Skip to main content

Molecular Dynamics Study on Cement–Graphene Nanocomposite

  • Chapter
  • First Online:
Molecular Simulation on Cement-Based Materials

Abstract

Nanotechnology has been utilized to improve the properties of the cement-based material. In previous chapters, the nanoscience of the cement hydrate has been investigated by means of molecular simulation. It provides valuable insights on the molecular structure, dynamics, and mechanical properties of cement hydrate at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunch, J. S., Van Der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., et al. (2007). Electromechanical resonators from graphene sheets. Science, 315(5811), 490–493.

    Article  CAS  Google Scholar 

  2. Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z., & Koratkar, N. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 3(12), 3884–3890.

    Article  CAS  Google Scholar 

  3. Li, C., Adamcik, J., & Mezzenga, R. (2012). Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nature Nanotechnology, 7(7), 421–427.

    Article  CAS  Google Scholar 

  4. Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M., et al. (2015). Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology, 10(3), 277–283.

    Article  CAS  Google Scholar 

  5. Lee, C., Wei, X. D., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388.

    Article  CAS  Google Scholar 

  6. Li, Z. J. (2011). Advanced concrete technology. Wiley.

    Google Scholar 

  7. Georgakilas, V., Tiwari, J. N., Kemp, K. C., Perman, J. A., Bourlinos, A. B., Kim, K. S., et al. (2016). Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chemical Reviews, 116(9), 5464–5519.

    Article  CAS  Google Scholar 

  8. Pan, Y., Wu, T., Bao, H., & Li, L. (2011). Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydrate Polymers, 84(4), 1908–1915.

    Article  Google Scholar 

  9. Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., & Zhou, Q. (2013). Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials, 49, 121–127.

    Article  Google Scholar 

  10. Pan, Z., He, L., Qiu, L., Korayem, A. H., Li, G., Zhu, J. W., et al. (2015). Mechanical properties and microstructure of a graphene oxide–cement composite. Cement & Concrete Composites, 58, 140–147.

    Article  CAS  Google Scholar 

  11. Lu, Z., Hou, D., Meng, L., Sun, G., Lu, C., & Li, Z. (2015). Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Advances, 5(122), 100598–100605.

    Article  CAS  Google Scholar 

  12. Abrishami, M. E., & Zahabi, V. (2016). Reinforcing graphene oxide/cement composite with NH2 functionalizing group. Bulletin of Materials Science, 39(4), 1–6.

    Article  Google Scholar 

  13. Alkhateb, H., Al-Ostaz, A., Cheng, H. D., & Li, X. (2013). Materials genome for graphene–cement nanocomposites. Journal of Nanomechanics & Micromechanics, 3(3), 67–77.

    Article  Google Scholar 

  14. Sanchez, F., & Zhang, L. (2008). Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium–silicate–hydrate: Interaction energies, structure, and dynamics. Journal of Colloid and Interface Science, 323(2), 349–358.

    Article  CAS  Google Scholar 

  15. Peyvandi, A., Soroushian, P., Abdol, N., & Balachandra, A. M. (2013). Surface-modified graphite nanomaterials for improved reinforcement efficiency in cementitious paste. Carbon, 63(2), 175–186.

    Article  CAS  Google Scholar 

  16. Chenoweth, K., van Duin, A. C. T., & Goddard, W. A. (2008). ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 112(5), 1040–1053.

    Article  CAS  Google Scholar 

  17. van Duin, A. C. T., Strachan, A., Stewman, S., Zhang, Q., Xu, X., & Goddard, W. A. (2003). ReaxFFsio reactive force field for silicon and silicon oxide systems. The Journal of Physical Chemistry A, 107(19), 3803–3811.

    Article  Google Scholar 

  18. Manzano, H., Moeini, S., Marinelli, F., van Duin, A. C. T., Ulm, F. J., & Pellenq, R. J. M. (2011). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemistry Society, 134(4), 2208–2215.

    Article  Google Scholar 

  19. Hamid, S. (1981). The crystal structure of the 11 A natural tobermorite Ca2.25Si3O7.5(OH)1.5H2O. Zeitschrifit fur Kristallographie, 154, 189–198.

    Google Scholar 

  20. Montes-Morán, M. A., van Hattum, F. W. J., Nunes, J. P., Martínez-Alonso, A., Tascón, J. M. D., & Bernardo, C. A. (2005). A study of the effect of plasma treatment on the interfacial properties of carbon fibre–thermoplastic composites. Carbon, 43(8), 1795–1799.

    Article  Google Scholar 

  21. Allington, R. D., Attwood, D., Hamerton, I., Hay, J. N., & Howlin, B. J. (1998). A model of the surface of oxidatively treated carbon fibre based on calculations of adsorption interactions with small molecules. Composites Part A: Applied Science and Manufacturing, 29(9), 1283–1290.

    Article  Google Scholar 

  22. Hou, D., Zhao, T., Ma, H., & Li, Z. (2015). Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: Structure, reactivity, and mechanical properties. The Journal of Physical Chemistry C, 119(3), 1346–1358.

    Article  CAS  Google Scholar 

  23. Youssef, M., Pellenq, R. J. M., & Yildiz, B. (2011). Glassy nature of water in an ultraconfining disordered material: The case of calcium silicate hydrate. Journal of American Chemistry Society, 133(8), 2499–2510.

    Article  CAS  Google Scholar 

  24. Qomi, M. J. A., Ulm, F. J., & Pellenq, R. J. M. (2012). Evidence on the dual nature of aluminum in the calcium–silicate–hydrates based on atomistic simulations. Journal of the American Ceramic Society, 95(3), 1128–1137.

    CAS  Google Scholar 

  25. Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3(2), 101–105.

    Article  CAS  Google Scholar 

  26. Mead, R. N., & Mountjoy, G. (2006). A molecular dynamics study of the atomic structure of (CaO)x(SiO2)1−x glasses. Journal of Physical Chemistry, 110(29), 273–278.

    Google Scholar 

  27. Pellenq, R. J. M., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., & Yip, S. (2009). A realistic molecular model of cement hydrates. PNAS, 106(38), 16102–16107.

    Article  CAS  Google Scholar 

  28. L’Hôpital, E., Lothenbach, B., Kulik, D. A., & Scrivener, K. (2016). Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate. Cement and Concrete Research, 85, 111–121.

    Article  Google Scholar 

  29. Hou, D. S., Li, Z. J., & Zhao, T. J. (2015). Reactive force field simulation on polymerization. RSC Advances, 5, 448–461.

    Article  CAS  Google Scholar 

  30. Hou, D. S., & Li, Z. J. (2014). Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: Case study of jennite. Journal of Materials in Civil Engineering, 26(5).

    Google Scholar 

  31. Hou, D. S., Li, Z. J., Zhao, T. J., & Zhang, P. (2015). Water transport in the nano-pore of the calcium silicate phase: Reactivity, structure and dynamics. Physical Chemistry Chemical Physics, 17, 1411–1423.

    Article  CAS  Google Scholar 

  32. Coudert, F.-X., Vuilleumier, R., & Boutin, A. (2006). Dipole moment, hydrogen bonding and IR spectrum of confined water. Physical Chemistry Chemical Physics, 7(12), 2464–2467.

    Article  CAS  Google Scholar 

  33. Cai, W. W., Piner, R. D., Stadermann, F. J., Park, S., Shaibat, M. A., Ishii, Y., et al. (2008). Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science, 321, 1815–1817.

    Article  CAS  Google Scholar 

  34. Qomi, M. J. A., Bauchy, M., Ulm, F. J., & Pellenq, R. J. M. (2014). Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. The Journal of Chemical Physics, 140(5), 054515.

    Article  Google Scholar 

  35. Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., et al. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037.

    Article  CAS  Google Scholar 

  36. Falk, K., Sedlmeier, F., Joly, L., Netz, R. R., & Bocquet, L. (2010). Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction. Nano Letters, 10(10), 4067–4073.

    Article  CAS  Google Scholar 

  37. Alexiadis, A., & Kassinos, S. (2008). Molecular simulation of water in carbon nanotubes. Chemical Reviews, 108(12), 5014–5034.

    Article  CAS  Google Scholar 

  38. Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J. M., & Van Vliet, K. J. (2012). Thermodynamics of water confined porous calcium silicate hydrate. Langmuir, 28(31), 11422–11432.

    Article  CAS  Google Scholar 

  39. Merlino, S., Bonnacorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11 A: Normal and anomalous forms, OD character and polyptic modifications. European Journal of Mineralogy, 13, 577–590.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongshuai Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, D. (2020). Molecular Dynamics Study on Cement–Graphene Nanocomposite. In: Molecular Simulation on Cement-Based Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8711-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8711-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8710-4

  • Online ISBN: 978-981-13-8711-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics