Skip to main content

Allosteric Modulators of Protein–Protein Interactions (PPIs)

  • Chapter
  • First Online:
Protein Allostery in Drug Discovery

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1163))

Abstract

Protein–protein interactions (PPIs) represent promising drug targets of broad-spectrum therapeutic interests due to their critical implications in both health and disease circumstances. Hence, they are widely accepted as the Holy Grail of drug development. Historically, PPIs were rendered “undruggable” for their large, flat, and pocket-less structures. Current attempts to drug these “intractable” targets include orthosteric and allosteric methodologies. Previous efforts employing orthosteric approaches like protein therapeutics and orthosteric small molecules frequently suffered from poor performance caused by the difficulties in directly targeting PPI interfaces. As structural biology progresses rapidly, allosteric modulators, which direct to the allosteric regulatory sites remote to the PPI surfaces, have gradually established as a potential solution. Allosteric pockets are topologically distal from the PPI orthosteric sites, and their ligands do not need to compete with the PPI partners, which helps to improve the physiochemical and pharmacological properties of allosteric PPI modulators. Thus, exploiting allostery to tailor PPIs is regarded as a tempting strategy in future PPI drug discovery. Here, we provide a comprehensive review of our representative achievements along the way we utilize allosteric effects to tame the difficult PPI systems into druggable targets. Importantly, we provide an in-depth mechanistic analysis of this success, which will be instructive to future related lead optimizations and drug design. Finally, we discuss the current challenges in allosteric PPI drug discovery. Their solutions as well as future perspectives are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aeluri M, Chamakuri S, Dasari B, Guduru SK, Jimmidi R, Jogula S, Arya P (2014) Small molecule modulators of protein-protein interactions: selected case studies. Chem Rev 114(9):4640–4694

    Article  CAS  PubMed  Google Scholar 

  2. Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E (2014) High-resolution microtubule structures reveal the structural transitions in alphabeta-tubulin upon GTP hydrolysis. Cell 157(5):1117–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C (2009) The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol 54(8):669–677

    Article  CAS  PubMed  Google Scholar 

  4. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317

    Article  CAS  PubMed  Google Scholar 

  6. Bahadur RP, Zacharias M (2008) The interface of protein-protein complexes: analysis of contacts and prediction of interactions. Cell Mol Life Sci 65(7–8):1059–1072

    Article  CAS  PubMed  Google Scholar 

  7. Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10(1):29–46

    Article  CAS  PubMed  Google Scholar 

  8. Bellmunt J, Szczylik C, Feingold J, Strahs A, Berkenblit A (2008) Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features. Ann Oncol 19(8):1387–1392

    Article  CAS  PubMed  Google Scholar 

  9. Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8(2):149–160

    Article  CAS  PubMed  Google Scholar 

  10. Blundell TL, Burke DF, Chirgadze D, Dhanaraj V, Hyvonen M, Innis CA, Parisini E, Pellegrini L, Sayed M, Sibanda BL (2000) Protein-protein interactions in receptor activation and intracellular signalling. Biol Chem 381(9–10):955–959

    CAS  PubMed  Google Scholar 

  11. Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, Vaishnaw A, Group BGLNT (2003) A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 48(3):719–727

    Article  CAS  PubMed  Google Scholar 

  12. Cao YN, Zheng LL, Wang D, Liang XX, Gao F, Zhou XL (2018) Recent advances in microtubule-stabilizing agents. Eur J Med Chem 143:806–828

    Article  CAS  PubMed  Google Scholar 

  13. Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V, Neculai D, Chou YC, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J, Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A, Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M, Sicheri F (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145(7):1075–1087

    Article  CAS  PubMed  Google Scholar 

  14. Changeux JP (2013) The concept of allosteric modulation: an overview. Drug Discov Today Technol 10(2):e223–e228

    Article  PubMed  Google Scholar 

  15. Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L, Webb DR, Mercurio F, Nakayama KI, Nakayama K, Orlowski RZ (2008) Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111(9):4690–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25(1):71–75

    Article  PubMed  CAS  Google Scholar 

  17. Cheng KY, Noble ME, Skamnaki V, Brown NR, Lowe ED, Kontogiannis L, Shen K, Cole PA, Siligardi G, Johnson LN (2006) The role of the phospho-CDK2/cyclin a recruitment site in substrate recognition. J Biol Chem 281(32):23167–23179

    Article  CAS  PubMed  Google Scholar 

  18. Cho CS, Burkly LC, Fechner JH Jr, Kirk AD, Oberley TD, Dong Y, Brunner KG, Peters D, Tenhoor CN, Nadeau K, Yagci G, Ishido N, Schultz JM, Tsuchida M, Hamawy MM, Knechtle SJ (2001) Successful conversion from conventional immunosuppression to anti-CD154 monoclonal antibody costimulatory molecule blockade in rhesus renal allograft recipients. Transplantation 72(4):587–597

    Article  CAS  PubMed  Google Scholar 

  19. Cirillo L, Gotta M, Meraldi P (2017) The elephant in the room: the role of microtubules in Cancer. Adv Exp Med Biol 1002:93–124

    Article  CAS  PubMed  Google Scholar 

  20. Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143(5):686–693

    Article  CAS  PubMed  Google Scholar 

  21. Cong X, Liu Y, Liu W, Liang X, Laganowsky A (2017) Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat Commun 8(1):2203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Corbi-Verge C, Garton M, Nim S, Kim PM (2017) Strategies to develop inhibitors of motif-mediated protein-protein interactions as drug leads. Annu Rev Pharmacol Toxicol 57:39–60

    Article  CAS  PubMed  Google Scholar 

  23. Cossins BP, Lawson AD (2015) Small molecule targeting of protein-protein interactions through allosteric modulation of dynamics. Molecules 20(9):16435–16445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117(7):899–913

    Article  CAS  PubMed  Google Scholar 

  25. Crown J, O’Leary M (2000) The taxanes: an update. Lancet 355(9210):1176–1178

    Article  CAS  PubMed  Google Scholar 

  26. Daikh DI, Finck BK, Linsley PS, Hollenbaugh D, Wofsy D (1997) Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J Immunol 159(7):3104–3108

    CAS  PubMed  Google Scholar 

  27. Darieva Z, Pic-Taylor A, Boros J, Spanos A, Geymonat M, Reece RJ, Sedgwick SG, Sharrocks AD, Morgan BA (2003) Cell cycle-regulated transcription through the FHA domain of Fkh2p and the coactivator Ndd1p. Curr Biol 13(19):1740–1745

    Article  CAS  PubMed  Google Scholar 

  28. de Bruin RA, McDonald WH, Kalashnikova TI, Yates J 3rd, Wittenberg C (2004) Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117(7):887–898

    Article  PubMed  Google Scholar 

  29. Dobashi Y (2005) Cell cycle regulation and its aberrations in human lung carcinoma. Pathol Int 55(3):95–105

    Article  CAS  PubMed  Google Scholar 

  30. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Echalier A, Endicott JA, Noble ME (2010) Recent developments in cyclin-dependent kinase biochemical and structural studies. Biochim Biophys Acta 1804(3):511–519

    Article  CAS  PubMed  Google Scholar 

  32. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172

    Article  CAS  PubMed  Google Scholar 

  33. Emanuel S, Rugg CA, Gruninger RH, Lin R, Fuentes-Pesquera A, Connolly PJ, Wetter SK, Hollister B, Kruger WW, Napier C, Jolliffe L, Middleton SA (2005) The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res 65(19):9038–9046

    Article  CAS  PubMed  Google Scholar 

  34. Ferrant JL, Benjamin CD, Cutler AH, Kalled SL, Hsu YM, Garber EA, Hess DM, Shapiro RI, Kenyon NS, Harlan DM, Kirk AD, Burkly LC, Taylor FR (2004) The contribution of Fc effector mechanisms in the efficacy of anti-CD154 immunotherapy depends on the nature of the immune challenge. Int Immunol 16(11):1583–1594

    Article  CAS  PubMed  Google Scholar 

  35. Field JJ, Diaz JF, Miller JH (2013) The binding sites of microtubule-stabilizing agents. Chem Biol 20(3):301–315

    Article  CAS  PubMed  Google Scholar 

  36. Fischer PM (2004) The use of CDK inhibitors in oncology: a pharmaceutical perspective. Cell Cycle 3(6):742–746

    Article  CAS  PubMed  Google Scholar 

  37. Fischer G, Rossmann M, Hyvonen M (2015) Alternative modulation of protein-protein interactions by small molecules. Curr Opin Biotechnol 35:78–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  PubMed  Google Scholar 

  39. Fry DC (2008) Drug-like inhibitors of protein-protein interactions: a structural examination of effective protein mimicry. Curr Protein Pept Sci 9(3):240–247

    Article  CAS  PubMed  Google Scholar 

  40. Galsky MD, Dritselis A, Kirkpatrick P, Oh WK (2010) Cabazitaxel. Nat Rev Drug Discov 9(9):677–678

    Article  CAS  PubMed  Google Scholar 

  41. Guarnera E, Berezovsky IN (2016) Allosteric sites: remote control in regulation of protein activity. Curr Opin Struct Biol 37:1–8

    Article  CAS  PubMed  Google Scholar 

  42. Guarnera E, Tan ZW, Zheng Z, Berezovsky IN (2017) AlloSigMA: allosteric signaling and mutation analysis server. Bioinformatics 33(24):3996–3998

    Article  CAS  PubMed  Google Scholar 

  43. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  44. Heery CR, Ibrahim NK, Arlen PM, Mohebtash M, Murray JL, Koenig K, Madan RA, McMahon S, Marte JL, Steinberg SM, Donahue RN, Grenga I, Jochems C, Farsaci B, Folio LR, Schlom J, Gulley JL (2015) Docetaxel alone or in combination with a therapeutic cancer vaccine (PANVAC) in patients with metastatic breast cancer: a randomized clinical trial. JAMA Oncol 1(8):1087–1095

    Article  PubMed  PubMed Central  Google Scholar 

  45. Holland EJ, Luchs J, Karpecki PM, Nichols KK, Jackson MA, Sall K, Tauber J, Roy M, Raychaudhuri A, Shojaei A (2017) Lifitegrast for the treatment of dry eye disease: results of a phase III, randomized, double-masked, placebo-controlled trial (OPUS-3). Ophthalmology 124(1):53–60

    Article  PubMed  Google Scholar 

  46. Hu Y, Li S, Liu F, Geng L, Shu X, Zhang J (2015) Discovery of novel nonpeptide allosteric inhibitors interrupting the interaction of CDK2/cyclin A3 by virtual screening and bioassays. Bioorg Med Chem Lett 25(19):4069–4073

    Article  CAS  PubMed  Google Scholar 

  47. Huang M, Song K, Liu X, Lu S, Shen Q, Wang R, Gao J, Hong Y, Li Q, Ni D, Xu J, Chen G, Zhang J (2018) AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res 46(W1):W451–W458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang W, Lu S, Huang Z, Liu X, Mou L, Luo Y, Zhao Y, Liu Y, Chen Z, Hou T, Zhang J (2013) Allosite: a method for predicting allosteric sites. Bioinformatics 29(18):2357–2359

    Article  CAS  PubMed  Google Scholar 

  49. James ND, Pirrie SJ, Pope AM, Barton D, Andronis L, Goranitis I, Collins S, Daunton A, McLaren D, O’Sullivan J, Parker C, Porfiri E, Staffurth J, Stanley A, Wylie J, Beesley S, Birtle A, Brown J, Chakraborti P, Hussain S, Russell M, Billingham LJ (2016) Clinical outcomes and survival following treatment of metastatic castrate-refractory prostate cancer with docetaxel alone or with strontium-89, zoledronic acid, or both: the TRAPEZE randomized clinical trial. JAMA Oncol 2(4):493–499

    Article  PubMed  Google Scholar 

  50. Jiang Y, Zhuang C, Chen L, Lu J, Dong G, Miao Z, Zhang W, Li J, Sheng C (2017) Structural biology-inspired discovery of novel KRAS–PDEδ inhibitors. J Med Chem 60:9400–9406

    Article  CAS  PubMed  Google Scholar 

  51. Jin L, Wang W, Fang G (2014) Targeting protein-protein interaction by small molecules. Annu Rev Pharmacol Toxicol 54:435–456

    Article  CAS  PubMed  Google Scholar 

  52. Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93(1):13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265

    Article  CAS  PubMed  Google Scholar 

  54. Jurgens G, Hermann A, Aktuna D, Petek W (1992) Dissociation-enhanced lanthanide fluorescence immunoassay of lipoprotein(a) in serum. Clin Chem 38(6):853–859

    CAS  PubMed  Google Scholar 

  55. Karthiga A, Tripathi SK, Shanmugam R, Suryanarayanan V, Singh SK (2015) Targeting the cyclin-binding groove site to inhibit the catalytic activity of CDK2/cyclin a complex using p27(KIP1)-derived peptidomimetic inhibitors. J Chem Biol 8(1):11–24

    Article  PubMed  Google Scholar 

  56. Kim WK, Henschel A, Winter C, Schroeder M (2006) The many faces of protein-protein interactions: a compendium of interface geometry. PLoS Comput Biol 2(9):e124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  58. Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M, Shishido CLB (1996) MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 56(3):538–543

    CAS  PubMed  Google Scholar 

  59. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510(7503):172–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee FY, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C, Vite GD, Rose WC, Kramer RA (2001) BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7(5):1429–1437

    CAS  PubMed  Google Scholar 

  61. Li X, Chen Y, Lu S, Huang Z, Liu X, Wang Q, Shi T, Zhang J (2013) Toward an understanding of the sequence and structural basis of allosteric proteins. J Mol Graph Model 40:30–39

    Article  PubMed  CAS  Google Scholar 

  62. Liu N, Tu J, Dong G, Wang Y, Sheng C (2018) Emerging new targets for the treatment of resistant fungal infections. J Med Chem 61:5484–5511

    Article  CAS  PubMed  Google Scholar 

  63. Liu N, Zhu S, Zhang X, Yin X, Dong G, Yao J, Miao Z, Zhang W, Zhang X, Sheng C (2016) The discovery and characterization of a novel scaffold as a potent hepatitis C virus inhibitor. Chem Commun 52:3340–3343

    Article  CAS  Google Scholar 

  64. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285(5):2177–2198

    Article  CAS  PubMed  Google Scholar 

  65. Lu S, Huang W, Zhang J (2014a) Recent computational advances in the identification of allosteric sites in proteins. Drug Discov Today 19(10):1595–1600

    Article  CAS  PubMed  Google Scholar 

  66. Lu S, Li S, Zhang J (2014b) Harnessing allostery: a novel approach to drug discovery. Med Res Rev 34(6):1242–1285

    Article  CAS  PubMed  Google Scholar 

  67. Lu S, Zhang J (2018) Small molecule allosteric modulators of G-protein-coupled receptors: drug-target interactions. J Med Chem. https://doi.org/10.1021/acs.jmedchem.7b01844

    Article  PubMed  CAS  Google Scholar 

  68. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122

    Article  PubMed  PubMed Central  Google Scholar 

  69. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231

    Article  CAS  PubMed  Google Scholar 

  70. Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641

    Article  CAS  PubMed  Google Scholar 

  71. Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3(6):755–766

    Article  CAS  PubMed  Google Scholar 

  72. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S (2016) Breaking Cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miao Z, Ali A, Hu L, Zhao F, Yin C, Chen C, Yang T, Qian A (2017) Microtubule actin cross-linking factor 1, a novel potential target in cancer. Cancer Sci 108(10):1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Milroy LG, Bartel M, Henen MA, Leysen S, Adriaans JM, Brunsveld L, Landrieu I, Ottmann C (2015) Stabilizer-guided inhibition of protein-protein interactions. Angew Chem Int Ed Eng 54(52):15720–15724

    Article  CAS  Google Scholar 

  75. Mita AC, Denis LJ, Rowinsky EK, Debono JS, Goetz AD, Ochoa L, Forouzesh B, Beeram M, Patnaik A, Molpus K, Semiond D, Besenval M, Tolcher AW (2009) Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 15(2):723–730

    Article  CAS  PubMed  Google Scholar 

  76. Mitra A, Sept D (2008) Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophys J 95(7):3252–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  CAS  PubMed  Google Scholar 

  78. Morris PG (2010) Advances in therapy: eribulin improves survival for metastatic breast cancer. Anti-Cancer Drugs 21(10):885–889

    Article  CAS  PubMed  Google Scholar 

  79. Mullard A (2012) Protein-protein interaction inhibitors get into the groove. Nat Rev Drug Discov 11(3):173–175

    Article  CAS  PubMed  Google Scholar 

  80. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572

    Article  CAS  PubMed  Google Scholar 

  81. Nabholtz JM, Gligorov J (2005) The role of taxanes in the treatment of breast cancer. Expert Opin Pharmacother 6(7):1073–1094

    Article  CAS  PubMed  Google Scholar 

  82. Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 5(7):596–613

    Article  CAS  PubMed  Google Scholar 

  83. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW (2014) Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 14(4):248–262

    Article  CAS  PubMed  Google Scholar 

  84. Nussinov R, Tsai CJ (2013) Allostery in disease and in drug discovery. Cell 153(2):293–305

    Article  CAS  PubMed  Google Scholar 

  85. Nussinov R, Tsai CJ, Csermely P (2011) Allo-network drugs: harnessing allostery in cellular networks. Trends Pharmacol Sci 32(12):686–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Olziersky AM, Labidi-Galy SI (2017) Clinical development of anti-mitotic drugs in cancer. Adv Exp Med Biol 1002:125–152

    Article  CAS  PubMed  Google Scholar 

  87. Osborne C, Challagalla JD, Eisenbeis CF, Holmes FA, Neubauer MA, Koutrelakos NW, Taboada CA, Vukelja SJ, Wilks ST, Allison MA, Reddy P, Sedlacek S, Wang Y, Asmar L, O’Shaughnessy J (2018) Ixabepilone and carboplatin for hormone receptor positive/HER2-neu negative and triple negative metastatic breast cancer. Clin Breast Cancer 18(1):e89–e95

    Article  CAS  PubMed  Google Scholar 

  88. Ottaggio L, Bestoso F, Armirotti A, Balbi A, Damonte G, Mazzei M, Sancandi M, Miele M (2008) Taxanes from shells and leaves of Corylus avellana. J Nat Prod 71(1):58–60

    Article  CAS  PubMed  Google Scholar 

  89. Panjkovich A, Daura X (2014) PARS: a web server for the prediction of protein allosteric and regulatory sites. Bioinformatics 30(9):1314–1315

    Article  CAS  PubMed  Google Scholar 

  90. Pegoraro AF, Janmey P, Weitz DA (2017) Mechanical properties of the cytoskeleton and cells. Cold Spring Harb Perspect Biol 9(11):a022038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Plumb JA (2004) Cell sensitivity assays: the MTT assay. Methods Mol Med 88:165–169

    CAS  PubMed  Google Scholar 

  92. Propper DJ, Braybrooke JP, Taylor DJ, Lodi R, Styles P, Cramer JA, Collins WC, Levitt NC, Talbot DC, Ganesan TS, Harris AL (1999) Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann Oncol 10(8):923–927

    Article  CAS  PubMed  Google Scholar 

  93. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328

    Article  CAS  PubMed  Google Scholar 

  94. Reynolds D, Shi BJ, McLean C, Katsis F, Kemp B, Dalton S (2003) Recruitment of Thr 319-phosphorylated Ndd1p to the FHA domain of Fkh2p requires Clb kinase activity: a mechanism for CLB cluster gene activation. Genes Dev 17(14):1789–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Richardson DL, Sill MW, Coleman RL, Sood AK, Pearl ML, Kehoe SM, Carney ME, Hanjani P, Van Le L, Zhou XC, Alvarez Secord A, Gray HJ, Landrum LM, Lankes HA, Hu W, Aghajanian C (2018) Paclitaxel with and without Pazopanib for persistent or recurrent ovarian cancer: a randomized clinical trial. JAMA Oncol 4(2):196–202

    Article  PubMed  Google Scholar 

  96. Roskoski R Jr (2016) Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol Res 107:249–275

    Article  CAS  PubMed  Google Scholar 

  97. Rouhana J, Padilla A, Estaran S, Bakari S, Delbecq S, Boublik Y, Chopineau J, Pugniere M, Chavanieu A (2013) Kinetics of interaction between ADP-ribosylation factor-1 (Arf1) and the Sec7 domain of Arno guanine nucleotide exchange factor, modulation by allosteric factors, and the uncompetitive inhibitor brefeldin A. J Biol Chem 288(7):4659–4672

    Article  CAS  PubMed  Google Scholar 

  98. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062):1173–1178

    Article  CAS  PubMed  Google Scholar 

  99. Saloustros E, Mavroudis D, Georgoulias V (2008) Paclitaxel and docetaxel in the treatment of breast cancer. Expert Opin Pharmacother 9(15):2603–2616

    Article  CAS  PubMed  Google Scholar 

  100. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277(5698):665–667

    Article  CAS  PubMed  Google Scholar 

  101. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77(3):1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schulze M, Stock C, Zaccagnini M, Teber D, Rassweiler JJ (2014) Temsirolimus. Recent Results Cancer Res 201:393–403

    Article  CAS  PubMed  Google Scholar 

  103. Schwabe RF, Hess S, Johnson JP, Engelmann H (1997) Modulation of soluble CD40 ligand bioactivity with anti-CD40 antibodies. Hybridoma 16(3):217–226

    Article  CAS  PubMed  Google Scholar 

  104. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15(8):533–550

    Article  CAS  PubMed  Google Scholar 

  105. Shen Q, Wang G, Li S, Liu X, Lu S, Chen Z, Song K, Yan J, Geng L, Huang Z, Huang W, Chen G, Zhang J (2016) ASD v3.0: unraveling allosteric regulation with structural mechanisms and biological networks. Nucleic Acids Res 44(D1):D527–D535

    Article  CAS  PubMed  Google Scholar 

  106. Sheng C, Dong G, Miao Z, Zhang W, Wang W (2015) State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem Soc Rev 44(22):8238–8259

    Article  CAS  PubMed  Google Scholar 

  107. Sho M, Sandner SE, Najafian N, Salama AD, Dong V, Yamada A, Kishimoto K, Harada H, Schmitt I, Sayegh MH (2002) New insights into the interactions between T-cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg 236(5):667–675

    Article  PubMed  PubMed Central  Google Scholar 

  108. Silvian LF, Friedman JE, Strauch K, Cachero TG, Day ES, Qian F, Cunningham B, Fung A, Sun L, Shipps GW, Su L, Zheng Z, Kumaravel G, Whitty A (2011) Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism. ACS Chem Biol 6(6):636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Smith MC, Gestwicki JE (2012) Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14:e16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  CAS  PubMed  Google Scholar 

  111. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, Wiuf C (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105(19):6959–6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Suchard SJ, Stetsko DK, Davis PM, Skala S, Potin D, Launay M, Dhar TG, Barrish JC, Susulic V, Shuster DJ, McIntyre KW, McKinnon M, Salter-Cid L (2010) An LFA-1 (alphaLbeta2) small-molecule antagonist reduces inflammation and joint destruction in murine models of arthritis. J Immunol 184(7):3917–3926

    Article  CAS  PubMed  Google Scholar 

  113. Thiel P, Kaiser M, Ottmann C (2012) Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Angew Chem Int Ed Eng 51(9):2012–2018

    Article  CAS  Google Scholar 

  114. Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, Welsh S, Zheng W, Seletsky BM, Palme MH, Habgood GJ, Singer LA, Dipietro LV, Wang Y, Chen JJ, Quincy DA, Davis A, Yoshimatsu K, Kishi Y, Yu MJ, Littlefield BA (2001) In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 61(3):1013–1021

    CAS  PubMed  Google Scholar 

  115. van Westen GJ, Gaulton A, Overington JP (2014) Chemical, target, and bioactive properties of allosteric modulation. PLoS Comput Biol 10(4):e1003559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet AS, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabasi AL, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6(1):83–90

    Article  CAS  PubMed  Google Scholar 

  117. Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu JJ, Zhao C, Glenn K, Wen Y, Tovar C, Packman K, Vassilev L, Graves B (2013) Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett 4(5):466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wagner JR, Lee CT, Durrant JD, Malmstrom RD, Feher VA, Amaro RE (2016) Emerging computational methods for the rational discovery of allosteric drugs. Chem Rev 116(11):6370–6390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang Q, Zheng M, Huang Z, Liu X, Zhou H, Chen Y, Shi T, Zhang J (2012) Toward understanding the molecular basis for chemical allosteric modulator design. J Mol Graph Model 38:324–333

    Article  CAS  PubMed  Google Scholar 

  120. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327

    Article  CAS  PubMed  Google Scholar 

  121. Watterson SH, Xiao Z, Dodd DS, Tortolani DR, Vaccaro W, Potin D, Launay M, Stetsko DK, Skala S, Davis PM, Lee D, Yang X, KW MI, Balimane P, Patel K, Yang Z, Marathe P, Kadiyala P, Tebben AJ, Sheriff S, Chang CY, Ziemba T, Zhang H, Chen BC, Del Monte AJ, Aranibar N, McKinnon M, Barrish JC, Suchard SJ, Murali Dhar TG (2010) Small molecule antagonist of leukocyte function associated antigen-1 (LFA-1): structure-activity relationships leading to the identification of 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-tria zaspiro[4.4]nonan-7-yl)nicotinic acid (BMS-688521). J Med Chem 53(9):3814–3830

    Article  CAS  PubMed  Google Scholar 

  122. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009

    Article  CAS  PubMed  Google Scholar 

  123. Whitty A, Kumaravel G (2006) Between a rock and a hard place? Nat Chem Biol 2(3):112–118

    Article  CAS  PubMed  Google Scholar 

  124. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18(6):579–586

    Article  CAS  PubMed  Google Scholar 

  125. Zarzycka B, Kuenemann MA, Miteva MA, Nicolaes GA, Vriend G, Sperandio O (2016) Stabilization of protein-protein interaction complexes through small molecules. Drug Discov Today 21(1):48–57

    Article  CAS  PubMed  Google Scholar 

  126. Zhang B, Wu T, Chen M, Zhou Y, Yi D, Guo R (2013) The CD40/CD40L system: a new therapeutic target for disease. Immunol Lett 153(1–2):58–61

    Article  CAS  PubMed  Google Scholar 

  127. Zhong M, Gadek TR, Bui M, Shen W, Burnier J, Barr KJ, Hanan EJ, Oslob JD, Yu CH, Zhu J, Arkin MR, Evanchik MJ, Flanagan WM, Hoch U, Hyde J, Prabhu S, Silverman JA, Wright J (2012) Discovery and development of potent LFA-1/ICAM-1 antagonist SAR 1118 as an ophthalmic solution for treating dry eye. ACS Med Chem Lett 3(3):203–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhuang C, Miao Z, Sheng C, Zhang W (2014a) Updated research and applications of small molecule inhibitors of Keap1-Nrf2 protein-protein interaction: a review. Curr Med Chem 21:1861–1870

    Article  CAS  PubMed  Google Scholar 

  129. Zhuang C, Miao Z, Wu Y, Guo Z, Li J, Yao J, Xing C, Sheng C, Zhang W (2014b) Double-edged swords as cancer therapeutics: novel, orally active, small molecules simultaneously inhibit p53–MDM2 interaction and the NF-κB pathway. J Med Chem 57:567–577

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunquan Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ni, D., Liu, N., Sheng, C. (2019). Allosteric Modulators of Protein–Protein Interactions (PPIs). In: Zhang, J., Nussinov, R. (eds) Protein Allostery in Drug Discovery. Advances in Experimental Medicine and Biology, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-13-8719-7_13

Download citation

Publish with us

Policies and ethics