Skip to main content

Evaluation and Management Approaches

  • Chapter
  • First Online:
Climate Change and Conservation of Coastal Built Heritage
  • 408 Accesses

Abstract

In response to the urgent need to address the new challenges facing conservation practices in the world, several integrated approaches and preservation studies worldwide in partnership with the community and other stakeholders could help in managing the cultural heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnew, N., & Demas, M. (2015). Principles for the conservation of heritage sites in China. Beijing: ICOMOS China and the State Administration of Cultural Heritage.

    Google Scholar 

  • Allen Consulting Group. (2005). Valuing the priceless: The value of historic heritage in Australia. s.l.: s.n.

    Google Scholar 

  • Antonio, M.-M., Isabel, T.-A., Cho, S., & Vivancos, J.-L. (2016). Energy efficiency and thermal comfort in historic buildings: A review. Renewable and Sustainable Energy Reviews, 61, 70–85.

    Article  Google Scholar 

  • Arroyo, F., & Rosario, V.-S. (2013). The church of Saint Martin (Trujillo, Spain): Study of the stone degradation. Journal of Cultural Heritage, 14(3), e109–e112.

    Article  Google Scholar 

  • ASHRAE, ANSI. (1992). Standard 55-1992, Thermal environmental conditions for human occupancy. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

    Google Scholar 

  • ASHRAE, ANSI. (2004). Standard 55-2004, Thermal environmental conditions for human occupancy. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineering.

    Google Scholar 

  • ASHRAE, ANSI. (2010). ANSI/ASHRAE 55-2010 thermal environmental conditions for human occupancy. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineering.

    Google Scholar 

  • Atsonios, I., et al. (2013). Large scale measurements campaign to assess the thermal behaviour of an 18th century historic building in Athens. European Academy of Bolzano (EURAC).

    Google Scholar 

  • Auliciems, A. (1981). Towards a psychophisiological model of thermal perception. International Journal of Biometeorology, 13, 147–162.

    Article  Google Scholar 

  • Auliciems, A. (1983). Psycho-physiological criteria for global zones of building design. Stuttgart, Hohenheim: s.n.

    Google Scholar 

  • Auliciems, A., & de Dear, R. (1986). Air conditioning in Australia: Human thermal factors. Architectural Science Review, 29, 67–75.

    Article  Google Scholar 

  • Auliciems, A., & Szokolay, S. V. (1997). Thermal comfort. s.l: PLEA.

    Google Scholar 

  • Balocco, C., & Grazzini, G. (2009). Numerical simulation of ancient natural ventilation systems of historical buildings. A case study in Palermo. Journal of Cultural Heritage, 10(2), 313–318.

    Article  Google Scholar 

  • Bank, H. S. D. (1998). Canadian Centre for Occupational Health and Safety. s.l.: s.n.

    Google Scholar 

  • Barker, P., et al. (2002). Principles for the conservation of heritage sites in China. s.l: The Getty Conservation Institute.

    Google Scholar 

  • Becker, R., & Paciuk, M. (2009). Thermal comfort in residential buildings—Failure to predict by Standard model. Building and Environment, 44, 948–960.

    Article  Google Scholar 

  • Bouden, C., & Ghrab, N. (2005). An adaptive thermal comfort model for the Tunisian context: A field study results. Energy Build, 37(9), 952–963.

    Article  Google Scholar 

  • Brager, G., & de Dear, R. (2000). A standard for natural ventilation‏. s.l.: s.n.

    Google Scholar 

  • BSI. (2008). BS EN 15251:2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. London: British Standards Institute.

    Google Scholar 

  • Busch, J. (1990). Thermal responses to the Thai office environment. ASHRAE Transactions, 96, 859–872.

    Google Scholar 

  • Busch, J. (1992). A tale of two populations: Thermal comfort in air-conditioned and naturally ventilated offices in Thailand. Energy and Buildings, 18(3–4), 235–249.

    Article  Google Scholar 

  • Camuffo, D. (1998). Microclimate for cultural heritage. Amsterdam: Elsevier.

    Google Scholar 

  • Camuffo, D., Bernardi, A., Sturaro, G., & Valentino, A. (2002). The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence. Journal of Cultural Heritage, 3(2), 155–161.

    Article  Google Scholar 

  • Camuffo, D., et al. (2001). Environmental monitoring in four European museums. Atmospheric Environment, 1(35 Supplement), S127–S140.

    Article  Google Scholar 

  • Cao, B., Zhu, Y., Li, M., & Ouyang, Q. (2014). Individual and district heating: A comparison of residential heating modes with an analysis of adaptive thermal comfort. Energy and Buildings, 78, 17–24.

    Article  Google Scholar 

  • Chongqing University, Chinese Academy of Architectural Sciences. (2012). Evaluation standard for indoor thermal environment in civil buildings GB/T 50785-2012 (pp. 11–12). Beijing: China Construction Industry Press. (In Chinese).

    Google Scholar 

  • Corgnati, S. P., Fabi, V., & Filippi, M. (2009). A methodology for microclimatic quality evaluation in museums: Application to a temporary exhibit. Building and Environment, 44, 1253–1260.

    Article  Google Scholar 

  • Daghigh, R., Adam, N. M., & Sahari, B. B. (2009). Ventilation parameters and thermal comfort of naturally and mechanically ventilated offices. Indoor and Built Environment, 18(2), 113–122.

    Article  Google Scholar 

  • de Abreu, P. G., et al. (2011). Estimativa da Temperatura de Globo Negro a Partir da Temperatura de Bulbo Seco. Engenharia na Agricultura/Engineering in Agriculture, 19(6), 557–563.

    Google Scholar 

  • de Dear, R., Brager, G., & Cooper, D. (1997). Developing an adaptive model of thermal comfort and preference. Final Report ASHRAE RP-884, s.l.

    Google Scholar 

  • De Dear, R., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. Ashrae Transactions, 104(1), 73–81(9).

    Google Scholar 

  • De Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549–561.

    Article  Google Scholar 

  • De Dear, R. J., Brager, G. S., Reardon, J., & Nicol, F. (1998). Developing an adaptive model of thermal comfort and preference/discussion. ASHRAE Transactions, 104(1), 145–167.

    Google Scholar 

  • de Dear, R. J., et al. (2013). Progress in thermal comfort research over the last twenty years. Indoor Air, 23, 442–461.

    Article  Google Scholar 

  • Deuble, M. P., & De Dear, R. J. (2014). Is it hot in here or is it just me? Validating the post-occupancy evaluation. Intelligent Buildings International, 6(2), 112–134.

    Article  Google Scholar 

  • Dili, A., Naseer, M., & Varghese, T. (2010). Thermal comfort study of Kerala traditional residential buildings based on questionnaire survey among occupants of traditional and modern buildings. Energy and Buildings, 42(11), 2139–2150.

    Article  Google Scholar 

  • Drake, S., de Dear, R., Alessi, A., & Deuble, M. (2010). Occupant comfort in naturally ventilated and mixed-mode spaces within air-conditioned offices. Architectural Science Review, 53(3), 297–306.

    Article  Google Scholar 

  • Dumitru, B., & Dumitru, G. M. (2008). 6 Sigma tools for management of defects by steel casted parts. In Proceedings of the 10th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering (MACMESE’08), s.l.

    Google Scholar 

  • Ealiwa, M., Taki, A. H., Howarth, A. T., & Seden, M. R. (1999). Field investigation of thermal comfort in both naturally and mechanically ventilated buildings in Ghadames, Libya. Proceedings of Indoor Air, 99, 166–171.

    Google Scholar 

  • Efficiency Energy for EU Cultural Heritage. (2013). Summary guide for local decision-makers, technical guidance on energy efficient renovation of historic buildings (Online). Available at http://www.3encult.eu/en/deliverables/Documents/WP3_D3.6_20130527_P21_Technical_guide_EE_options_for_local_governments.pdf. Accessed 16 December 2015.

  • Erhardt, D., & Mecklenburg, M. (1994). Relative humidity re-examined. Studies in Conservation, 39(Supplement 2), 32–38. In Preprints of the Contributions to the Ottawa Congress, 12–16 September 1994. Preventive Conservation: Practice, Theory and Research).

    Article  Google Scholar 

  • Erhardt, D., Mecklenburg, M. F., Tumosa, C. S., & McCormick-Goodhart, M. (1995). Newsletter (Western Association for Art Conservation). Determination of allowable RH fluctuations, 19–23.

    Google Scholar 

  • Fan, Y., Lang, S., & Xu, W. (1993). Field study on acceptable thermal conditions for residential buildings in transition zone of China. In J.J.K Jaakkola, R. Ilmarinen, & O. Seppänen (Eds.), Proceedings of Indoor Air ’93 (Vol. 6, pp. 109–114), Helsinki.

    Google Scholar 

  • Fanger, P. O. (1972). Thermal comfort, analysis and application in environmental engineering. New York: McGraw-Hill.

    Google Scholar 

  • Fanger, P. O., & Toftum, J. (2001). Thermal comfort in the future-excellence and expectation. In Conference on Moving Thermal Comfort Standards into the 21st Century. Oxford Brookes University. s.l., s.n.

    Google Scholar 

  • Farmaki, M.-E., Kyriafini, T. I., Assael, M. J., & Kakosimos, K. E. (2016). Simulated and measured performance investigation of a bioclimatic summer residence in Greece. Fresenius Environmental Bulletin, 25(8), 2803–2812.

    Google Scholar 

  • Fato, I., Martellotta, F., & Chiancarella, C. (2004). Thermal comfort in the climatic conditions of Southern Italy. ASHRAE Transactions, 110(2), 578–593.

    Google Scholar 

  • Frey, B. S. (1997). The evaluation of cultural heritage: Some critical issues‏. In: Economic perspectives on cultural heritage (pp. 31–49). London: Palgrave Macmillan.

    Chapter  Google Scholar 

  • Frontczak, M., & Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922–937.

    Article  Google Scholar 

  • Fuller, S., & Bulkeley, H. (2013). Changing countries, changing climates: Achieving thermal comfort through adaptation in everyday activities. Area, 45(1), 63–69.

    Article  Google Scholar 

  • GB 50736-2012. (2012). Code for design of heating ventilation and air conditioning for civil buildings. Beijing: s.n. (In Chinese).

    Google Scholar 

  • GB/T 18049-2000. (2000). Moderate thermal environments—Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. Beijing: General Administration of Quality Supervision, Inspection and Quarantine. (In Chinese).

    Google Scholar 

  • Han, J., et al. (2009). A comparative analysis of urban and rural residential thermal comfort under natural ventilation environment. Energy and Buildings, 41(2), 139–145.

    Article  Google Scholar 

  • Hassan, M., Xie, H., & Rahmoun, T. (2018). Field study in the residential buildings in the old city of Tartous in Syria during the summer period. In Resilient & Responsible Architecture & Urbanism (RRAU) Conference. Groningen, Netherlands: s.n.

    Google Scholar 

  • Heidari, S., & Sharples, S. (2002). A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy and Buildings, 34(6), 607–614.

    Article  Google Scholar 

  • Humphreys, M. (1978). Outdoor temperatures and comfort indoors. Building Research and Practice, 6(2), 92–105.

    Article  Google Scholar 

  • Humphreys, M. A. (1976). Comfortable indoor temperatures related to the outdoor air temperature. Building Service Engineer, 44(5), 27.

    Google Scholar 

  • Hwang, R.-L., & Chen, C.-P. (2010). Field study on behaviors and adaptation of elderly people and their thermal comfort requirements in residential environments. Indoor Air, 20(3), 235–245.

    Article  Google Scholar 

  • Hwang, R. L., Lin, T. P., & Kuo, N. J. (2006). Field experiments on thermal comfort in campus classrooms in Taiwan. Energy and Buildings, 38(1), 53–62.

    Article  Google Scholar 

  • Indraganti, M., Ooka, R., Rijal, H., & Brager, G. S. (2014). Adaptive model of thermal comfort for offices in hot and humid climates of India. Building and Environment, 74, 39–53.

    Google Scholar 

  • ISO7726. (1998). International Standard ISO 7726. Ergonomics of the Thermal Environment, Instruments For Measuring Physical Quantities. Geneva: International Standard Organization (ISO).

    Google Scholar 

  • ISO7730. (1993). International Standard ISO 7730: Moderate Thermal Environments: Determination of the PMV and PDD Indices and specification of the conditions for Thermal Comfort. Geneva, Switzerland: International Standard Organizanition (ISO).

    Google Scholar 

  • ISO7730. (1994). Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva: International Standard Organization (ISO).

    Google Scholar 

  • ISO7730. (2005). Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva: International Standards Organization (ISO).

    Google Scholar 

  • Kanter, R. M. (2011). Zoom in, zoom out. Harvard Business Review, 89(3), 112-6, 131.

    Google Scholar 

  • Karjalainen, S. (2009). Thermal comfort and use of thermostats in Finnish homes and offices. Building and Environment, 44(6), 1237–1245.

    Article  Google Scholar 

  • Kiesow, G. (1982). Eine Einführung in die Denkmalpflege. s.l: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Kim, J., & de Dear, R. (2012). Impact of different building ventilation modes on occupant expectations of the main IEQ factors. Building and Environment, 57, 184–193.

    Article  Google Scholar 

  • La Gennusa, M., Rizzo, G., Scaccianoce, G., & Nicoletti, F. (2005). Control of indoor environments in heritage buildings: experimental measurements in an old Italian museum and proposal of a methodology. Journal of Cultural Heritage, 6(2), 147–155.

    Article  Google Scholar 

  • Lan, L., Lian, Z., Pan, L., & Ye, Q. (2009). Neurobehavioral approach for evaluation of office workers’ productivity: The effects of room temperature. Building and Environment, 44, 1578–1588.

    Article  Google Scholar 

  • Lan, L., et al. (2014). Experimental study on thermal comfort of sleeping people at different air temperatures. Building and Environment, 73, 24–31.

    Article  Google Scholar 

  • Lapithis, P. A. (2015). Passive solar architecture in Cyprus.

    Google Scholar 

  • Li, B., et al. (2012). The Chinese evaluation standard for the indoor thermal environment in free-running buildings. In Proceedings of 7th Windsor Conference: The Changing Context of Comfort in an Unpredictable World Cumberland Lodge. Windsor, London, UK: Network for Comfort and Energy Use in Buildings.

    Google Scholar 

  • Luo, M., et al. (2014). Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy and Buildings, 72, 411–418.

    Article  Google Scholar 

  • Luo, M., et al. (2015). Evaluating thermal comfort in mixed-mode buildings: A field study in a subtropical climate. Building and Environment, 88, 46–54.

    Article  Google Scholar 

  • Manioğlu, G., & Yılmaz, Z. (2008). Energy efficient design strategies in the hot dry area of Turkey. Building and Environment, 43(7), 1301–1309.

    Google Scholar 

  • Mason, R. (2002). Assessing values in conservation planning: Methodological issues and choices‏. In: Assessing the values of cultural heritage (pp. 5–30). s.l.: s.n.

    Google Scholar 

  • Mason, R., & de la Torre, M. (2002). Assessing the values of cultural heritage‏. In M. de la Torre (Ed.). Los Angeles: The Getty Conservation Institute.

    Google Scholar 

  • McCartney, K. J., & Nicol, F. J. (2002). Developing an adaptive control algorithm for Europe. Energy and Buildings, 34(6), 623–635.

    Article  Google Scholar 

  • McIntyre, D. (1980). Design requirements for a comfortable environment. Bioengineering. In: K. Cena & J. A. Clark (Eds.), Thermal Physiology and Comfort (pp. 157–168). Amsterdam: Elsevier.

    Google Scholar 

  • Mecklenburg, M. F., Tumosa, C. S., & Prid, A. (2004). Preserving legacy buildings. ASHRAE Journal, 46, 18–23.

    Google Scholar 

  • Michael, A., Demosthenous, D., & Philokyprou, M. (2017). Natural ventilation for cooling in Mediterranean climate: A case study in vernacular architecture of Cyprus. Energy and Buildings, 144, 333–345.

    Article  Google Scholar 

  • Nematchoua, M. K., Tchinda, R., & Orosa, J. A. (2014). Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study. Applied Energy, 114, 687–699.

    Article  Google Scholar 

  • Nicol, F., & Humphreys, M. (2007). Maximum temperatures in European office buildings to avoid heat discomfort. Solar Energy, 81(3), 295–304.

    Article  Google Scholar 

  • Nicol, J., Raja, I., Alauddin, A., & Jamy, N. (1999). Climatic variations on comfortable temperature: The Pakistan projects. Energy and Buildings, 30, 261–279.

    Article  Google Scholar 

  • Nicol, J. F., & Humphreys, M. A. (2004). A Stochastic Approach to Thermal Comfort-Occupant Behavior and Energy Use in Buildings. ASHRAE Transactions, 110(2), 554–568.

    Google Scholar 

  • Nypan, T. (2009). Effects of European Union legislation on the built cultural. Norway: Riksantikvaren, Directorate for Cultural Heritage.

    Google Scholar 

  • Olesen, B., & Parsons, K. C. (2002). Introduction to thermal comfort standards and to the proposed new version of EN ISO 7730. Energy and Buildings, 34(6), 537–548.

    Google Scholar 

  • Olgyay, V., & Olgyay, A. (1963). Design with climate: Bioclimatic approach to architectural regionalism. New Jersey: Princeton University Press.

    Google Scholar 

  • Østergård, T., Jensen, R. L., & Maagaard, S. E. (2016). Building simulations supporting decision making in early design—A review. Renewable and Sustainable Energy Reviews, 61, 187–201.

    Article  Google Scholar 

  • Pavlogeorgatos, G. (2003). Environmental parameters in museums. Building and Environment, 38, 1457–1462.

    Article  Google Scholar 

  • Porfyriou, H., & Re, A. (2015). Monitoring the management of World Heritage Sites: The Italian contribution. In Chinese Stone Conservation International Symposium. Dazu, China.: s.n.

    Google Scholar 

  • Rappoport, P. (2015). Best Practice in Cultural Built Heritage (Online). Available at http://www.heritage21.com.au/best-practice-in-cultural-built-heritage/#. Accessed 18 November 2017.

  • Rath & Strong. (2002). 6 Sigma pocket guide. s.l.: Rath & Strong Management Consultants.

    Google Scholar 

  • Rijal, H., Honjo, M., Kobayashi, R., & Nakaya, T. (2013). Investigation of comfort temperature, adaptive model and the window-opening behaviour in Japanese houses. Architectural Science Review, 56(1), 54–69.

    Article  Google Scholar 

  • Roaf, S., et al. (2010). Twentieth century standards for thermal comfort: promoting high energy buildings. Architectural Science Review, 53, 65–77.

    Article  Google Scholar 

  • Ronchi, A., & Nypan, T. (2006). European legislation and cultural heritage. In: A.M. Ronchi & T.M. Nypan (Eds.). Milan: Deleyva Editore. ISBN 88-88943-05-6.

    Google Scholar 

  • Rosario, V.-S., & Arroyo, F. (2013). The cathedral of Jerez De La Frontera (Cádiz, Spain): Stone degradation and conservation. Journal of Cultural Heritage, 14(3), e113–e116.

    Article  Google Scholar 

  • Royal Ontario Museum. (1979). In Search of the Black Box: A Report on the Proceedings of a Workshop on Micro-climates Held at the Royal Ontario Museum, February 1978 (pp. 37–39). Toronto: Royal Ontario Museum.

    Google Scholar 

  • Rupp, R. F., Vásquez, N. G., & Lamberts, R. (2015). A review of human thermal comfort in the built environment. Energy and Buildings, 105, 178–205.

    Article  Google Scholar 

  • Sakka, A., Wagner, A., & Santamouris, M. (2010). Thermal comfort and occupant satisfaction in residential buildings—Results of field study in residential buildings in Athens during the summer period. Windsor, London, UK: Network for Comfort and Energy Use in Buildings.

    Google Scholar 

  • Sari, L., Harris, D., & Gormley, M. (2013). Indoor thermal assessment of post-tsunami housing in Banda Aceh, Indonesia. International Journal for Housing Science and Its Applications, 37, 161–173.

    Google Scholar 

  • Schiller, G. E. (1990). A comparison of measured and predicted comfort in office buildings. ASHRAE Trans., 96, 609–622.

    Google Scholar 

  • Soebarto, V., & Bennetts, H. (2014). Thermal comfort and occupant responses during summer in a low to middle income housing development in South Australia. Building and Environment, 75, 19–29.

    Article  Google Scholar 

  • Tablada, A., et al. (2009). On natural ventilation and thermal comfort in compact urban environments—The Old Havana case. Building and Environment, 44(9), 1943–1958.

    Article  Google Scholar 

  • Toea, D. H. C., & Kubotaa, T. (2013). Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot–humid climates using ASHRAE RP-884 database. Frontiers of Architectural Research, 2(3), 278–291.

    Article  Google Scholar 

  • Tselepidaki, I., Santamouris, M., Moustris, C., & Poulopoulou, G. (1992). Analysis of the summer discomfort index in Athens, Greece, for cooling purposes. Energy and Buildings, 18(1), 51–56.

    Google Scholar 

  • Tsoutsos, T., et al. (2009). Development of the applications of solar thermal cooling systems in Greece and Cyprus. Fresenius Environmental Bulletin, 18(7b), 1367–1380.

    Google Scholar 

  • UNESCO. (2003). Convention for the safeguarding of the intangible cultural heritage. s.l: UNESCO.

    Google Scholar 

  • UNI EN ISO 7726. (2002). Ergonomics of the thermal environment—Instruments for measuring physical quantities. s.l.: s.n.

    Google Scholar 

  • Van den Beukel, A., & CIB. (1993). Building pathology: A state of the art report. Rotterdam, The Netherlands: International Council for Research and Innovation in Building and Construction (CIB), W086.

    Google Scholar 

  • Van Hoof, J. (2008). Forty years of Fanger’s model of thermal comfort: comfort for all? Indoor Air, 18, 182–201.

    Article  Google Scholar 

  • Watt, D. S. (2009). Building pathology: Principles and practice. s.l: Wiley.

    Google Scholar 

  • Yamtraipat, N., Khedari, J., & Hirunlabh, J. (2005). Thermal comfort standards for air conditioned buildings in hot and humid Thailand considering additional factors of acclimatization and education level, Solar Energy, 78, 504–517.

    Google Scholar 

  • Yang, W., & Zhang, G. (2008). Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China. International Journal of Biometeorology, 52(5), 385–398.

    Article  Google Scholar 

  • Yao, R., Li, B., & Liu, J. (2009). A theoretical adaptive model of thermal comfort—Adaptive Predicted Mean Vote (aPMV). Building and Environment, 44(10), 2089–2096.

    Article  Google Scholar 

  • Yau, Y. H., & Chew, B. T. (2014). A review on predicted mean vote and adaptive thermal comfort models. Building Services Engineering Research and Technology, 35(1), 23–35.

    Article  Google Scholar 

  • Zhu, Y., et al. (2008). Experimental study on the influence of operating temperature, clothing thermal resistance and season on human thermal sensation in partial thermal environment. National Academic Collection of HVAC Refrigeration. (In Chinese).

    Google Scholar 

  • Zogrob, S. M. (2014). Evaluation study of residential buildings’ comfort in Gaza Strip (Case Study: Khan Yunis’ Residential Buildings) (Master in Architecture thesis). The Islamic University-Gaza, Gaza, Palestine.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Hassan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, M., Xie, H. (2020). Evaluation and Management Approaches. In: Climate Change and Conservation of Coastal Built Heritage. Springer, Singapore. https://doi.org/10.1007/978-981-13-8672-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8672-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8671-8

  • Online ISBN: 978-981-13-8672-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics