Skip to main content

Introduction to Simulation Techniques on the Cement-Based Materials

  • Chapter
  • First Online:

Abstract

Molecular simulation includes both theoretical methods and computational techniques to model the various properties of the molecules. The techniques have been widely applied in the fields of computational chemistry, drug design, computational biology, and materials science. With the development of science and technology, the modern computer provided strong support on the molecular simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.

    Article  CAS  Google Scholar 

  2. Alder, B., & Wainwright, T. E. (1958). Molecular dynamics by electronic computers (pp. 97–131).

    Google Scholar 

  3. Levitt, M., & Warshel, A. (1975). Computer simulation of protein folding. Nature, 253(5494), 694.

    Article  CAS  Google Scholar 

  4. Leach, B. A. R. (1996). Molecular modelling: Principles and applications (pp. 199–200). Longman.

    Google Scholar 

  5. Cygan, R. T., Liang, J.-J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108(4), 1255–1266.

    Google Scholar 

  6. Kirkpatrick, R. J., Kalinichev, A. G., Hou, X., & Struble, L. (2005). Experimental and molecular dynamics modeling studies of interlayer swelling: Water incorporation in kanemite and ASR gel. Materials and Structures, 38(4), 449–458.

    Article  CAS  Google Scholar 

  7. Cygan, R. T., Greathouse, J. A., Heinz, H., & Kalinichev, A. G. (2009). Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19(17), 2470–2481.

    Google Scholar 

  8. Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.

    Google Scholar 

  9. Shahsavari, R., Pellenq, R. J., & Ulm, F. J. (2010). Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics, 13(3), 1002–1011.

    Google Scholar 

  10. Pellenq, J. M., Kushima, A., Shahsavari, R., Vliet, K. J. V., Buehler, M. J., Yip, S., et al. (2009). A realistic molecular model of cement hydrates. PNAS, 106(38), 16102–16107.

    Article  CAS  Google Scholar 

  11. Youssef, M., Pellenq, R. J. M., & Yildiz, B. (2011). Glassy nature of water in an ultraconfining disordered material: The case of calcium–silicate–hydrate. Journal of the American Chemical Society, 133(8), 2499–2510.

    Google Scholar 

  12. Ji, Q., Pellenq, J. M., & Vliet, K. J. (2012). Comparison of computational water models for simulation of calcium–silicate–hydrate. Computational Materials Science, 53(1), 234–240.

    Google Scholar 

  13. Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J., & Van Vliet, K. J. (2012). Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir, 28(31), 11422.

    Google Scholar 

  14. Manzano, H., Moeini, S., Marinelli, F., van Duin, A. C., Ulm, F. J., & Pellenq, R. J. M. (2012). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemical Society, 134(4), 2208–2215.

    Google Scholar 

  15. van Duin, A. (2002). ReaxFF user manual. Materials and Process Simulation Center, California Institute of Technology.

    Google Scholar 

  16. Tersoff, J. (1986). New empirical model for the structural properties of silicon. Physical Review Letters, 56(6), 632.

    Article  CAS  Google Scholar 

  17. Brenner, D. W., Shenderova, O. A., Harrison, J., Stuart, S. J., Ni, B., & Sinnott, S. B. (2002). A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter, 14(4), 783–802.

    Google Scholar 

  18. Leroch, S., & Wendland, M. (2012). Simulation of forces between humid amorphous silica surfaces: A comparison of empirical atomistic force fields. Journal of Physical Chemistry C, 116(50), 26247.

    Google Scholar 

  19. Manzano, H., Masoero, E., Lopezarbeloa, I., & Jennings, H. M. (2013). Shear deformations in calcium silicate hydrates. Soft Matter, 9(30), 7333–7341.

    Google Scholar 

  20. Lau, T. T., Kushima, A., & Yip, S. (2010). Atomistic simulation of creep in a nanocrystal. Physical Review Letters, 104(17), 175501.

    Google Scholar 

  21. Janssens, G. O. A., Baekelandt, B. G., Toufar, H., Mortier, W. J., & Schoonheydt, R. A. (1995). Comparison of cluster and infinite crystal calculations on zeolites with the electronegativity equalization method (EEM). Journal of Physical Chemistry A, 99(10), 3251–3258.

    Google Scholar 

  22. Knyazev, A. V., & Lashuk, I. (2007). Steepest descent and conjugate gradient methods with variable preconditioning. SIAM Journal on Matrix Analysis and Applications, 29(4), 1267–1280.

    Google Scholar 

  23. Wert, C. A., Thomson, R. M., & Armstrong, H. L. (1964). Physics of solids. American Journal of Physics, 33(5), 417.

    Google Scholar 

  24. Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society A, 65(5), 349–354.

    Article  Google Scholar 

  25. Frenkel, D., Smit, B., & Ratner, M. A. (1996). Understanding molecular simulation: From algorithms to applications (p. 66). Academic Press, Inc.

    Google Scholar 

  26. Infeld, L. (1938). The principles of statistical mechanics by Richard C. Tolman (pp. 691–692). The Clarendon Press.

    Google Scholar 

  27. Verlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 22(1), 79–85.

    Google Scholar 

  28. Kerisit, S., & Liu, C. J. (2009). Molecular simulations of water and ion diffusion in nanosized mineral fractures. Environmental Science & Technology, 43(3), 777–782.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongshuai Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, D. (2020). Introduction to Simulation Techniques on the Cement-Based Materials. In: Molecular Simulation on Cement-Based Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8711-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8711-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8710-4

  • Online ISBN: 978-981-13-8711-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics