loading of anti-cancer doxorubicin by modularizable peptide self-assemblies for a nanoscale drug carrier. Molecules, 22, 1916.PubMedCentralCrossRefGoogle Scholar
  381. Tremmel, R., Uhl, P., Helm, F., Wupperfeld, D., Sauter, M., Mier, W., et al. (2016). Delivery of Copper-chelating Trientine (TETA) to the central nervous system by surface modified liposomes. International Journal of Pharmaceutics, 512, 87–95.PubMedCrossRefPubMedCentralGoogle Scholar
  382. Triguero, J., Flores-Ortega, A., Zanuy, D., & Aleman, C. (2018). Modeling of a C-end rule peptide adsorbed onto gold nanoparticles. Journal of Peptide Science, 24, e3057.CrossRefGoogle Scholar
  383. Trinh, T. B., Upadhyaya, P., Qian, Z., & Pei, D. (2016). Discovery of a direct Ras inhibitor by screening a combinatorial library of cell-permeable bicyclic peptides. ACS Combinatorial Science, 18, 75–85.PubMedCrossRefGoogle Scholar
  384. Tu, H., Hsuchou, H., Kastin, A. J., Wu, X., & Pan, W. (2010). Unique leptin trafficking by a tailless receptor. The FASEB Journal, 24, 2281–2291.PubMedPubMedCentralCrossRefGoogle Scholar
  385. Tudisco, C., Cambria, M. T., Giuffrida, A. E., Sinatra, F., Anfuso, C. D., Lupo, G., et al. (2018). Comparison between folic acid and gH625 peptide-based functionalization of Fe3O4 magnetic nanoparticles for enhanced cell internalization. Nanoscale Research Letters, 13, 45.PubMedPubMedCentralCrossRefGoogle Scholar
  386. Tuffery-Giraud, S., Miro, J., Koenig, M., & Claustres, M. (2017). Normal and altered pre-mRNA processing in the DMD gene. Human Genetics, 136, 1155–1172.PubMedCrossRefPubMedCentralGoogle Scholar
  387. Tuttolomondo, M., Casella, C., Hansen, P. L., Polo, E., Herda, L. M., Dawson, K. A., et al. (2017). Human DMBT1-derived cell-penetrating peptides for intracellular siRNA delivery. Molecular Therapy Nucleic Acids, 8, 264–276.PubMedPubMedCentralCrossRefGoogle Scholar
  388. Urgard, E., Lorents, A., Klaas, M., Padari, K., Viil, J., Runnel, T., et al. (2016). Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. Journal of Control Release, 235, 195–204.CrossRefGoogle Scholar
  389. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J., & Frangioni, J. V. (2013). Image-guided cancer surgery using near-infrared fluorescence. Nature Reviews. Clinical Oncology, 10, 507–518.PubMedPubMedCentralCrossRefGoogle Scholar
  390. Vale, N., Ferreira, A., Fernandes, I., Alves, C., Araujo, M. J., Mateus, N., et al. (2017). Gemcitabine anti-proliferative activity significantly enhanced upon conjugation with cell-penetrating peptides. Bioorganic & Medicinal Chemistry Letters, 27, 2898–2901.CrossRefGoogle Scholar
  391. van Dam, G. M., Themelis, G., Crane, L. M., Harlaar, N. J., Pleijhuis, R. G., Kelder, W., et al. (2011). Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: First in-human results. Nature Medicine, 17, 1315–1319.PubMedCrossRefPubMedCentralGoogle Scholar
  392. van den Brand, D., Massuger, L. F., Brock, R., & Verdurmen, W. P. (2017). Mimicking tumors: Toward more predictive in vitro models for peptide- and protein-conjugated drugs. Bioconjugate Chemistry, 28, 846–856.PubMedPubMedCentralCrossRefGoogle Scholar
  393. van den Brand, D., Veelken, C., Massuger, L., & Brock, R. (2018). Penetration in 3D tumor spheroids and explants: Adding a further dimension to the structure-activity relationship of cell-penetrating peptides. Biochimica et Biophysica Acta, 1860, 1342–1349.PubMedCrossRefPubMedCentralGoogle Scholar
  394. van Duijnhoven, S. M., Robillard, M. S., Hermann, S., Kuhlmann, M. T., Schafers, M., Nicolay, K., et al. (2014). Imaging of MMP activity in postischemic cardiac remodeling using radiolabeled MMP-2/9 activatable peptide probes. Molecular Pharmaceutics, 11, 1415–1423.PubMedCrossRefPubMedCentralGoogle Scholar
  395. van Duijnhoven, S. M., Robillard, M. S., Nicolay, K., & Grull, H. (2011). Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. Journal of Nuclear Medicine, 52, 279–286.PubMedCrossRefGoogle Scholar
  396. van Tellingen, O., Yetkin-Arik, B., de Gooijer, M. C., Wesseling, P., Wurdinger, T., & de Vries, H. E. (2015). Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates, 19, 1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  397. Veiman, K. L., Kunnapuu, K., Lehto, T., Kiisholts, K., Pärn, K., Langel, Ü., et al. (2015). PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. J Control Release, 209, 238–247.PubMedCrossRefPubMedCentralGoogle Scholar
  398. Venkatachalam, A. B., Livingstone, S. M., Hu, Q., Ray, A., Wood, C., Cimen, S., et al. (2017). Delivery of soluble heme oxygenase 1 cell-penetrating peptide into liver cells in in vitro and ex vivo models of cold ischemia. European Surgical Research, 58, 51–68.PubMedCrossRefPubMedCentralGoogle Scholar
  399. Villa-Cedillo, S. A., Rodriguez-Rocha, H., Zavala-Flores, L. M., Montes-De-oca-luna, R., Garcia-Garcia, A., Loera-Arias, M. J., et al. (2017). Asn194Lys mutation in RVG29 peptide increases GFP transgene delivery by endocytosis to neuroblastoma and astrocyte cells. Journal of Pharmacy and Pharmacology, 69, 1352–1363.PubMedCrossRefPubMedCentralGoogle Scholar
  400. Vyas, P. M., Tomamichel, W. J., Pride, P. M., Babbey, C. M., Wang, Q., Mercier, J., et al. (2012). A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Human Molecular Genetics, 21, 1230–1247.PubMedCrossRefGoogle Scholar
  401. Wadhwani, P., Heidenreich, N., Podeyn, B., Burck, J., & Ulrich, A. S. (2017). Antibiotic gold: Tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomaterials Science, 5, 817–827.PubMedCrossRefGoogle Scholar
  402. Wallbrecher, R., Chene, P., Ruetz, S., Stachyra, T., Vorherr, T., & Brock, R. (2017). A critical assessment of the synthesis and biological activity of p53/human double minute 2-stapled peptide inhibitors. British Journal of Pharmacology, 174, 2613–2622.PubMedPubMedCentralCrossRefGoogle Scholar
  403. Wang, H., Chen, X., Chen, Y., Sun, L., Li, G., Zhai, M., et al. (2013). Antitumor activity of novel chimeric peptides derived from cyclinD/CDK4 and the protein transduction domain 4. Amino Acids, 44, 499–510.PubMedCrossRefGoogle Scholar
  404. Wang, Z., Kong, L., Liu, Y., Fu, Q., Cui, Z., Wang, J., Ma, J., Wang, H., Yan, Y., & Sun, J. (2018d). A cell-penetrating peptide fused phage lysin kills intracellular MRSA in keratinocytes and treatment for skin infections of mice. Applied and Environmental Microbiology .Google Scholar
  405. Wang, L. J., Li, H. S., Wang, Q. S., Wu, H. B., Han, Y. J., Zhou, W. L., et al. (2018a). Construction and evaluation of the tumor-targeting, cell-penetrating multifunctional molecular probe iCREKA. Contrast Media & Molecular Imaging, 2018, 7929617.Google Scholar
  406. Wang, W., Ma, Z., Zhu, S., Wan, H., Yue, J., Ma, H., et al. (2018c). Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe. Advanced Materials, 30, e1800106.PubMedCrossRefGoogle Scholar
  407. Wang, J., Mao, W., Lock, L. L., Tang, J., Sui, M., Sun, W., et al. (2015a). The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano, 9, 7195–7206.PubMedCrossRefGoogle Scholar
  408. Wang, S., Meng, Y., Li, C., Qian, M., & Huang, R. (2015b). Receptor-mediated drug delivery systems targeting to glioma. Nanomaterials (Basel, Switzerland), 6, 3.CrossRefGoogle Scholar
  409. Wang, X., Qiu, Y., Yu, Q., Li, H., Chen, X., Li, M., et al. (2017). Enhanced glioma therapy by synergistic inhibition of autophagy and tyrosine kinase activity. International Journal of Pharmaceutics, 536, 1–10.PubMedCrossRefGoogle Scholar
  410. Wang, E., Sorolla, A., Cunningham, P. T., Bogdawa, H. M., Beck, S., Golden, E., Dewhurst, R. E., Florez, L., Cruickshank, M. N., Hoffmann, K., Hopkins, R. M., Kim, J., Woo, A. J., Watt, P. M., & Blancafort, P. (2018a). Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene.Google Scholar
  411. Wang, Y. F., Xu, X., Fan, X., Zhang, C., Wei, Q., Wang, X., et al. (2011). A cell-penetrating peptide suppresses inflammation by inhibiting NF-kappaB signaling. Molecular Therapy, 19, 1849–1857.PubMedPubMedCentralCrossRefGoogle Scholar
  412. Weinstain, R., Savariar, E. N., Felsen, C. N., & Tsien, R. Y. (2014). In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. Journal of the American Chemical Society, 136, 874–877.PubMedCrossRefPubMedCentralGoogle Scholar
  413. Weissleder, R., Tung, C. H., Mahmood, U., & Bogdanov, A., Jr. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 17, 375–378.PubMedCrossRefPubMedCentralGoogle Scholar
  414. Westphal, D., Glitza Oliva, I. C., & Niessner, H. (2017). Molecular insights into melanoma brain metastases. Cancer, 123, 2163–2175.PubMedCrossRefPubMedCentralGoogle Scholar
  415. Whitney, M., Savariar, E. N., Friedman, B., Levin, R. A., Crisp, J. L., Glasgow, H. L., et al. (2013). Ratiometric activatable cell-penetrating peptides provide rapid in vivo readout of thrombin activation. Angewandte Chemie (International Edition in English), 52, 325–330.CrossRefGoogle Scholar
  416. Wiley, D. T., Webster, P., Gale, A., & Davis, M. E. (2013). Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proceedings of the National Academy of Sciences of the United States of America, 110, 8662–8667.PubMedPubMedCentralCrossRefGoogle Scholar
  417. Wu, J., Han, H., Jin, Q., Li, Z., Li, H., & Ji, J. (2017). Design and proof of programmed 5-aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Applied Materials & Interfaces, 9, 14596–14605.CrossRefGoogle Scholar
  418. Xia, H., Gao, X., Gu, G., Liu, Z., Zeng, N., Hu, Q., et al. (2011). Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials, 32, 9888–9898.PubMedCrossRefPubMedCentralGoogle Scholar
  419. Xiang, B., Jia, X. L., Qi, J. L., Yang, L. P., Sun, W. H., Yan, X., et al. (2017). Enhancing siRNA-based cancer therapy using a new pH-responsive activatable cell-penetrating peptide-modified liposomal system. International Journal of Nanomedicine, 12, 2385–2405.PubMedPubMedCentralCrossRefGoogle Scholar
  420. Xiang, Y., Shan, W., & Huang, Y. (2018). Improved anticancer efficacy of doxorubicin mediated by human-derived cell-penetrating peptide dNP2. International Journal of Pharmaceutics, 551, 14–22.PubMedCrossRefGoogle Scholar
  421. Xiao, Y., Zhang, E., & Fu, A. (2017). Promotion of SH-SY5Y cell growth by gold nanoparticles modified with 6-mercaptopurine and a neuron-penetrating peptide. Nanoscale Research Letters, 12, 641.PubMedPubMedCentralCrossRefGoogle Scholar
  422. Xie, F., Zhang, L., Peng, J., Li, C., Pu, J., Xu, Y., et al. (2017). Hepatic carcinoma selective nucleic acid nanovector assembled by endogenous molecules based on modular strategy. Molecular Pharmaceutics, 14, 1841–1851.PubMedCrossRefGoogle Scholar
  423. Xu, X., Saw, P. E., Tao, W., Li, Y., Ji, X., Yu, M., et al. (2017). Tumor microenvironment-responsive multistaged nanoplatform for systemic RNAi and cancer therapy. Nano Letters, 17, 4427–4435.PubMedPubMedCentralCrossRefGoogle Scholar
  424. Xu, J., Xiang, Q., Su, J., Yang, P., Zhang, Q., Su, Z., et al. (2014). Evaluation of the safety and brain-related tissues distribution characteristics of TAT-HaFGF via intranasal administration. Biological &/and Pharmaceutical Bulletin, 37, 1149–1157.CrossRefGoogle Scholar
  425. Xue, X. Y., Mao, X. G., Zhou, Y., Chen, Z., Hu, Y., Hou, Z., et al. (2018). Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomedicine (London), 14, 745–758.CrossRefGoogle Scholar
  426. Yang, Y., Meng, Y., Ye, J., Xia, X., Wang, H., Li, L., et al. (2018). Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle. Journal of Control Release, 287, 103–120.CrossRefGoogle Scholar
  427. Yang, D., Sun, Y.-Y., Lin, X., Baumann, J. M., Dunn, R. S., Lindquist, D. M., et al. (2013). Intranasal delivery of cell-penetrating anti-NF-κB peptides (Tat-NBD) alleviates infection-sensitized hypoxic–ischemic brain injury. Experimental Neurology, 247, 447–455.PubMedPubMedCentralCrossRefGoogle Scholar
  428. Yang, L., Wang, F., Han, H., Yang, L., Zhang, G., & Fan, Z. (2015). Functionalized graphene oxide as a drug carrier for loading pirfenidone in treatment of subarachnoid hemorrhage. Colloids and Surfaces B: Biointerfaces, 129, 21–29.PubMedCrossRefGoogle Scholar
  429. Yavari, B., Mahjub, R., Saidijam, M., Raigani, M., & Soleimani, M. (2018). The potential use of peptides for cancer treatment. Current Protein & Peptide Science, 19, 759–770.CrossRefGoogle Scholar
  430. Yeh, C. Y., Bulas, A. M., Moutal, A., Saloman, J. L., Hartnett, K. A., Anderson, C. T., et al. (2017). Targeting a potassium channel/syntaxin interaction ameliorates cell death in ischemic stroke. Journal of Neuroscience, 37, 5648–5658.PubMedCrossRefPubMedCentralGoogle Scholar
  431. Yellon, D. M., & Baxter, G. F. (2000). Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart (British Cardiac Society), 83, 381–387.CrossRefGoogle Scholar
  432. Ying, M., Wang, S., Zhang, M., Wang, R., Zhu, H., Ruan, H., et al. (2018). Myristic acid-modified (D)A7R peptide for whole-process glioma-targeted drug delivery. ACS Applied Materials & Interfaces, 10, 19473–19482.CrossRefGoogle Scholar
  433. Ylosmaki, E., Malorzo, C., Capasso, C., Honkasalo, O., Fusciello, M., Martins, B., et al. (2018). Personalized cancer vaccine platform for clinically relevant oncolytic enveloped viruses. Molecular Therapy, 26, 2315–2325.PubMedCrossRefPubMedCentralGoogle Scholar
  434. Yoo, J., Sanoj Rejinold, N., Lee, D., Jon, S., & Kim, Y. C. (2017). Protease-activatable cell-penetrating peptide possessing ROS-triggered phase transition for enhanced cancer therapy. Journal of Control Release, 264, 89–101.CrossRefGoogle Scholar
  435. Yoon, J. Y., Yang, K. J., Park, S. N., Kim, D. K., & Kim, J. D. (2016). The effect of dexamethasone/cell-penetrating peptide nanoparticles on gene delivery for inner ear therapy. International Journal Nanomedicine, 11, 6123–6134.CrossRefGoogle Scholar
  436. Youn, P., Chen, Y., & Furgeson, D. Y. (2014). A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Molecular Pharmaceutics, 11, 486–495.PubMedPubMedCentralCrossRefGoogle Scholar
  437. Yu, J., Sun, L., Zhou, J., Gao, L., Nan, L., Zhao, S., et al. (2017a). Self-assembled tumor-penetrating peptide-modified poly(l-gamma-glutamylglutamine)-paclitaxel nanoparticles based on hydrophobic interaction for the treatment of glioblastoma. Bioconjugate Chemistry, 28, 2823–2831.PubMedCrossRefPubMedCentralGoogle Scholar
  438. Yu, Q., Zhang, B., Li, J., & Li, M. (2017b). The design of peptide-grafted graphene oxide targeting the actin cytoskeleton for efficient cancer therapy. Chemical Communications (Cambridge, England), 53, 11433–11436.CrossRefGoogle Scholar
  439. Zakeri-Milani, P., Mussa Farkhani, S., Shirani, A., Mohammadi, S., Shahbazi Mojarrad, J., Akbari, J., et al. (2017). Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. EXCLI journal, 16, 650–662.PubMedPubMedCentralGoogle Scholar
  440. Zhai, X. H., Liu, M., Guo, X. J., Wang, S. C., Zhang, H. X., & Guo, Y. M. (2011). SKOV-3 cell imaging by paramagnetic particles labeled with hairpin cell-penetrating peptides. Chinese Medical Journal (English), 124, 111–117.Google Scholar
  441. Zhang, X., Brossas, J. Y., Parizot, C., Zini, J. M., & Rebollo, A. (2018). Identification and characterization of novel enhanced cell penetrating peptides for anti-cancer cargo delivery. Oncotarget, 9, 5944–5957.PubMedPubMedCentralGoogle Scholar
  442. Zhang, L., & Cui, H. (2018). HAase-sensitive dual-targeting irinotecan liposomes enhance the therapeutic efficacy of lung cancer in animals. Nanotheranostics, 2, 280–294.PubMedPubMedCentralCrossRefGoogle Scholar
  443. Zhang, X. X., Eden, H. S., & Chen, X. (2012a). Peptides in cancer nanomedicine: Drug carriers, targeting ligands and protease substrates. Journal of Control Release, 159, 2–13.CrossRefGoogle Scholar
  444. Zhang, P., Gruber, A., Kasuda, S., Kimmelstiel, C., O’Callaghan, K., Cox, D. H., et al. (2012b). Suppression of arterial thrombosis without affecting hemostatic parameters with a cell-penetrating PAR1 pepducin. Circulation, 126, 83–91.PubMedPubMedCentralCrossRefGoogle Scholar
  445. Zhang, N., Huang, Y., Wu, F., Zhao, Y., Li, X., Shen, P., et al. (2016a). Codelivery of a miR-124 mimic and obatoclax by cholesterol-penetratin micelles simultaneously induces apoptosis and inhibits autophagic flux in breast cancer in vitro and in vivo. Molecular Pharmaceutics, 13, 2466–2483.PubMedCrossRefPubMedCentralGoogle Scholar
  446. Zhang, Z., Luo, Z., Min, W., Zhang, L., Wu, Y., & Hu, X. (2017a). An anti-cancer WxxxE-containing azurin polypeptide inhibits Rac1-dependent STAT3 and ERK/GSK-3beta signaling in breast cancer cells. Oncotarget, 8, 43091–43103.PubMedPubMedCentralGoogle Scholar
  447. Zhang, W., Ren, H., Xu, C., Zhu, C., Wu, H., Liu, D., et al. (2016b). Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. Elife, 5, e21407.PubMedPubMedCentralCrossRefGoogle Scholar
  448. Zhang, Y. E., Wang, J. N., Tang, J. M., Guo, L. Y., Yang, J. Y., Huang, Y. Z., et al. (2009). In vivo protein transduction: Delivery of PEP-1-SOD1 fusion protein into myocardium efficiently protects against ischemic insult. Molecules and Cells, 27, 159–166.PubMedCrossRefPubMedCentralGoogle Scholar
  449. Zhang, T., Wu, K., Ding, C., Sun, K., Guan, Z., Wang, X., et al. (2015a). Inhibiting bladder tumor growth with a cell penetrating R11 peptide derived from the p53 C-terminus. Oncotarget, 6, 37782–37791.PubMedPubMedCentralGoogle Scholar
  450. Zhang, L., Xing, Y., Gao, Q., Sun, X., Zhang, D., & Cao, G. (2017b). Combination of NRP1-mediated iRGD with 5-fluorouracil suppresses proliferation, migration and invasion of gastric cancer cells. Biomedicine & Pharmacotherapy, 93, 1136–1143.CrossRefGoogle Scholar
  451. Zhang, B., Zhang, Y., Liao, Z., Jiang, T., Zhao, J., Tuo, Y., et al. (2015b). UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials, 36, 98–109.PubMedCrossRefPubMedCentralGoogle Scholar
  452. Zhang, L., Zhang, Y., Tai, L., Jiang, K., Xie, C., Li, Z., et al. (2016c). Functionalized cell nucleus-penetrating peptide combined with doxorubicin for synergistic treatment of glioma. Acta Biomaterialia, 42, 90–101.PubMedCrossRefPubMedCentralGoogle Scholar
  453. Zhang, D. D., Zou, M. J., Zhang, Y. T., Fu, W. L., Xu, T., Wang, J. X., et al. (2017c). A novel IL-1RA-PEP fusion protein with enhanced brain penetration ameliorates cerebral ischemia-reperfusion injury by inhibition of oxidative stress and neuroinflammation. Experimental Neurology, 297, 1–13.PubMedCrossRefGoogle Scholar
  454. Zhao, C., Tong, Y., Li, X., Shao, L., Chen, L., Lu, J., et al. (2018). Photosensitive nanoparticles combining vascular-independent intratumor distribution and on-demand oxygen-depot delivery for enhanced cancer photodynamic therapy. Small, 14, 1703045.CrossRefGoogle Scholar
  455. Zhou, N., Wu, J., Qin, Y. Y., Zhao, X. L., Ding, Y., Sun, L. S., et al. (2017). Novel peptide MT23 for potent penetrating and selective targeting in mouse melanoma cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 120, 80–88.PubMedPubMedCentralCrossRefGoogle Scholar
  456. Zhu, W. L., Hahm, K. S., & Shin, S. Y. (2009). Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. Journal of Peptide Science, 15, 569–575.PubMedCrossRefPubMedCentralGoogle Scholar
  457. Zhu, Y., Jiang, Y., Meng, F., Deng, C., Cheng, R., Zhang, J., et al. (2018a). Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. Journal of Control Release, 278, 1–8.CrossRefGoogle Scholar
  458. Zhu, A., Sha, H., Su, S., Chen, F., Wei, J., Meng, F., et al. (2018b). Bispecific tumor-penetrating protein anti-EGFR-iRGD efficiently enhances the infiltration of lymphocytes in gastric cancer. American Journal of Cancer Research, 8, 91–105.PubMedPubMedCentralGoogle Scholar
  459. Zhu, W. L., & Shin, S. Y. (2009). Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. Journal of Peptide Science, 15, 345–352.PubMedPubMedCentralCrossRefGoogle Scholar
  460. Zhu, Y., Zhang, J., Meng, F., Deng, C., Cheng, R., Feijen, J., et al. (2017). cRGD/TAT dual-ligand reversibly cross-linked micelles loaded with docetaxel penetrate deeply into tumor tissue and show high antitumor efficacy in vivo. ACS Applied Materials & Interfaces, 9, 35651–35663.CrossRefGoogle Scholar
  461. Zhu, L., Zhao, H., Zhou, Z., Xia, Y., Wang, Z., Ran, H., et al. (2018c). Peptide-functionalized phase-transformation nanoparticles for low intensity focused ultrasound-assisted tumor imaging and therapy. Nano Letters, 18, 1831–1841.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ülo Langel
    • 1
    • 2
  1. 1.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
  2. 2.Institute of TechnologyUniversity of TartuTartuEstonia

Personalised recommendations