Skip to main content

Carbon-Based Nanomedicine

  • Chapter
  • First Online:
Nanomedicine in Brain Diseases
  • 475 Accesses

Abstract

Carbon-based nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), and nanodiamonds (NDs), have been considered as excellent carriers for anti-cancer drugs because of their high drug-loading capability, nanoscale size, and high specific surface areas, enabling them to penetrate the mammalian cell membrane. Therefore, it’s meaningful to explore these carbon-based nanomaterials as versatile cancer drug carriers [1]. This chapter reviews the recent advances in carbon-based nanomedicine, including application, pharmacodynamics and metabolism, diagnosis and treatment, as well as biodistribution of carbon nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim D-J, Sim M, Oh L, Lim K, Park H. Carbon-based drug delivery carriers for cancer therapy. Arch Pharm Res. 2014;37(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  2. Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E, Borowiak-Palena E. Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett. 2009;478(4-6):200–5.

    Article  CAS  Google Scholar 

  3. Naderi N, Madani SY, Mosahebi A, Seifalian AM. Octa-ammonium POSS-conjugated single-walled carbon nanotubes as vehicles for targeted delivery of paclitaxel. Nanotechnol Rev. 2015;6:28297.

    Google Scholar 

  4. Pan Q, Lv Y, Williams GR, Tao L, Yang H, Li H, Zhu L. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydr Polym. 2016;151:812–20.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou T, Zhou X, Xing D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials. 2014;35(13):4185–94.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang H, Ji Y, Chen Q, Jiao X, Hou L, Zhu X, Zhang Z. Enhancement of cytotoxicity of artemisinin toward cancer cells by transferrin-mediated carbon nanotubes nanoparticles. J Drug Target. 2015;23(6):552–67.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6(4):537–44.

    Article  CAS  PubMed  Google Scholar 

  8. Qin W, Yang K, Tang H, Tan L, Xie Q, Ma M, Zhang Y, Yao S. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf B: Biointerfaces. 2011;84(1):206–13.

    Article  CAS  PubMed  Google Scholar 

  9. Karmakar A, Bratton SM, Dervishi E, Ghosh A, Mahmood M, Yang X, Saeed LM, Mustafa T, Casciano D, Radominska-Pandya A, Biris AS. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int J Nanomedicine. 2011;6:1045–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hao Y, Xu P, He C, Yang X, Huang M, Xing J, Chen J. Impact of carbodiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery. Nanotechnology. 2011;22(28):285103.

    Article  PubMed  CAS  Google Scholar 

  11. Inoue Y, Fujimoto H, Ogino T, Iwata H. Site-specific gene transfer with high efficiency onto a carbon nanotube-loaded electrode. J R Soc Interface. 2008;5(25):909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm. 2012;427(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  13. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Antonia Herrero M, Bianco A, Prato M, Kostarelos K, Pizzorusso T. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci U S A. 2011;108(27):10952–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dong H, Ding L, Yan F, Ji H, Ju H. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials. 2011;32(15):3875–82.

    Article  CAS  PubMed  Google Scholar 

  15. Feng L, Yang X, Shi X, Tan X, Peng R, Wang J, Liu Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small. 2013;9(11):1989–97.

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Zhang Y, Ma D, Tang H, Tan L, Xie Q, Yao S. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B: Biointerfaces. 2013;111:224–31.

    Article  CAS  PubMed  Google Scholar 

  17. Nunes A, Amsharov N, Guo C, Van den Bossche J, Santhosh P, Karachalios TK, Nitodas SF, Burghard M, Kostarelos K, Al-Jamal KT. Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small. 2010;6(20):2281–91.

    Article  CAS  PubMed  Google Scholar 

  18. Corr SJ, Raoof M, Cisneros BT, Orbaek AW, Cheney MA, Law JJ, Lara NC, Barron AR, Wilson LJ, Curley SA. Radiofrequency electric-field heating behaviors of highly enriched semiconducting and metallic single-walled carbon nanotubes. Nano Res. 2015;8:2859–70.

    Article  CAS  Google Scholar 

  19. Santos T, Fang X, Chen M-T, Wang W, Ferreira R, Jhaveri N, Gundersen M, Zhou C, Pagnini P, Hofman FM, Chen TC. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas. Front Oncol. 2014;4:180.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang B, Wang H, Shen S, She X, Shi W, Chen J, Zhang Q, Hu Y, Pang Z, Jiang X. Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor. Biomaterials. 2016;79:46–55.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou F, Wu S, Yuan Y, Chen WR, Xing D. Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes. Small. 2012;8(10):1543–50.

    Article  CAS  PubMed  Google Scholar 

  22. Taratula O, Patel M, Schumann C, Naleway MA, Pang AJ, He H, Taratula O. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. Int J Nanomedicine. 2015;10:2347–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Battogtokh G, Ko YT. Graphene oxide-incorporated pH-responsive folate-albumin-photosensitizer nanocomplex as image-guided dual therapeutics. J Control Release. 2016;234:10–20.

    Article  CAS  PubMed  Google Scholar 

  24. Al Faraj A, Shaik AS, Al Sayed B, Halwani R, Al Jammaz I. Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine. 2016;11(1):31–46.

    Article  PubMed  CAS  Google Scholar 

  25. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4(11):773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med. 2012;18(12):1841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yi H, Ghosh D, Ham M-h, Qi J, Barone PW, Strano MS, Belcher AM. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012;12(3):1176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci U S A. 2014;111(38):13948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials. 2016;103:219–28.

    Article  CAS  PubMed  Google Scholar 

  30. Kafa H, Wang JT-W, Rubio N, Klippstein R, Costa PM, Hassan HAFM, Sosabowski JK, Bansal SS, Preston JE, Joan Abbott N, Al-Jamala KT. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo. J Control Release. 2016;225:217–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao D, Alizadeh D, Zhang L, Liu W, Farrukh O, Manuel E, Diamond DJ, Badie B. Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin Cancer Res. 2011;17(4):771–82.

    Article  CAS  PubMed  Google Scholar 

  32. Xue X, Yang J-Y, He Y, Wang L-R, Liu P, Yu L-S, Bi G-H, Zhu M-M, Liu Y-Y, Xiang R-W, Yang X-T, Fan X-Y, Wang X-M, Qi J, Zhang H-J, Wei T, Cui W, Ge G-L, Xi Z-X, Wu C-F, Liang X-J. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat Nanotechnol. 2016;11(7):613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang JT-W, Rubio N, Kafa H, Venturelli E, Fabbro C, Ménard-Moyon C, Da Ros T, Sosabowski JK, Lawson AD, Robinson MK, Prato M, Bianco A, Festy F, Preston JE, Kostarelos K, Al-Jamala KT. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: spatial to ultra-structural analyses. J Control Release. 2016;224:22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang K, Wan J, Zhang S, Zhang Y, Lee S-T, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011;5(1):516–22.

    Article  CAS  PubMed  Google Scholar 

  35. Koromilas ND, Lainioti GC, Gialeli C, Barbouri D, Kouravelou KB, Karamanos NK, Voyiatzis GA, Kallitsis JK. Preparation and toxicological assessment of functionalized carbon nanotube-polymer hybrids. PLoS One. 2014;9(9):e107029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Moore TL, Pitzer JE, Podila R, Wang X, Lewis RL, Grimes SW, Wilson JR, Skjervold E, Brown JM, Rao A, Alexis F. Multifunctional polymer-coated carbon nanotubes for safe drug delivery. Part Part Syst Charact. 2013;30(4):365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lacerda L, Ali-Boucetta H, Herrero MA, Pastorin G, Bianco A, Prato M, Kostarelos K. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine. 2008;3(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  38. Kostarelos K. Carbon nanotubes: Fibrillar pharmacology. Nat Mater. 2010;9(10):793–5.

    Article  CAS  PubMed  Google Scholar 

  39. Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova K, Deen WM, Scheinberg DA, McDevitta MR. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci. 2010;107(27):12369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci. 2006;103(9):3357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lacerda L, Herrero MA, Venner K, Bianco A, Prato M, Kostarelos K. Carbon-nanotube shape and individualization critical for renal excretion. Small. 2008;4(8):1130–2.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials. 2009;30(30):6041–7.

    Article  CAS  PubMed  Google Scholar 

  43. Mo Y, Wang H, Liu J, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y. Controlled release and targeted delivery to cancer cells of doxorubicin from polysaccharide-functionalised single-walled carbon nanotubes. J Mater Chem B. 2015;3(9):1846–55.

    Article  CAS  PubMed  Google Scholar 

  44. Meihua Tan J, Saifullah B, Umar Kura A, Fakurazi S, Hussein MZ. Incorporation of levodopa into biopolymer coatings based on carboxylated carbon nanotubes for pH-dependent sustained release drug delivery. Nanomaterials (Basel). 2018;8(6):pii: E389.

    Article  CAS  Google Scholar 

  45. Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6(3):427–41.

    Article  CAS  PubMed  Google Scholar 

  46. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano. 2009;3(2):307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Md N, Khatun Z, Reeck GR, Lee DY, Lee Y-k. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl Mater Interfaces. 2014;6(15):12413–21.

    Article  CAS  Google Scholar 

  48. Loader J, Montero D, Lorenzen C, Watts R, Méziat C, Reboul C, Stewart S, Walther G. Acute hyperglycemia impairs vascular function in healthy and cardiometabolic diseased subjects. Arterioscler Thromb Vasc Biol. 2015;35(9):2060–72.

    Article  CAS  PubMed  Google Scholar 

  49. Fabian RH, Derry PJ, Rea HC, Dalmeida WV, Nilewski LG, Sikkema WKA, Mandava P, Tsai A-L, Mendoza K, Berka V, Tour JM, Kent TA. Efficacy of novel carbon nanoparticle antioxidant therapy in a severe model of reversible middle cerebral artery stroke in acutely hyperglycemic rats. Front Neurol. 2018;9:199.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Trusel M, Baldrighi M, Marotta R, Gatto F, Pesce M, Frasconi M, Catelani T, Papaleo F, Pompa PP, Tonini R, Giordani S. Internalization of carbon nano-onions by hippocampal cells preserves neuronal circuit function and recognition memory. ACS Appl Mater Interfaces. 2018;10(20):16952–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Geng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, P., Zhang, M., Geng, J. (2019). Carbon-Based Nanomedicine. In: Xue, X. (eds) Nanomedicine in Brain Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8731-9_8

Download citation

Publish with us

Policies and ethics