• Ülo LangelEmail author


The genesis of cell-penetrating peptide research (CPP; also known as protein/peptide transduction domains, PTD, or Trojan peptides) was born from the publication of two parallel landmark reports on an HIV tat trans-activator protein, now widely known to epitomise membrane shuttling proteins (but not to be confused with the shuttling proteins cycling back and forth through the nuclear pore complex).


CPP Cell-penetrating peptide Peptide Shuttling Translocation 


  1. Adachi, Y., Sakamoto, K., Umemoto, T., Fukuda, Y., Tani, A., & Asami, T. (2017). Investigation on cellular uptake and pharmacodynamics of DOCK2-inhibitory peptides conjugated with cell-penetrating peptides. Bioorganic & Medicinal Chemistry, 25, 2148–2155.CrossRefGoogle Scholar
  2. Akishiba, M., Takeuchi, T., Kawaguchi, Y., Sakamoto, K., Yu, H. H., Nakase, I., et al. (2017). Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nature Chemistry, 9, 751–761.PubMedCrossRefGoogle Scholar
  3. Alaybeyoglu, B., Uluocak, B. G., Akbulut, B. S., & Ozkirimli, E. (2017). The effect of a beta-lactamase inhibitor peptide on bacterial membrane structure and integrity: A comparative study. Journal of Peptide Science, 23, 374–383.PubMedCrossRefGoogle Scholar
  4. Alberici, L., Roth, L., Sugahara, K. N., Agemy, L., Kotamraju, V. R., Teesalu, T., et al. (2013). De novo design of a tumor-penetrating peptide. Cancer Research, 73, 804–812.PubMedPubMedCentralGoogle Scholar
  5. Alexander-Bryant, A. A., Dumitriu, A., Attaway, C. C., Yu, H., & Jakymiw, A. (2015). Fusogenic-oligoarginine peptide-mediated silencing of the CIP2A oncogene suppresses oral cancer tumor growth in vivo. Journal of Controlled Release: Official Journal of the Controlled Release Society, 218, 72–81.CrossRefGoogle Scholar
  6. Alhakamy, N. A., Kaviratna, A., Berkland, C. J., & Dhar, P. (2013). Dynamic measurements of membrane insertion potential of synthetic cell penetrating peptides. Langmuir: The ACS Journal of Surfaces and Colloids, 29, 15336–15349.CrossRefGoogle Scholar
  7. Alta, R. Y. P., Vitorino, H. A., Goswami, D., Liria, C. W., Wisnovsky, S. P., Kelley, S. O., et al. (2017). Mitochondria-penetrating peptides conjugated to desferrioxamine as chelators for mitochondrial labile iron. PLoS ONE, 12, e0171729.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Andreev, O. A., Engelman, D. M., & Reshetnyak, Y. K. (2010). pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Molecular Membrane Biology, 27, 341–352.PubMedPubMedCentralGoogle Scholar
  9. Antunes, E., Azoia, N. G., Matama, T., Gomes, A. C., & Cavaco-Paulo, A. (2013). The activity of LE10 peptide on biological membranes using molecular dynamics, in vitro and in vivo studies. Colloids and Surfaces B, Biointerfaces, 106, 240–247.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Arukuusk, P., Pärnaste, L., Oskolkov, N., Copolovici, D. M., Margus, H., Padari, K., et al. (2013). New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochimica et Biophysica Acta, 1828, 1365–1373.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bae, H. D., Lee, J., Jin, X. H., & Lee, K. (2016). Potential of translationally controlled tumor protein-derived protein transduction domains as antigen carriers for nasal vaccine delivery. Molecular Pharmaceutics, 13, 3196–3205.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bahnsen, J. S., Franzyk, H., Sayers, E. J., Jones, A. T., & Nielsen, H. M. (2015). Cell-penetrating antimicrobial peptides—prospectives for targeting intracellular infections. Pharmaceutical Research, 32, 1546–1556.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bang, J. Y., Kim, E. Y., Kang, D. K., Chang, S. I., Han, M. H., Baek, K. H., et al. (2011). Pharmacoproteomic analysis of a novel cell-permeable peptide inhibitor of tumor-induced angiogenesis. Molecular & Cellular Proteomics: MCP, 10(M110), 005264.PubMedPubMedCentralGoogle Scholar
  14. Bartlett 2ND, R. L., Sharma, S., & Panitch, A. (2013). Cell-penetrating peptides released from thermosensitive nanoparticles suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants. Nanomedicine: Nanotechnology, Biology, and Medicine, 9, 419–427.Google Scholar
  15. Basu, S., & Wickstrom, E. (1997). Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjugate Chemistry, 8, 481–488.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bechara, C., Pallerla, M., Zaltsman, Y., Burlina, F., Alves, I. D., Lequin, O., et al. (2013). Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 27, 738–749.CrossRefGoogle Scholar
  17. Bera, S., Kar, R. K., Mondal, S., Pahan, K., & Bhunia, A. (2016). Structural elucidation of the cell-penetrating penetratin peptide in model membranes at the atomic level: Probing hydrophobic interactions in the blood-brain barrier. Biochemistry, 55, 4982–4996.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bergmann, R., Splith, K., Pietzsch, J., Bachmann, M., & Neundorf, I. (2017). Biological characterization of novel nitroimidazole-peptide conjugates in vitro and in vivo. Journal of Peptide Science, 23, 597–609.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Betts, C., Saleh, A. F., Arzumanov, A. A., Hammond, S. M., Godfrey, C., Coursindel, T., et al. (2012). Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Molecular Therapy—Nucleic Acids, 1, e38.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bi, X., Wang, C., Dong, W., Zhu, W., & Shang, D. (2014). Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. The Journal of Antibiotics, 67, 361–368.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bonny, C., Oberson, A., Negri, S., Sauser, C., & Schorderet, D. F. (2001). Cell-permeable peptide inhibitors of JNK: Novel blockers of beta-cell death. Diabetes, 50, 77–82.PubMedCrossRefGoogle Scholar
  22. Brezden, A., Mohamed, M. F., Nepal, M., Harwood, J. S., Kuriakose, J., Seleem, M. N., et al. (2016). Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of Kanamycin and an antibacterial cell-penetrating Peptide. Journal of the American Chemical Society, 138, 10945–10949.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Camarero, J. A. (2017). Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications. Bioorganic & Medicinal Chemistry Letters, 27, 5089–5099.CrossRefGoogle Scholar
  24. Cao, X. W., Yang, X. Z., Du, X., Fu, L. Y., Zhang, T. Z., Shan, H. W., et al. (2018). Structure optimization to improve the delivery efficiency and cell selectivity of a tumor-targeting cell-penetrating peptide. Journal of Drug Targeting, 1–28.Google Scholar
  25. Cerrato, C. P., Pirisinu, M., Vlachos, E. N., & Langel, Ü. (2015). Novel cell-penetrating peptide targeting mitochondria. FASEB Journal, 29, 4589–4599.CrossRefGoogle Scholar
  26. Chee, S. M., Wongsantichon, J., Soo Tng, Q., Robinson, R., Joseph, T. L., Verma, C., et al. (2014). Structure of a stapled peptide antagonist bound to nutlin-resistant Mdm2. PLoS One, 9, e104914.Google Scholar
  27. Chen, H., Li, X., Liu, F., Zhang, H., & Wang, Z. (2017a). Renal Clearable peptide functionalized NaGdF4 nanodots for high-efficiency tracking orthotopic colorectal tumor in mouse. Molecular Pharmaceutics, 14, 3134–3141.PubMedCrossRefGoogle Scholar
  28. Chen, G., Ma, B., Xie, R., Wang, Y., Dou, K., & Gong, S. (2017a). NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier. Journal of Controlled Release.Google Scholar
  29. Chen, Y., Shen, Y., Guo, X., Zhang, C., Yang, W., Ma, M., et al. (2006). Transdermal protein delivery by a coadministered peptide identified via phage display. Nature Biotechnology, 24, 455–460.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chen, Y., Zhang, M., Jin, H., Tang, Y., Wang, H., Xu, Q., et al. (2017c). Intein-mediated site-specific synthesis of tumor-targeting protein delivery system: Turning PEG dilemma into prodrug-like feature. Biomaterials, 116, 57–68.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chen, L., Zhang, Q., Yuan, X., Cao, Y., Yuan, Y., Yin, H., et al. (2017d). How charge distribution influences the function of membrane-active peptides: Lytic or cell-penetrating? The International Journal of Biochemistry & Cell Biology, 83, 71–75.CrossRefGoogle Scholar
  32. Chopra, A. (2012). LTVSPWY peptide-modified PEGylated chitosan magnetic nanoparticles. Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD).Google Scholar
  33. Chuah, J. A., Matsugami, A., Hayashi, F., & Numata, K. (2016). Self-assembled peptide-based system for mitochondrial-targeted gene delivery: Functional and structural insights. Biomacromolecules, 17, 3547–3557.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chuah, J. A., Yoshizumi, T., Kodama, Y., & Numata, K. (2015a). Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Scientific Reports, 5, 7751.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chuah, J. A., Yoshizumi, T., Kodama, Y., & Numata, K. (2015b). Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Scientific Reports, 5, 7751.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Collado Camps, E., & Brock, R. (2017). An opportunistic route to success: Towards a change of paradigm to fully exploit the potential of cell-penetrating peptides. Bioorganic & Medicinal Chemistry.Google Scholar
  37. Conlon, J. M., Mechkarska, M., Prajeep, M., Arafat, K., Zaric, M., Lukic, M. L., et al. (2013). Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids, 44, 715–723.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Crombez, L., Aldrian-Herrada, G., Konate, K., Nguyen, Q. N., McMaster, G. K., Brasseur, R., et al. (2009a). A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Molecular Therapy, 17, 95–103.CrossRefGoogle Scholar
  39. Crombez, L., Morris, M. C., Dufort, S., Aldrian-Herrada, G., Nguyen, Q., Mc Master, G., et al. (2009b). Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Research, 37, 4559–4569.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Daly, N. L., Love, S., Alewood, P. F., & Craik, D. J. (1999). Chemical synthesis and folding pathways of large cyclic polypeptides: Studies of the cystine knot polypeptide kalata B1. Biochemistry, 38, 10606–10614.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dasari, B. C., Cashman, S. M., & Kumar-Singh, R. (2017). Reducible PEG-POD/DNA Nanoparticles for gene transfer in vitro and in vivo: Application in a mouse model of age-related macular degeneration. Molecular Therapy—Nucleic Acids, 8, 77–89.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Datta, G., Chaddha, M., Garber, D. W., Chung, B. H., Tytler, E. M., Dashti, N., et al. (2000). The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts. Biochemistry, 39, 213–220.PubMedPubMedCentralCrossRefGoogle Scholar
  43. de Coupade, C., Fittipaldi, A., Chagnas, V., Michel, M., Carlier, S., Tasciotti, E., et al. (2005). Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. The Biochemical Journal, 390, 407–418.PubMedPubMedCentralCrossRefGoogle Scholar
  44. de la Torre, C., Dominguez-Berrocal, L., Murguia, J. R., Marcos, M. D., Martinez-Manez, R., Bravo, J., et al. (2017). Polylysine-capped mesoporous silica nanoparticles as carrier of the C9h peptide to induce apoptosis in cancer cells. Chemistry.Google Scholar
  45. Demeule, M., Regina, A., Che, C., Poirier, J., Nguyen, T., Gabathuler, R., et al. (2008). Identification and design of peptides as a new drug delivery system for the brain. The Journal of Pharmacology and Experimental Therapeutics, 324, 1064–1072.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Derossi, D., Joliot, A. H., Chassaing, G., & Prochiantz, A. (1994). The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 269, 10444–10450.PubMedPubMedCentralGoogle Scholar
  47. Derouazi, M., Di Berardino-Besson, W., Belnoue, E., Hoepner, S., Walther, R., Benkhoucha, M., et al. (2015). Novel Cell-penetrating peptide-based vaccine induces robust CD4+ and CD8+ T Cell-mediated antitumor immunity. Cancer Research, 75, 3020–3031.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Desai, P. R., Cormier, A. R., Shah, P. P., Patlolla, R. R., Paravastu, A. K., & Singh, M. (2014). (31)P solid-state NMR based monitoring of permeation of cell penetrating peptides into skin. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 86, 190–199.Google Scholar
  49. Deshayes, S., Morris, M. C., Divita, G., & Heitz, F. (2005). Interactions of primary amphipathic cell penetrating peptides with model membranes: Consequences on the mechanisms of intracellular delivery of therapeutics. Current Pharmaceutical Design, 11, 3629–3638.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Dias, S. A., Freire, J. M., Perez-Peinado, C., Domingues, M. M., Gaspar, D., Vale, N., et al. (2017). New potent membrane-targeting antibacterial peptides from viral capsid proteins. Frontiers in Microbiology, 8, 775.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dietrich, L., Rathmer, B., Ewan, K., Bange, T., Heinrichs, S., Dale, T. C., et al. (2017). Cell permeable stapled peptide inhibitor of WNT signaling that targets beta-catenin protein-protein interactions. Cell Chemical Biology, 24, 958–968.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Dixon, J. E., Osman, G., Morris, G. E., Markides, H., Rotherham, M., Bayoussef, Z., et al. (2016). Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 113, 5.CrossRefGoogle Scholar
  53. Dong, H., Zhang, Y., Song, L., Kim, D. S., Wu, H., Yang, L., et al. (2016). Cell-permeable peptide blocks TLR4 Signaling and Improves Islet Allograft Survival. Cell Transplantation, 25, 1319–1329.PubMedCrossRefGoogle Scholar
  54. Duchardt, F., Ruttekolk, I. R., Verdurmen, W. P., Lortat-Jacob, H., Burck, J., Hufnagel, H., et al. (2009). A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. The Journal of Biological Chemistry, 284, 36099–36108.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Eggenberger, K., Birtalan, E., Schroder, T., Brase, S., & Nick, P. (2009). Passage of Trojan peptoids into plant cells. Chembiochem: A European Journal of Chemical Biology, 10, 2504–2512.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ehrenreich, B. A., & Cohn, Z. A. (1969). The fate of peptides pinocytosed by macrophages in vitro. Journal of Experimental Medicine, 129, 227–245.PubMedCrossRefPubMedCentralGoogle Scholar
  57. El-Andaloussi, S., Johansson, H. J., Holm, T., & Langel, Ü. (2007). A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Molecular Therapy: The Journal of the American Society of Gene Therapy, 15, 1820–1826.CrossRefGoogle Scholar
  58. EL-andaloussi, S., Lehto, T., Mäger, I., Rosenthal-Aizman, K., Oprea, I.I., Simonson, O. E., et al. (2011). Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 39, 3972–3987.CrossRefGoogle Scholar
  59. Elliott, G., & O’Hare, P. (1997). Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 88, 223–233.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Elmquist, A., Lindgren, M., Bartfai, T., & Langel, Ü. (2001). VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Experimental Cell Research, 269, 237–244.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Esbjörner, E. K., Oglȩcka, K., Lincoln, P., Gräslund, A., & Nordén, B. (2007). Membrane binding of pH-sensitive influenza fusion peptides. Positioning, configuration, and induced leakage in a lipid vesicle Model†. Biochemistry, 46, 13490–13504.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Eudes, F., & Macmillan, T. (2014). Organelle Targeting Nanocarriers. Google Patents.Google Scholar
  63. Ezzat, K., Andaloussi, S. E., Zaghloul, E. M., Lehto, T., Lindberg, S., Moreno, P. M., et al. (2011). PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Research, 39, 5284–5298.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fan, L. Q., Du, G. X., Li, P. F., Li, M. W., Sun, Y., & Zhao, L. M. (2016). Improved breast cancer cell-specific intracellular drug delivery and therapeutic efficacy by coupling decoration with cell penetrating peptide and SP90 peptide. Biomedicine & pharmacotherapy = Biomedecine & Pharmacotherapie, 84, 1783–1791.Google Scholar
  65. Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L. L., Pepinsky, B., et al. (1994). Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences of the United States of America, 91, 664–668.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fernandez Masso, J. R., Oliva Arguelles, B., Tejeda, Y., Astrada, S., Garay, H., Reyes, O., et al. (2013). The antitumor peptide CIGB-552 increases COMMD1 and inhibits growth of human lung cancer cells. Journal of Amino Acids, 2013, 251398.Google Scholar
  67. Fletcher, T. C., Digiandomenico, A., & Hawiger, J. (2010). Extended anti-inflammatory action of a degradation-resistant mutant of cell-penetrating suppressor of cytokine signaling 3. The Journal of Biological Chemistry, 285, 18727–18736.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fogal, V., Zhang, L., Krajewski, S., & Ruoslahti, E. (2008). Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Research, 68, 7210–7218.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Frankel, A. D., & Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55, 1189–1193.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Freimann, K., Arukuusk, K., Kurrikoff, K., Vasconselos, L. D. F., Veiman, K.-L., Uusna, J., et al. (2016). Optimization of in vivo pDNA gene delivery with NickFect peptide vectors. Jouranal of Controlled Release, 241, 135–143.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Freire, J. M., Veiga, A. S., Rego de Figueiredo, I., de la Torre, B. G., Santos, N. C., Andreu, D., et al. (2014). Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: Design and mechanism of action. The FEBS Journal, 281, 191–215.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Fu, L. S., Wu, Y. R., Fang, S. L., Tsai, J. J., Lin, H. K., Chen, Y. J., et al. (2017). Cell Penetrating Peptide Derived from Human Eosinophil Cationic Protein Decreases Airway Allergic Inflammation. Sci Rep, 7, 12352.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Fuselier, T., & Wimley, W. C. (2017). Spontaneous Membrane Translocating Peptides: The Role of Leucine-Arginine Consensus Motifs. Biophysical Journal, 113, 835–846.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Futaki, S. (2006). Oligoarginine vectors for intracellular delivery: Design and cellular-uptake mechanisms. Biopolymers, 84, 241–249.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Galdiero, S., Falanga, A., Morelli, G., & Galdiero, M. (2015). gH625: A milestone in understanding the many roles of membranotropic peptides. Biochimica et Biophysica Acta, 1, 16–25.CrossRefGoogle Scholar
  76. Gautam, A., Nanda, J. S., Samuel, J. S., Kumari, M., Priyanka, P., Bedi, G., et al. (2016). Topical Delivery of Protein and Peptide Using Novel Cell Penetrating Peptide IMT-P8. Scientific Reports, 6.Google Scholar
  77. Gehrmann, M., Stangl, S., Foulds, G. A., Oellinger, R., Breuninger, S., Rad, R., et al. (2014). Tumor imaging and targeting potential of an Hsp70-derived 14-mer peptide. PLoS ONE, 9, e105344.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gennari, C. G., Franze, S., Pellegrino, S., Corsini, E., Vistoli, G., Montanari, L., et al. (2016). Skin Penetrating peptide as a tool to enhance the permeation of heparin through human epidermis. Biomacromolecules, 17, 46–55.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Goldfarb, D. S. (1991). Shuttling proteins go both ways. Current Biology, 1, 212–214.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Gomarasca, M., T, F. C. M., Greune, L., Hardwidge, P. R., SCHMIDT, M. A. & RUTER, C. 2017. Bacterium-derived cell-penetrating peptides deliver gentamicin to kill intracellular pathogens. Antimicrobial Agents and Chemotherapy, 61.Google Scholar
  81. Gong, Z., Walls, M. T., Karley, A. N., & Karlsson, A. J. (2016). Effect of a flexible linker on recombinant expression of cell-penetrating peptide fusion proteins and their translocation into fungal cells. Molecular Biotechnology, 58, 838–849.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Gopalakrishnan, S., Pandey, N., Tamiz, A. P., Vere, J., Carrasco, R., Somerville, R., et al. (2009). Mechanism of action of ZOT-derived peptide AT-1002, a tight junction regulator and absorption enhancer. International Journal of Pharmaceutics, 365, 121–130.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Green, M., & Loewenstein, P. M. (1988). Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 55, 1179–1188.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Greer, K. L., Lochmuller, H., Flanigan, K., Fletcher, S., & Wilton, S. D. (2014). Targeted exon skipping to correct exon duplications in the dystrophin gene. Molecular Therapy. Nucleic Acids, 3, e155.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Griffin, J. I., Cheng, S. K. K., Hayashi, T., Carson, D., Saraswathy, M., Nair, D. P., et al. (2017). Cell-penetrating peptide CGKRK mediates efficient and widespread targeting of bladder mucosa following focal injury. Nanomedicine, 13, 1925–1932.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gronewold, A., Horn, M., Randelovic, I., Tovari, J., Munoz Vazquez, S., et al. (2017). Characterization of a cell-penetrating peptide with potential anticancer activity. ChemMedChem, 12, 42–49.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Guilhelmelli, F., Vilela, N., Albuquerque, P., Derengowski, L. D. S., & Kyaw, C. M. (2013). Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of becterial resistance. Frontiers in Microbiology, 4, article 353, 1–12.Google Scholar
  88. Gupta, A., Mandal, D., Ahmadibeni, Y., Parang, K., & Bothun, G. (2011). Hydrophobicity drives the cellular uptake of short cationic peptide ligands. European Biophysics Journal: EBJ, 40, 727–736.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Haidar, M., Latre de Late, P., Kennedy, E. J., & Langsley, G. (2017). Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria-transformed leukocytes. Bioorganic & Medicinal Chemistry.Google Scholar
  90. Heffernan, C., Sumer, H., Guillemin, G. J., Manuelpillai, U., & Verma, P. J. (2012). Design and screening of a glial cell-specific, cell penetrating peptide for therapeutic applications in multiple sclerosis. PLoS ONE, 7, e45501.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Howl, J., Howl, L., & Jones, S. (2018). The cationic tetradecapeptide mastoparan as a privileged structure for drug discovery: Enhanced antimicrobial properties of mitoparan analogues modified at position-14. Peptides, 101, 95–105.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Howl, J., & Jones, S. (2015). Cell penetrating peptide-mediated transport enables the regulated secretion of accumulated cargoes from mast cells. Journal of Controlled Release: Official journal of the Controlled Release Society, 202, 108–117.CrossRefGoogle Scholar
  93. Hsu, T., & Mitragotri, S. (2011). Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proceedings of the National Academy of Sciences of the United States of America, 108, 15816–15821.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hu, Q., Chen, R., Teesalu, T., Ruoslahti, E., & Clegg, D. O. (2014). Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Translational Medicine, 3, 1526–1534.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Huang, Y. H., Chaousis, S., Cheneval, O., Craik, D. J., & Henriques, S. T. (2015). Optimization of the cyclotide framework to improve cell penetration properties. Frontiers in Pharmacology, 6, 17.PubMedPubMedCentralGoogle Scholar
  96. Huang, Y., Li, X., Sha, H., Zhang, L., Bian, X., Han, X., et al. (2017). Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy. Oncology Reports, 37, 2063–2070.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hunt, H., Simon-Gracia, L., Tobi, A., Kotamraju, V. R., Sharma, S., Nigul, M., et al. (2017). Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. Journal of Controlled Release: Official Journal of the Controlled Release Society, 260, 142–153.CrossRefGoogle Scholar
  98. Hyvonen, M., Enbäck, J., Huhtala, T., Lammi, J., Sihto, H., Weisell, J., et al. (2014). Novel target for peptide-based imaging and treatment of brain tumors. Molecular Cancer Therapeutics, 13, 996–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Im, J., Das, S., Jeong, D., Kim, C. J., Lim, H. S., Kim, K. H., et al. (2017). Intracellular and transdermal protein delivery mediated by non-covalent interactions with a synthetic guanidine-rich molecular carrier. International Journal of Pharmaceutics, 528, 646–654.PubMedCrossRefGoogle Scholar
  100. Issaeva, N., Friedler, A., Bozko, P., Wiman, K. G., Fersht, A. R., & Selivanova, G. (2003). Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proceedings of the National Academy of Sciences of the United States of America, 100, 13303–13307.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ivanova, G. D., Arzumanov, A., Abes, R., Yin, H., Wood, M. J., Lebleu, B., et al. (2008). Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Research, 36, 6418–6428.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Iwasaki, T., Tokuda, Y., Kotake, A., Okada, H., Takeda, S., Kawano, T., et al. (2015). Cellular uptake and in vivo distribution of polyhistidine peptides. Journal of controlled release: Official Journal of the Controlled Release Society, 210, 115–124.CrossRefGoogle Scholar
  103. Jafari, M., Xu, W., Pan, R., Sweeting, C. M., Karunaratne, D. N., & Chen, P. (2014). Serum stability and physicochemical characterization of a novel amphipathic peptide C6M1 for siRNA delivery. PLoS ONE, 9, e97797.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Jagot-Lacoussiere, L., Kotula, E., Villoutreix, B. O., Bruzzoni-Giovanelli, H., & Poyet, J. L. (2016). A cell-penetrating peptide targeting AAC-11 specifically induces cancer cells death. Cancer Research, 76, 5479–5490.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Jain, A., & Chugh, A. (2016). Mitochondrial transit peptide exhibits cell penetration ability and efficiently delivers macromolecules to mitochondria. FEBS Letters, 590, 2896–2905.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Jain, A., Yadav, B. K., & Chugh, A. (2015). Marine antimicrobial peptide tachyplesin as an efficient nanocarrier for macromolecule delivery in plant and mammalian cells. The FEBS Journal, 282, 732–745.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Jeong, J. H., Kim, K., Lim, D., Jeong, K., Hong, Y., Nguyen, V. H., et al. (2014). Anti-tumoral effect of the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLoS ONE, 9, e80050.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Joanne, P., Galanth, C., Goasdoue, N., Nicolas, P., Sagan, S., Lavielle, S., et al. (2009). Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochimica et Biophysica Acta, 1788, 1772–1781.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Jobin, M. L., Bonnafous, P., Temsamani, H., Dole, F., Grelard, A., Dufourc, E. J., et al. (2013). The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: Toward an understanding of its selectivity for cancer cells. Biochimica et Biophysica Acta, 1828, 1457–1470.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Johansson, H. J., El-Andaloussi, S., Holm, T., Mae, M., Janes, J., Maimets, T., et al. (2008). Characterization of a novel cytotoxic cell-penetrating peptide derived from p14ARF protein. Molecular Therapy, 16, 115–123.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Joliot, A., Pernelle, C., Deagostini-Bazin, H., & Prochiantz, A. (1991). Antennapedia homeobox peptide regulates neural morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 88, 1864–1868.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Joliot, A., & Prochiantz, A. (2008). Homeoproteins as natural Penetratin cargoes with signaling properties. Advanced Drug Delivery Reviews, 60, 608–613.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Jones, S., Farquhar, M., Martin, A., & Howl, J. (2005). Intracellular translocation of the decapeptide carboxyl terminal of Gi3 alpha induces the dual phosphorylation of p42/p44 MAP kinases. Biochimica et Biophysica Acta, 1745, 207–214.CrossRefGoogle Scholar
  114. Jung, M. R., Shim, I. K., Kim, E. S., Park, Y. J., Yang, Y. I., Lee, S. K., et al. (2011). Controlled release of cell-permeable gene complex from poly(l-lactide) scaffold for enhanced stem cell tissue engineering. Journal of Controlled Release: Official Journal of the Controlled Release Society, 152, 294–302.CrossRefGoogle Scholar
  115. Khafagy EL, S., Iwamae, R., Kamei, N., & Takeda-Morishita, M. (2015). Region-dependent role of cell-penetrating peptides in insulin absorption across the rat small intestinal membrane. The AAPS journal, 17, 1427–1437.Google Scholar
  116. Kilk, K., Magzoub, M., Pooga, M., Eriksson, L. E., Langel, Ü., & Gräslund, A. (2001). Cellular internalization of a cargo complex with a novel peptide derived from the third helix of the islet-1 homeodomain. Comparison with the penetratin peptide. Bioconjugate Chemistry, 12, 911–916.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Kim, S., Hyun, S., Lee, Y., Lee, Y., & Yu, J. (2016a). Nonhemolytic cell-penetrating peptides: Site specific introduction of glutamine and lysine residues into the alpha-Helical peptide causes deletion of its direct membrane disrupting ability but retention of its cell penetrating ability. Biomacromolecules, 17, 3007–3015.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kim, H., Kitamatsu, M., & Ohtsuki, T. (2017). Enhanced intracellular peptide delivery by multivalent cell-penetrating peptide with bioreducible linkage. Bioorganic & Medicinal Chemistry Letters.Google Scholar
  119. Kim, Y., Lillo, A. M., Steiniger, S. C., Liu, Y., Ballatore, C., Anichini, A., et al. (2006). Targeting heat shock proteins on cancer cells: Selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry, 45, 9434–9444.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Kim, H., Seo, E. H., Lee, S. H., & Kim, B. J. (2016a). The telomerase-derived anticancer peptide vaccine GV1001 as an extracellular heat shock protein-mediated cell-penetrating peptide. International Journal of Molecular Sciences, 17.Google Scholar
  121. Kimura, S., Kawano, T., & Iwasaki, T. (2017). Short polyhistidine peptides penetrate effectively into Nicotiana tabacum-cultured cells and Saccharomyces cerevisiae cells. Bioscience, Biotechnology, and Biochemistry, 81, 112–118.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Kizaka-Kondoh, S., Itasaka, S., Zeng, L., Tanaka, S., Zhao, T., Takahashi, Y., et al. (2009). Selective killing of hypoxia-inducible factor-1-active cells improves survival in a mouse model of invasive and metastatic pancreatic cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15, 3433–3441.CrossRefGoogle Scholar
  123. Kochurani, K. J., Suganya, A. A., Nair, M. G., Louis, J. M., Majumder, A., Kumar, S. K., et al. (2015). Live detection and purification of cells based on the expression of a histone chaperone, HIRA, using a binding peptide. Scientific Reports, 5.Google Scholar
  124. Kondo, E., Saito, K., Tashiro, Y., Kamide, K., Uno, S., Furuya, T., et al. (2012). Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nature Communications, 3, 951.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Kumar, S., Sahdev, P., Perumal, O., & Tummala, H. (2012). Identification of a novel skin penetration enhancement peptide by phage display peptide library screening. Molecular Pharmaceutics, 9, 1320–1330.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Kumar, P., Wu, H., McBride, J. L., Jung, K. E., Kim, M. H., Davidson, B. L., et al. (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nature, 448, 39–43.PubMedCrossRefGoogle Scholar
  127. Kumar, S., Zakrewsky, M., Chen, M., Menegatti, S., Muraski, J. A., & Mitragotri, S. (2015). Peptides as skin penetration enhancers: Mechanisms of action. Journal of controlled release: Official Journal of the Controlled Release Society, 199, 168–178.CrossRefGoogle Scholar
  128. Langel, Ü. (2015). Cell penetrating peptides. Methods and protocols. In Methods in molecular biology (2nd ed., p. 1324). New York: Humana Press.Google Scholar
  129. Layalle, S., Volovitch, M., Mugat, B., Bonneaud, N., Parmentier, M. L., Prochiantz, A., et al. (2011). Engrailed homeoprotein acts as a signaling molecule in the developing fly. Development, 138, 2315–2323.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Lee, J., Kennedy, P., & Waugh, J. M. (2015a). Experiences with CPP-based self assembling peptide systems for topical delivery of botulinum toxin. Methods in Molecular Biology, 2806–4_27.Google Scholar
  131. Lee, H. S., Park, C. B., Kim, J. M., Jang, S. A., Park, I. Y., Kim, M. S., et al. (2008). Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Letters, 271, 47–55.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Lee, J. Y., Suh, J. S., Kim, J. M., Kim, J. H., Park, H. J., Park, Y. J., et al. (2015b). Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity. International Journal of Nanomedicine, 10, 5423–5434.PubMedPubMedCentralGoogle Scholar
  133. Lehto, T., Castillo Alvarez, A., Gauck, S., Gait, M. J., Coursindel, T., Wood, M. J., et al. (2014). Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Research, 42, 3207–3217.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Lemeshko, V. V. (2013). Electrical potentiation of the membrane permeabilization by new peptides with anticancer properties. Biochimica et Biophysica Acta, 1828, 1047–1056.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Lewis, H. D., Husain, A., Donnelly, R. J., Barlos, D., Riaz, S., Ginjupalli, K., et al. (2010). Creation of a novel peptide with enhanced nuclear localization in prostate and pancreatic cancer cell lines. BMC Biotechnology, 10, 79.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Li, S. Y., Cheng, H., Qiu, W. X., Liu, L. H., Chen, S., Hu, Y., et al. (2015). Protease-activable cell-penetrating peptide-protoporphyrin conjugate for targeted photodynamic therapy in vivo. ACS Applied Materials & Interfaces, 7, 28319–28329.CrossRefGoogle Scholar
  137. Li, L., Geisler, I., Chmielewski, J., & Cheng, J. X. (2010). Cationic amphiphilic polyproline helix P11LRR targets intracellular mitochondria. Journal of Controlled Release: Official Journal of the Controlled Release Society, 142, 259–266.CrossRefGoogle Scholar
  138. Li, W., Nicol, F., & Szoka Jr., F. C. (2004). GALA: A designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Advanced Drug Delivery Reviews, 56, 967–985.Google Scholar
  139. Lim, J., Kim, J., Kang, J., & Jo, D. (2014). Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors. Scientific Reports, 4.Google Scholar
  140. Lim, S., Kim, W. J., Kim, Y. H., Lee, S., Koo, J. H., Lee, J. A., et al. (2015). dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nature Communications, 6, 8244.Google Scholar
  141. Lim, K. J., Sung, B. H., Shin, J. R., Lee, Y. W., Kim Da, J., Yang, K. S., et al. (2013). A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PloS One, 8, e66084.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Lin, Y. Z., Yao, S. Y., Veach, R. A., Torgerson, T. R., & Hawiger, J. (1995). Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. Journal of Biological Chemistry, 270, 14255–14258.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Lin, C., Zhang, X., Chen, H., Bian, Z., Zhang, G., Riaz, M. K., et al. (2018). Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Delivery, 25, 256–266.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Lindgren, M., Rosenthal-Aizman, K., Saar, K., Eiriksdottir, E., Jiang, Y., Sassian, M., et al. (2006). Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochemical Pharmacology, 71, 416–425.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Liu, M.-J., Chou, J.-C., & Lee, H.-J. (2013a). A gene delivery method mediated by three arginine-rich cell-penetrating peptides in plant cells. Advanced Studies in Biology, 5, 71–88.CrossRefGoogle Scholar
  146. Liu, M., Guo, Y. M., Wu, Q. F., Yang, J. L., Wang, P., Wang, S. C., et al. (2006). Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro. Biochemical and Biophysical Research Communications, 347, 133–140.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Liu, B. R., Huang, Y. W., Aronstam, R. S., & Lee, H. J. (2016a). Identification of a short cell-penetrating peptide from bovine lactoferricin for intracellular delivery of DNA in human A549 cells. PloS One, 11.Google Scholar
  148. Liu, Y., Mei, L., Xu, C., Yu, Q., Shi, K., Zhang, L., et al. (2016b). Dual receptor recognizing cell penetrating peptide for selective targeting, efficient intratumoral diffusion and synthesized anti-glioma therapy. Theranostics, 6, 177–191.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Liu, Y., Xia, X., Xu, L., & Wang, Y. (2013b). Design of hybrid beta-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials, 34, 237–250.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Lo, S. L., & Wang, S. (2012). Evaluation of the use of amphipathic peptide-based protein carrier for in vitro cancer research. Biochemical and Biophysical Research Communications, 419, 170–174.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Lopez-Garcia, B., Perez-Paya, E., & Marcos, J. F. (2002). Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Applied and Environmental Microbiology, 68, 2453–2460.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Lundberg, P., el Andaloussi, S., Sutlu, T., Johansson, H., & Langel, Ü. (2007). Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 21, 2664–2671.CrossRefGoogle Scholar
  153. Luo, Z., Cao, X. W., Li, C., Wu, M. D., Yang, X. Z., Zhao, J., et al. (2016). The heparin-binding domain of HB-EGF as an efficient cell-penetrating peptide for drug delivery. Journal of Peptide Science, 22, 689–699.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Luque-Ortega, J. R., Van’t Hof, W., Veerman, E. C., Saugar, J. M., & Rivas, L. (2008). Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 22, 1817–1828.Google Scholar
  155. Lv, M., Wang, M., Lu, K., Duan, B., & Zhao, Y. (2017). Non-covalent interaction between CA-TAT and calf thymus DNA: Deciphering the binding mode by in vitro studies. International Journal of Biological Macromolecules.Google Scholar
  156. Magzoub, M., Sandgren, S., Lundberg, P., Oglecka, K., Lilja, J., Wittrup, A., et al. (2006). N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochemical and Biophysical Research Communications, 348, 379–385.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Mann, A. P., Scodeller, P., Hussain, S., Braun, G. B., Molder, T., Toome, K., et al. (2017). Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer’s disease. Nature Communications, 8, 1403.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Mano, M., Henriques, A., Paiva, A., Prieto, M., Gavilanes, F., Simoes, S., et al. (2007). Interaction of S413-PV cell penetrating peptide with model membranes: Relevance to peptide translocation across biological membranes. Journal of peptide science: An Official Publication of the European Peptide Society, 13, 301–313.CrossRefGoogle Scholar
  159. Manosroi, J., Lohcharoenkal, W., Gotz, F., Werner, R. G., Manosroi, W., & Manosroi, A. (2014). Novel application of polioviral capsid: Development of a potent and prolonged oral calcitonin using polioviral binding ligand and Tat peptide. Drug Development and Industrial Pharmacy, 40, 1092–1100.PubMedCrossRefGoogle Scholar
  160. Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., et al. (2005). Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. The Journal of biological chemistry, 280, 26360–26370.PubMedCrossRefGoogle Scholar
  161. Marks, J. R., Placone, J., Hristova, K., & Wimley, W. C. (2011). Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. Journal of the American Chemical Society, 133, 8995–9004.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Martin, I., Teixido, M., & Giralt, E. (2011). Design, synthesis and characterization of a new anionic cell-penetrating peptide: SAP(E). ChemBioChem, 12, 896–903.PubMedCrossRefGoogle Scholar
  163. McCarthy, H. O., McCaffrey, J., McCrudden, C. M., Zholobenko, A., Ali, A. A., McBride, J. W., et al. (2014). Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 189, 141–149.CrossRefGoogle Scholar
  164. McCusker, C. T., Wang, Y., Shan, J., Kinyanjui, M. W., Villeneuve, A., Michael, H., et al. (2007). Inhibition of experimental allergic airways disease by local application of a cell-penetrating dominant-negative STAT-6 peptide. Journal of Immunology, 179, 2556–2564.CrossRefGoogle Scholar
  165. Miao, J., Guo, H., Chen, F., Zhao, L., He, L., Ou, Y., et al. (2016). Antibacterial effects of a cell-penetrating peptide isolated from kefir. Journal of Agriculture and Food Chemistry, 22, 22.Google Scholar
  166. Milosavljevic, V., Haddad, Y., Merlos Rodrigo, M. A., Moulick, A., Polanska, H., Hynek, D., et al. (2016). The Zinc-Schiff base-Novicidin complex as a potential prostate cancer therapy. PLoS One, 11, e0163983.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Mitchell, D. J., Kim, D. T., Steinman, L., Fathman, C. G., & Rothbard, J. B. (2000). Polyarginine enters cells more efficiently than other polycationic homopolymers. Journal of Peptide Research, 56, 318–325.CrossRefGoogle Scholar
  168. Montrose, K., Yang, Y., & Krissansen, G. W. (2014). The tetrapeptide core of the carrier peptide Xentry is cell-penetrating: Novel activatable forms of Xentry. Scientific Reports, 4, 4900.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., & Divita, G. (1997). A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Research, 25, 2730–2736.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Moulay, G., Leborgne, C., Mason, A. J., Aisenbrey, C., Kichler, A., & Bechinger, B. (2017). Histidine-rich designer peptides of the LAH4 family promote cell delivery of a multitude of cargo. Journal of Peptide Science, 23, 320–328.CrossRefGoogle Scholar
  171. Mousli, M., Bueb, J. L., Bronner, C., Rouot, B., & Landry, Y. (1990). G protein activation: A receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides [see comments]. Trends in Pharmacological Sciences, 11, 358–362.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Murayama, T., Pujals, S., Hirose, H., Nakase, I., & Futaki, S. (2016). Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: N-terminal helix derived from adenovirus internal protein VI as a model. Biopolymers, 106, 430–439.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Nakayama, F., Yasuda, T., Umeda, S., Asada, M., Imamura, T., Meineke, V., et al. (2011). Fibroblast growth factor-12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain: Involvement of internalization in the in vivo role of exogenous FGF12. The Journal of Biological Chemistry, 286, 25823–25834.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Nasrolahi Shirazi, A., Tiwari, R., Chhikara, B. S., Mandal, D., & Parang, K. (2013). Design and biological evaluation of cell-penetrating peptide-doxorubicin conjugates as prodrugs. Molecular Pharmaceutics, 10, 488–499.Google Scholar
  175. Neves-Coelho, S., Eleuterio, R. P., Enguita, F. J., Neves, V., & Castanho, M. (2017). A new noncanonical anionic peptide that translocates a cellular blood-brain barrier model. Molecules, 22.Google Scholar
  176. Nguyen, J., Xie, X., Neu, M., Dumitrascu, R., Reul, R., Sitterberg, J., et al. (2008). Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. The Journal of Gene Medicine, 10, 1236–1246.PubMedCrossRefPubMedCentralGoogle Scholar
  177. Niesner, U., Halin, C., Lozzi, L., Günthert, M., Neri, P., Wunderli-Allenspach, H., et al. (2002). Quantitation of the tumor-targeting properties of antibody fragments conjugated to cell-permeating HIV-1 TAT peptides. Bioconjugate Chemistry, 13, 729–736.PubMedCrossRefGoogle Scholar
  178. Oehlke, J., Birth, P., Klauschenz, E., Wiesner, B., Beyermann, M., Oksche, A., et al. (2002). Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides. European Journal of Biochemistry, 269, 4025–4032.PubMedCrossRefPubMedCentralGoogle Scholar
  179. Oehlke, J., Krause, E., Wiesner, B., Beyermann, M., & Bienert, M. (1997). Extensive cellular uptake into endothelial cells of an amphipathic beta-sheet forming peptide. FEBS Letters, 415, 196–199.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Oehlke, J., Scheller, A., Wiesner, B., Krause, E., Beyermann, M., Klauschenz, E., et al. (1998). Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochimica et Biophysica Acta, 1414, 127–139.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Okitsu, K., Misawa, T., Shoda, T., Kurihara, M., & Demizu, Y. (2017). Development of an ON/OFF switchable fluorescent probe targeting His tag fused proteins in living cells. Bioorganic & Medicinal Chemistry Letters, 27, 3417–3422.CrossRefGoogle Scholar
  182. Oren, Z., Lerman, J. C., Gudmundsson, G. H., Agerberth, B., & Shai, Y. (1999). Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: Relevance to the molecular basis for its non-cell-selective activity. The Biochemical Journal, 341, 501–513.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Orihuela, C. J., Mahdavi, J., Thornton, J., Mann, B., Wooldridge, K. G., Abouseada, N., et al. (2009). Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. The Journal of Clinical Investigation, 119, 1638–1646.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Östlund, P., Kilk, K., Lindgren, M., Hällbrink, M., Jiang, Y., Budihna, M., et al. (2005). Cell-penetrating mimics of agonist-activated G-protein coupled receptors. International Journal of Peptide Research and Therapeutics, 11, 237–247.CrossRefGoogle Scholar
  185. Otvos Jr., L., Bokonyi, K., Varga, I., Otvos, B. I., Hoffmann, R., Ertl, H. C., et al. (2000). Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Science: A Publication of the Protein Society, 9, 742–749.CrossRefGoogle Scholar
  186. Paasonen, L., Sharma, S., Braun, G. B., Kotamraju, V. R., Chung, T. D., She, Z. G., et al. (2016). New p32/gC1qR ligands for targeted tumor drug delivery. Chembiochem: A European Journal of Chemical Biology, 17, 570–575.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Pan, R., Xu, W., Ding, Y., Lu, S., & Chen, P. (2016). Uptake mechanism and direct translocation of a new CPP for siRNA delivery. Molecular Pharmaceutics, 23, 23.Google Scholar
  188. Paolella, G., Lepretti, M., Martucciello, S., Nanayakkara, M., Auricchio, S., Esposito, C., et al. (2018). The toxic alpha-gliadin peptide 31–43 enters cells without a surface membrane receptor. Cell Biology International, 42, 112–120.PubMedCrossRefPubMedCentralGoogle Scholar
  189. Park, C. B., Kim, H. S., & Kim, S. C. (1998). Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications, 244, 253–257.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Patel, R. R., Sundin, G. W., Yang, C. H., Wang, J., Huntley, R. B., Yuan, X., et al. (2017). Exploration of using antisense peptide nucleic acid (PNA)-cell penetrating peptide (CPP) as a novel bactericide against fire blight pathogen Erwinia amylovora. Frontiers in Microbiology, 8, 687.PubMedPubMedCentralGoogle Scholar
  191. Peng, S., Barba-Bon, A., Pan, Y. C., Nau, W. M., Guo, D. S., & Hennig, A. (2017a). Phosphorylation-responsive membrane transport of peptides. Angewandte Chemie (International ed. in English), 56, 15742–15745.CrossRefGoogle Scholar
  192. Peng, Z. H., & Kopecek, J. (2015). Enhancing accumulation and penetration of HPMA copolymer-doxorubicin conjugates in 2D and 3D prostate cancer cells via iRGD conjugation with an MMP-2 cleavable spacer. Journal of the American Chemical Society, 137, 6726–6729.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Peng, J., Rao, Y., Yang, X., Jia, J., Wu, Y., Lu, J., et al. (2017b). Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate. Neuroscience Letters, 650, 153–160.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Percipalle, P., Fomproix, N., Kylberg, K., Miralles, F., Bjorkroth, B., Daneholt, B., et al. (2003). An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 100, 6475–6480.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Perera, Y., Costales, H. C., Diaz, Y., Reyes, O., Farina, H. G., Mendez, L., et al. (2012). Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization. Journal of peptide science: An Official Publication of the European Peptide Society, 18, 215–223.CrossRefGoogle Scholar
  196. Pichon, C., Freulon, I., Midoux, P., Mayer, R., Monsigny, M., & Roche, A. C. (1997). Cytosolic and nuclear delivery of oligonucleotides mediated by an amphiphilic anionic peptide. Antisense and Nucleic Acid Drug Development, 7, 335–343.PubMedCrossRefPubMedCentralGoogle Scholar
  197. Poillot, C., Dridi, K., Bichraoui, H., Pecher, J., Alphonse, S., Douzi, B., et al. (2010). D-Maurocalcine, a pharmacologically inert efficient cell-penetrating peptide analogue. The Journal of Biological Chemistry, 285, 34168–34180.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Ponnappan, N., Budagavi, D. P., & Chugh, A. (2017). CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochimica et Biophysica Acta, 1859, 167–176.PubMedCrossRefGoogle Scholar
  199. Ponnappan, N., & Chugh, A. (2017). Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. European Journal of Pharmaceutics and Biopharmaceutics, 114, 145–153.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Pooga, M., Hällbrink, M., Zorko, M., & Langel, Ü. (1998). Cell penetration by transportan. FASEB Journal, 12, 67–77.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Prochiantz, A., Fuchs, J., & di Nardo, A. A. (2014). Postnatal signalling with homeoprotein transcription factors. Philosophical Transactions of the Royal Society B: Biological Sciences, 369.Google Scholar
  202. Pujals, S., Fernandez-Carneado, J., Lopez-Iglesias, C., Kogan, M. J., & Giralt, E. (2006). Mechanistic aspects of CPP-mediated intracellular drug delivery: Relevance of CPP self-assembly. Biochimica et Biophysica Acta, 1758, 264–279.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Pujals, S., Sabido, E., Tarrago, T., & Giralt, E. (2007). all-D proline-rich cell-penetrating peptides: A preliminary in vivo internalization study. Biochemical Society Transactions, 35, 794–796.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans. PloS One, 8.Google Scholar
  205. Qi, X., Droste, T., & Kao, C. C. (2011). Cell-penetrating peptides derived from viral capsid proteins. Molecular Plant-Microbe Interactions: MPMI, 24, 25–36.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Qian, Z., Larochelle, J. R., Jiang, B., Lian, W., Hard, R. L., Selner, N. G., et al. (2014). Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry, 53, 4034–4046.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Qifan, W., Fen, N., Ying, X., Xinwei, F., Jun, D., & Ge, Z. (2016). iRGD-targeted delivery of a pro-apoptotic peptide activated by cathepsin B inhibits tumor growth and metastasis in mice. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 11, 11.Google Scholar
  208. Rakowska, P. D., Lamarre, B., & Ryadnov, M. G. (2014). Probing label-free intracellular quantification of free peptide by MALDI-ToF mass spectrometry. Methods, 68, 331–337.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K. & Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 24, 1020–1027.Google Scholar
  210. Rassu, G., Soddu, E., Posadino, A. M., Pintus, G., Sarmento, B., Giunchedi, P., et al. (2017). Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids and Surfaces. B, Biointerfaces, 152, 296–301.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Repke, H., & Bienert, M. (1987). Mast cell activation—A receptor-independent mode of substance P action? FEBS Letters, 221, 236–240.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Reyes-Cortes, R., Acosta-Smith, E., Mondragon-Flores, R., Nazmi, K., Bolscher, J. G., Canizalez-Roman, A., et al. (2017). Antibacterial and cell penetrating effects of LFcin17-30, LFampin265-284, and LF chimera on enteroaggregative Escherichia coli. Biochemistry and Cell Biology, 95, 76–81.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Rhee, M., & Davis, P. (2006). Mechanism of uptake of C105Y, a novel cell-penetrating peptide. The Journal of Biological Chemistry, 281, 1233–1240.PubMedCrossRefPubMedCentralGoogle Scholar
  214. Rodrigues, M., Santos, A., de la Torre, B. G., Radis-Baptista, G., Andreu, D., & Santos, N. C. (2012). Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. Biochimica et Biophysica Acta, 1818, 2707–2717.PubMedCrossRefPubMedCentralGoogle Scholar
  215. Rojas, M., Donahue, J. P., Tan, Z., & Lin, Y. Z. (1998). Genetic engineering of proteins with cell membrane permeability. Nature Biotechnology, 16, 370–375.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Rosenbluh, J., Singh, S. K., Gafni, Y., Graessmann, A., & Loyter, A. (2004). Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: A novel mechanism for the introduction of macromolecules into plant cells. Biochimica et Biophysica Acta, 1664, 230–240.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Rousselle, C., Clair, P., Lefauconnier, J. M., Kaczorek, M., Scherrmann, J. M., & Temsamani, J. (2000). New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Molecular Pharmacology, 57, 679–686.CrossRefGoogle Scholar
  218. Rownicki, M., Wojciechowska, M., Wierzba, A. J., Czarnecki, J., Bartosik, D., Gryko, D., et al. (2017). Vitamin B12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Scientific Report, 7, 7644.CrossRefGoogle Scholar
  219. Rydberg, H. A., Carlsson, N., & Norden, B. (2012). Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function. Biochemical and Biophysical Research Communications, 427, 261–265.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Sadler, K., Eom, K. D., Yang, J. L., Dimitrova, Y., & Tam, J. P. (2002). Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry, 41, 14150–14157.PubMedCrossRefPubMedCentralGoogle Scholar
  221. Saleh, A. F., Arzumanov, A., Abes, R., Owen, D., Lebleu, B., & Gait, M. J. (2010). Synthesis and splice-redirecting activity of branched, arginine-rich peptide dendrimer conjugates of peptide nucleic acid oligonucleotides. Bioconjugate Chemistry, 21, 1902–1911.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Samuels, S., Alwan, Z., Egnin, M., Jaynes, J., Connell, T. D., Bernard, G. C., et al. (2017). Novel therapeutic approach for inhibition of HIV-1 Using cell-penetrating peptide and bacterial toxins. Journal of AIDS and Clinical Research, 8.Google Scholar
  223. Sangtani, A., Petryayeva, E., Wu, M., Susumu, K., Oh, E., Huston, A. L., et al. (2018). Intracellularly actuated quantum dot-peptide-doxorubicin nanobioconjugates for controlled drug delivery via the endocytic pathway. Bioconjugate Chemistry, 29, 136–148.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Sasaki, Y., Minamizawa, M., Ambo, A., Sugawara, S., Ogawa, Y., & Nitta, K. (2008). Cell-penetrating peptide-conjugated XIAP-inhibitory cyclic hexapeptides enter into Jurkat cells and inhibit cell proliferation. FEBS Journal, 275, 6011–6021.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Schmidt, S., Adjobo-Hermans, M. J., Kohze, R., Enderle, T., Brock, R., & Milletti, F. (2017). Identification of short hydrophobic cell-penetrating peptides for cytosolic peptide delivery by rational design. Bioconjugate Chemistry, 28, 382–389.CrossRefGoogle Scholar
  226. Sciani, J. M., Vigerelli, H., Costa, A. S., Camara, D. A., Junior, P. L., & Pimenta, D. C. (2017). An unexpected cell-penetrating peptide from Bothrops jararaca venom identified through a novel size exclusion chromatography screening. Journal of Peptide Science, 23, 68–76.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Serna, N., Sanchez-Garcia, L., Sanchez-Chardi, A., Unzueta, U., Roldan, M., Mangues, R., et al. (2017). Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity. Acta Biomaterialia, 60, 256–263.PubMedCrossRefPubMedCentralGoogle Scholar
  228. Shabanpoor, F., Hammond, S. M., Abendroth, F., Hazell, G., Wood, M. J. A., & Gait, M. J. (2017). Identification of a peptide for systemic brain delivery of a morpholino oligonucleotide in mouse models of spinal muscular atrophy. Nucleic Acid Therapeutics, 27, 130–143.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Shin, T. H., Sung, E. S., Kim, Y. J., Kim, K. S., Kim, S. H., Kim, S. K., et al. (2014). Enhancement of the tumor penetration of monoclonal antibody by fusion of a neuropilin-targeting peptide improves the antitumor efficacy. Molecular Cancer Therapeutics, 13, 651–661.PubMedCrossRefPubMedCentralGoogle Scholar
  230. Shteinfer-Kuzmine, A., Arif, T., Krelin, Y., Tripathi, S. S., Paul, A., & Shoshan-Barmatz, V. (2017). Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma. Oncotarget, 8, 31329–31346.PubMedPubMedCentralCrossRefGoogle Scholar
  231. Signorelli, S., Santini, S., Yamada, T., Bizzarri, A. R., Beattie, C. W., & Cannistraro, S. (2017). Binding of amphipathic cell penetrating peptide p28 to wild type and mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. Biochimica et Biophysica Acta, 1861, 910–921.PubMedCrossRefPubMedCentralGoogle Scholar
  232. Smilansky, A., Dangoor, L., Nakdimon, I., Ben-Hail, D., Mizrachi, D., & Shoshan-Barmatz, V. (2015). The voltage-dependent anion channel 1 mediates amyloid beta toxicity and represents a potential target for Alzheimer Disease therapy. The Journal of biological chemistry, 290, 30670–30683.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Soler, M., Gonzalez-Bartulos, M., Soriano-Castell, D., Ribas, X., Costas, M., Tebar, F., et al. (2014). Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Organic & Biomolecular Chemistry, 12, 1652–1663.CrossRefGoogle Scholar
  234. Song, L., Sun, Z. Y., Coleman, K. E., Zwick, M. B., Gach, J. S., Wang, J. H., et al. (2009). Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface. Proceedings of the National Academy of Sciences of the United States of America, 106, 9057–9062.PubMedPubMedCentralCrossRefGoogle Scholar
  235. Soomets, U., Lindgren, M., Gallet, X., Hällbrink, M., Elmquist, A., Balaspiri, L., et al. (2000). Deletion analogues of transportan. Biochimica et Biophysica Acta, 1467, 165–176.PubMedPubMedCentralCrossRefGoogle Scholar
  236. Soudah, T., Mogilevsky, M., Karni, R., & Yavin, E. (2017). CLIP6-PNA-peptide conjugates: Non-endosomal delivery of splice switching oligonucleotides. Bioconjugate Chemistry, 28, 3036–3042.CrossRefGoogle Scholar
  237. Speltz, T. E., Danes, J. M., Stender, J. D., Frasor, J., & Moore, T. W. (2018). A cell-permeable stapled peptide inhibitor of the estrogen receptor/coactivator interaction. ACS Chemical Biology.Google Scholar
  238. Sun, P., Huang, W., Kang, L., Jin, M., Fan, B., Jin, H., et al. (2017). siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. International Journal of Nanomedicine, 12, 3221–3234.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Suzuki, S., Itakura, S., Matsui, R., Nakayama, K., Nishi, T., Nishimoto, A., et al. (2017). Tumor microenvironment-sensitive liposomes penetrate tumor tissue via attenuated interaction of the extracellular matrix and tumor cells and accompanying actin depolymerization. Biomacromolecules, 18, 535–543.PubMedCrossRefPubMedCentralGoogle Scholar
  240. Tacken, P. J., Joosten, B., Reddy, A., Wu, D., Eek, A., Laverman, P., et al. (2008). No advantage of cell-penetrating peptides over receptor-specific antibodies in targeting antigen to human dendritic cells for cross-presentation. Journal of Immunology, 180, 7687–7696.CrossRefGoogle Scholar
  241. Tailhades, J., Takizawa, H., Gait, M. J., Wellings, D. A., Wade, J. D., Aoki, Y., et al. (2017). Solid-phase synthesis of difficult purine-rich PNAs through selective Hmb incorporation: Application to the total synthesis of cell penetrating peptide-PNAs. Frontiers in Chemistry, 5, 81.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Tajik-Ahmadabad, B., Polyzos, A., Separovic, F., & Shabanpoor, F. (2017). Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. International Journal of Pharmaceutics, 532, 21–28.PubMedCrossRefPubMedCentralGoogle Scholar
  243. Tan, H., Huang, Y., Xu, J., Chen, B., Zhang, P., Ye, Z., et al. (2017). Spider toxin peptide lycosin-I functionalized gold nanoparticles for in vivo tumor targeting and therapy. Theranostics, 7, 3168–3178.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Tan, M., Lan, K. H., Yao, J., Lu, C. H., Sun, M., Neal, C. L., et al. (2006). Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Research, 66, 3764–3772.PubMedCrossRefGoogle Scholar
  245. Taylor, B. N., Mehta, R. R., Yamada, T., Lekmine, F., Christov, K., Chakrabarty, A. M. (2009). Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Research, 69, 537–546.PubMedCrossRefPubMedCentralGoogle Scholar
  246. Tchoumi Neree, A., Nguyen, P. T., Chatenet, D., Fournier, A., & Bourgault, S. (2014). Secondary conformational conversion is involved in glycosaminoglycans-mediated cellular uptake of the cationic cell-penetrating peptide PACAP. FEBS Letters, 588, 4590–4596.Google Scholar
  247. Toba, M., Alzoubi, A., O’Neill, K., Abe, K., Urakami, T., Komatsu, M., et al. (2014). A novel vascular homing peptide strategy to selectively enhance pulmonary drug efficacy in pulmonary arterial hypertension. American Journal of Pathology, 184, 369–375.PubMedCrossRefPubMedCentralGoogle Scholar
  248. Torgerson, T. R., Colosia, A. D., Donahue, J. P., Lin, Y. Z., & Hawiger, J. (1998). Regulation of NF-kappa B, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NF-kappa B p50. Journal of Immunology, 161, 6084–6092.Google Scholar
  249. Tuttolomondo, M., Casella, C., Hansen, P. L., Polo, E., Herda, L. M., Dawson, K. A., et al. (2017). Human DMBT1-derived cell-penetrating peptides for intracellular siRNA delivery. Molecular Therapy—Nucleic Acids, 8, 264–276.PubMedPubMedCentralCrossRefGoogle Scholar
  250. Valeur, E., Knerr, L., Olwegard-Halvarsson, M., & Lemurell, M. (2017). Targeted delivery for regenerative medicines: An untapped opportunity for drug conjugates. Drug Discov Today, 22, 841–847.PubMedPubMedCentralCrossRefGoogle Scholar
  251. Vij, M., Natarajan, P., Pattnaik, B. R., Alam, S., Gupta, N., Santhiya, D., et al. (2016a). Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. Journal of Controlled Release: Official Journal of the Controlled Release Society, 222, 159–168.CrossRefGoogle Scholar
  252. Vij, M., Natarajan, P., Yadav, A. K., Patil, K. M., Pandey, T., Gupta, N., et al. (2016b). Efficient cellular entry of (r-x-r)-type carbamate-plasmid DNA complexes and its implication for noninvasive topical DNA delivery to skin. Molecular Pharmaceutics, 13, 1779–1790.PubMedCrossRefPubMedCentralGoogle Scholar
  253. Villa-Cedillo, S. A., Rodriguez-Rocha, H., Zavala-Flores, L. M., Montes-De-oca-luna, R., Garcia-Garcia, A., Loera-Arias, M. J., et al. (2017). Asn194Lys mutation in RVG29 peptide increases GFP transgene delivery by endocytosis to neuroblastoma and astrocyte cells. Journal of Pharmacy and Pharmacology, 69, 1352–1363.PubMedCrossRefPubMedCentralGoogle Scholar
  254. Vives, E., Brodin, P., & Lebleu, B. (1997a). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry, 272, 16010–16017.PubMedCrossRefPubMedCentralGoogle Scholar
  255. Vives, E., Brodin, P., & Lebleu, B. (1997b). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. The Journal of Biological Xhemistry, 272, 16010–16017.CrossRefGoogle Scholar
  256. Wada, S. I., Takesada, A., Nagamura, Y., Sogabe, E., Ohki, R., Hayashi, J., et al. (2017). Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery. Bioorganic & Medicinal Chemistry Letters, 27, 5378–5381.CrossRefGoogle Scholar
  257. Wahlmuller, F. C., Yang, H., Furtmuller, M., & Geiger, M. (2017). Regulation of the extracellular SERPINA5 (Protein C Inhibitor) penetration through cellular membranes. Advances in Experimental Medicine and Biology, 966, 93–101.PubMedCrossRefPubMedCentralGoogle Scholar
  258. Waldmann, H., Valeur, E., Gueret, S. M., Adihou, H., Gopalakrishnan, R., Lemurell, M., et al. (2017). New modalities for challenging targets in drug discovery. Angewandte Chemie, 56, 10294–10323.PubMedCrossRefPubMedCentralGoogle Scholar
  259. Wang, X., Qiu, Y., Yu, Q., Li, H., Chen, X., Li, M., et al. (2017). Enhanced glioma therapy by synergistic inhibition of autophagy and tyrosine kinase activity. International Journal of Pharmaceutics, 536, 1–10.PubMedCrossRefGoogle Scholar
  260. Wang, Y. F., Xu, X., Fan, X., Zhang, C., Wei, Q., Wang, X., et al. (2011). A cell-penetrating peptide suppresses inflammation by inhibiting NF-kappaB signaling. Molecular Therapy: The journal of the American Society of Gene Therapy, 19, 1849–1857.CrossRefGoogle Scholar
  261. Watson, G. M., Kulkarni, K., Brandt, R., del Borgo, M. P., Aguilar, M. I., & Wilce, J. A. (2017). shortened penetratin cell-penetrating peptide is insufficient for cytosolic delivery of a Grb7 targeting peptide. ACS Omega, 2, 670–677.PubMedPubMedCentralCrossRefGoogle Scholar
  262. Wender, P. A., Jessop, T. C., Pattabiraman, K., Pelkey, E. T., & Vandeusen, C. L. (2001). An efficient, scalable synthesis of the molecular transporter octaarginine via a segment doubling strategy. Organic Letters, 3, 3229–3232.PubMedCrossRefPubMedCentralGoogle Scholar
  263. Wimley, W. C., & White, S. H. (2000). Determining the membrane topology of peptides by fluorescence quenching. Biochemistry, 39, 161–170.PubMedCrossRefPubMedCentralGoogle Scholar
  264. Woldetsadik, A. D., Vogel, M. C., Rabeh, W. M., & Magzoub, M. (2017). Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 9.Google Scholar
  265. Wongso, D., Dong, J., Ueda, H., & Kitaguchi, T. (2017). Flashbody: A next generation fluobody with fluorescence intensity enhanced by antigen binding. Analytical Chemistry, 89, 6719–6725.PubMedCrossRefPubMedCentralGoogle Scholar
  266. Wyman, T. B., Nicol, F., Zelphati, O., Scaria, P. V., Plank, C., & Szoka Jr., F. C. (1997). Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 36, 3008–3017.Google Scholar
  267. Xiao, Y., Zhang, E., & Fu, A. (2017). Promotion of SH-SY5Y cell growth by gold nanoparticles modified with 6-mercaptopurine and a neuron-penetrating peptide. Nanoscale Research Letters, 12, 641.PubMedPubMedCentralCrossRefGoogle Scholar
  268. Yamada, T., Das Gupta, T. K., & Beattie, C. W. (2016). p 28-mediated activation of p53 in G2/M phase of the cell cycle enhances the efficacy of DNA damaging and antimitotic chemotherapy. Cancer Research, 26.Google Scholar
  269. Yanez, R. J. R., Lamprecht, R., Granadillo, M., Weber, B., Torrens, I., Rybicki, E. P., et al. (2017). Expression optimization of a cell membrane-penetrating human papillomavirus type 16 therapeutic vaccine candidate in Nicotiana benthamiana. PLoS One, 12, e0183177.PubMedPubMedCentralCrossRefGoogle Scholar
  270. Yang, J., Li, Q., Yang, X., Feng, Y., Ren, X., Shi, C., et al. (2016). Multitargeting Gene delivery systems for enhancing the transfection of endothelial cells. Macromolecular Rapid Communications, 37, 1926–1931.PubMedCrossRefPubMedCentralGoogle Scholar
  271. Yang, J., Tsutsumi, H., Furuta, T., Sakurai, M., & Mihara, H. (2014). Interaction of amphiphilic alpha-helical cell-penetrating peptides with heparan sulfate. Organic & Biomolecular Chemistry, 12, 4673–4681.CrossRefGoogle Scholar
  272. Yao, H., Wang, K., Wang, Y., Wang, S., Li, J., Lou, J., et al. (2015). Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials, 37, 345–352.PubMedCrossRefPubMedCentralGoogle Scholar
  273. Yoneda, Y., Semba, T., Kaneda, Y., Noble, R. L., Matsuoka, Y., Kurihara, T., et al. (1992). A long synthetic peptide containing a nuclear localization signal and its flanking sequences of SV40 T-antigen directs the transport of IgM into the nucleus efficiently. Experimental Cell Research, 201, 313–320.PubMedCrossRefPubMedCentralGoogle Scholar
  274. Yu, J., Sun, L., Zhou, J., Gao, L., Nan, L., Zhao, S., et al. (2017). Self-assembled tumor-penetrating peptide-modified poly(l-gamma-glutamylglutamine)-paclitaxel nanoparticles based on hydrophobic interaction for the treatment of glioblastoma. Bioconjugate Chemistry, 28, 2823–2831.PubMedCrossRefPubMedCentralGoogle Scholar
  275. Zhang, L., Zhang, Y., Tai, L., Jiang, K., Xie, C., Li, Z., et al. (2016). Functionalized cell nucleus-penetrating peptide combined with doxorubicin for synergistic treatment of glioma. Acta Biomaterialia, 42, 90–101.PubMedCrossRefPubMedCentralGoogle Scholar
  276. Zhang, H., Zhao, Q., Bhattacharya, S., Waheed, A. A., Tong, X., Hong, A., et al. (2008). A cell-penetrating helical peptide as a potential HIV-1 inhibitor. Journal of Molecular Biology, 378, 565–580.PubMedPubMedCentralCrossRefGoogle Scholar
  277. Zhao, B. Q., Guo, Y. R., Li, X. L., Zang, T., Qu, H. Y., Zhou, J. P., et al. (2011). Amelioration of dementia induced by Abeta 22-35 through rectal delivery of undecapeptide-hEGF to mouse brain. International Journal of Pharmaceutics, 405, 1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  278. Zhao, Y., Lou, D., Burkett, J., & Kohler, H. (2001). Chemical engineering of cell penetrating antibodies. Journal of Immunological Methods, 254, 137–145.PubMedCrossRefGoogle Scholar
  279. Zhao, K., Luo, G., Giannelli, S., & Szeto, H. H. (2005). Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochemical Pharmacology, 70, 1796–1806.PubMedPubMedCentralCrossRefGoogle Scholar
  280. Zhao, C., Tong, Y., Li, X., Shao, L., Chen, L., Lu, J., et al. (2018). Photosensitive nanoparticles combining vascular-independent intratumor distribution and on-demand oxygen-depot delivery for enhanced cancer photodynamic therapy. Small.Google Scholar
  281. Zhou, N., Wu, J., Qin, Y. Y., Zhao, X. L., Ding, Y., Sun, L. S., et al. (2017). Novel peptide MT23 for potent penetrating and selective targeting in mouse melanoma cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 120, 80–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
  2. 2.Institute of TechnologyUniversity of TartuTartuEstonia

Personalised recommendations