Skip to main content

Alterations in Plant Secondary Metabolism by Seed Priming

  • Chapter
  • First Online:
Priming and Pretreatment of Seeds and Seedlings

Abstract

Seed technologists are extensively using seed priming with water alone or with some additives to improve germination potential and stress tolerance in seed. Priming is also very important to seed bank managers who require conserving germplasm of important crops ex situ. Taking care of the plant species, physiology, and seed morphology, different priming techniques and methods can be applied. All these treatments activate the pre-germinative seed metabolism. Alteration in the secondary metabolism starts from the beginning of water uptake along with seed-repairing process. The seed repair process includes induction of antioxidant system and activation of DNA repair pathways. Both these mechanisms are essential for the integrity of seed genome, successful germination, and seedling establishment. With the beginning of the water uptake, reactive oxygen species (ROS) start to accumulate in the seeds that can cause severe damage to seed proteins and lipids. However, to cope up with these hazardous ROS molecules, seeds have strong antioxidant system involving a number of enzymatic and nonenzymatic antioxidants. These antioxidant molecules play an active role in scavenging the injurious oxidative molecules, thus making the seed germination a successful event. This book chapter will provide an overview of priming and its impact on the alteration in production of different secondary metabolites which are produced in response to priming process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anup CP, Prasad M, Nataraj S, Mayuri NG, Manbali J, Hussain A, Kukkundoor RK (2015) Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens. J Proteome 120:58–74

    Article  CAS  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814. http://sci-hub.tw/10.1016/j.crvi.2008.07.022

    Article  CAS  PubMed  Google Scholar 

  • Bonsager BC, Finnie C, Roepstorff P, Svensson B (2007) Spatio-temporal changes in germi- nation and radicle elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer, and endosperm tissues. Proteomics 7:4528–4540

    Article  PubMed  CAS  Google Scholar 

  • Boudet J, Buitnink J, Hoekstra FA, Rogniaux H, Larré C, Satour P, Leprince O (2006) Com- parative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140:1418–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray CM (1995) Biochemical processes during the osmopriming of seeds. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 767–789

    Google Scholar 

  • Buitink J, Jegger JJ, Guisle I, Wu BL, Wuillème LG, Bars AL, Meur NL, Becker A, Küster H, Leprince O (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to desiccationtolerant stages in Medicago truncatula seeds. Plant J 47:735–750

    Article  CAS  PubMed  Google Scholar 

  • Capron I, Corbineau F, Dacher F, Job C, Côme D, Job D (2000) Sugarbeet seed priming: effects of priming on germination, solubilization of 11-S globulin and accumulation of LEA proteins. Seed Sci Res 10:243–254. http://sci-hub.tw/10.1017/S0960258500000271

  • Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestova E, Westohoff P, Van Dorselaer A, Job D (2011) Proteomics reveals potential boiomarkers of seed vigor in sugarbeet. Proteomics 11:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, postpriming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Sci 180:212–220. http://sci-hub.tw/10.1016/j.plantsci.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vankova R, Amir R, Miller G (2014) ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166:370–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbineau F, Özbingol N, Vineland D, Côme D (2000) Improvement of tomato seed germi- nation by osmopriming as related to energy metabolism. In: Black M, Bradford KJ, Vasquez-Ramos J (eds) Seed biology advances and applications: proceedings of the sixth international workshop on seeds, Merida, Mexico. CABI, Cambridge, pp 467–474. http://sci-hub.tw/10.1079/9780851994048.0467

  • Cordoba-Canero D, Roldan-Arjona T, Ariza RR (2014) Arabidopsis ZDP DNA 30-phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases. Plant J 79:824–834

    Article  CAS  PubMed  Google Scholar 

  • de Lespinay A (2009) Study of seed priming mechanisms of three plant species used in revegetation of industrial sites. PhD thesis, Université Catholique de Louvain, Belgium, p 253

    Google Scholar 

  • de Lespinay A, Lequeux H, Lambillotte B, Lutts S (2010) Protein synthesis is differentially required for germination in Poa pratensis and Trifolium repens in the absence or in the presence of cadmium. Plant Growth Regul 61:205–214

    Article  CAS  Google Scholar 

  • Dearman J, Brocklehust PA, Drew RLK (1987) Effect of osmotic priming and aging on the germination and emergence of carrot and leek seed. Ann Appl Biol 111:717–722

    Article  Google Scholar 

  • Di Girolamo G, Barbanti L (2012) Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital J Agron 7:8–18

    Article  Google Scholar 

  • Diaz-Vivancos P, Barba-Espın G, Hernandez JA (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep 32:1491–1502

    Article  CAS  PubMed  Google Scholar 

  • Ellis RH, Butcher PD (1988) The effects of priming and ‘natural’ differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control. J Exp Bot 39:935–950

    Article  Google Scholar 

  • El-Maarouf-Bouteau H, Meimoun P, Job C, Job D, Bailly C (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front Plant Sci 4:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Basra SMA, Khalid M, Tabassum R, Mahmood T (2006) Nutrient homeostasis, metabolism of reserves, and seedling vigor as affected by seed priming in coarse rice. Can J Bot 84:1196–1202. http://sci-hub.tw/10.1139/b06-088

    Article  CAS  Google Scholar 

  • Fercha A, Capriotti AL, Caruso G, Cavaliere C, Gherroucha H, Samperi R, Stampachiacchierea S, Laganaa A (2013) Gel-free proteomics reveal potential biomarkers of priminginduced salt tolerance in durum wheat. J Proteome 91:486–499. http://sci-hub.tw/10.1016/j.jprot.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L (2014) Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol Cell Proteomics 13:252–268

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848. http://sci-hub.tw/10.1104/pp.126.2.835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover S, Khan AS (2014) Effect of ionizing radiation on some characteristics of seeds of wheat. Int J Sci Technol Res 3:2277–8616

    Google Scholar 

  • Haider S, Pal R (2013) Integrated analysis of transcriptomic and proteomic data. Curr Genomics 14:91–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill H, Bradford KJ, Cunningham J, Taylor AG (2008) Primed lettuce seeds exhibit increased sensitivity to moisture during aging. Acta Hortic 782:135–141

    Article  Google Scholar 

  • Islam F, Yasmeen T, Ali S, Ali B, Farooq MA, Gill RA (2015) Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol Plant 37:153. http://sci-hub.tw/10.1007/s11738-015-1897-5

  • Jin S, Sun D, Wang J, Li Y, Wang X, Liu S (2014) Expression of the rgMT gene, encoding for a rice metallothionein-like protein in Saccharomyces cerevisiae and Arabidopsis thaliana. J Genet 93:709–718

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396. http://sci-hub.tw/10.1007/s11738-012-1186-5

    Article  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2002) Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul 37:17–22. http://sci-hub.tw/10.1023/A:1020310008830

  • Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf-Bouteau H (2011) Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci 181:309–315. http://sci-hub.tw/10.1016/j.plantsci.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Beckett RP, Minibayeva FV, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  • Krasuska U, Gniazdowska A (2012) Nitric oxide and hydrogen cyanide as regulating factors of enzymatic antioxidant system in germinating apple embryos. Acta Physiol Plant 34:683–692. http://sci-hub.tw/10.1007/s11738-011-0868-8

    Article  CAS  Google Scholar 

  • Krol P, Igielski R, Pollmann S, Kepczynska E (2015) Priming of seeds mith methyljasmonate induced resistance to hemibiotroph Fusarium oxysporum f. sp. Lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. J Plant Physiol 179:122–132

    Article  CAS  PubMed  Google Scholar 

  • Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Żmieńko A, Lutts S, Quinet M (2015a) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germi- nation through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113. http://sci-hub.tw/10.1016/j.plantsci.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015b) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183:1–12. http://sci-hub.tw/10.1016/j.jplph.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Xing D, Li L, Zhang L (2007) Rapid deterioration of seed vigour based on the level of superoxide generation during early imbibition. Photochem Photobiol Sci 6:767–774

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Tuteja N (2013) Different expression of miRNA targeting helicases in rice in response to low and high dose rate c-ray treatments. Plant Sign Behav 8:e25128

    Article  CAS  Google Scholar 

  • Macovei A, Garg B, Raikwar S, Balestrazzi A, Carbonera D, Buttafava A, Bremont JFJ, Gill SS, Tuteja N (2014) Synergistic exposure of rice seeds to different doses of gamma-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of TC-NER pathway. Biomed Res Int 2014:676934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maia J, Dekkers BJW, Provart NJ, Ligterink W, Hilhorst HWM (2011) The re-establishement of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome. PLoS One 6:e29123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazor L, Perl M, Negbi M (1984) Changes in some ATP-dependent activities in seeds during treatment with polyethylene glycol and during the redrying process. J Exp Bot 35:1119–1127

    Article  CAS  Google Scholar 

  • McDonald MB (2000) Seed Priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Ann Rev Plant Biol 58:459–481

    Article  CAS  Google Scholar 

  • Momin KC (2013) Challenges of the flower seed industry. Indian J Appl Res 3:244–245

    Article  Google Scholar 

  • Murungu FS, Chiduza C, Nyamugafata P, Clark LJ, Whalley WR, Finch-Savage WE (2004) Effects of ‘on-farm seed priming’ on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid Zimbabwe. Field Crops Res 89:49–57

    Article  Google Scholar 

  • Nouman W, Basra SMA, Yasmeen A, Gull T, Hussain SB, Zubair M, Gul R (2014) Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Regul 73:267–278. http://sci-hub.tw/10.1007/s10725-014-9887-y

    Article  CAS  Google Scholar 

  • Osburn RM, Schroth MN (1989) Effect of osmopriming sugar beet deed on exudation and subsequent damping-off caused by Pythium ultimum. Phytopathology 78:1246–1250

    Article  Google Scholar 

  • Pace R, Benincasa P, Ghanem ME, Quinet M, Lutts S (2012) Germination of uintreated and primed seeds in rapeseed (Brassica napus var oleifera Del.) under salinity and low matric potential. Exp Agric 48:238–251

    Article  Google Scholar 

  • Parera C, Cantliffe D (1990) Improved stand establishment of sh 2 sweet corn by solid matrix priming. In: Proc Nat Symp Stand Estab Hort Crops, Minneapolis, MN, pp 91–96

    Google Scholar 

  • Patade VY, Khatri D, Manoj K, Kumari M, Ahmed Z (2012) Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes. Mol Biol Rep 39:10603–10613

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278. http://sci-hub.tw/10.1038/srep14278

  • Smith PT, Cobb BG (1992) Physiological and enzymatic characteristic of primed, re-dried, and germinated pepper seeds (Capsicum annum L). Seed Sci Technol 20:503–513

    Google Scholar 

  • Soeda Y, Konings MCJM, Vorst O, van Houwelingen AMM, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SPC, van der Geest AHM (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354–368. http://sci-hub.tw/10.1104/pp.104.051664

    Article  PubMed  CAS  Google Scholar 

  • Sung FJM, Chang YH (1993) Biochemical activities associated with priming of sweetcorn seed to improve vigor. Seed Sci Technol 21:97–105

    Google Scholar 

  • Tan L, Chen S, Wang T, Dai S (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13:1850–1870

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamentidis G, Molasiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  CAS  PubMed  Google Scholar 

  • Taylor AG, Allen PS, Bennett MA, Bradford JK, Burris JS, Mishra MK (1998) Seed enhancements. Seed Sci Res 8:245–256. http://sci-hub.tw/10.1017/S0960258500004141

    Article  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Ventura L, Dona M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A (2012) Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem 60:196–206

    Article  CAS  PubMed  Google Scholar 

  • Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010) A plant DNA ligase is an important determinant of seed longevity. Plant J 63:848–860

    Article  CAS  PubMed  Google Scholar 

  • Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66. http://sci-hub.tw/10.3389/fpls.2016.00066

  • Wong JW, Cagney G (2010) An overview of label-free quantitation methods in proteomics by mass spectrometry. Methods Mol Biol 604:273–283

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Li N, Li H, Tang H (2014) An optimized method for NMR-based plant seed metabo- lomics analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency. Analyst 139:1769–1778

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Yu J, Johnston CR, Wang Y, Zhu K, Lu F, Zhang Z, Zou J (2015a) Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS One 10:e0140620. http://sci-hub.tw/10.1371/journal.pone.0140620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Wang WQ, Liu SJ, Moller JM, Song SQ (2015b) Proteome analysis of poplar seed vigor. PLoS One 10:e0132509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, Q., Ashraf, S., Kamran, M., Rehman, A., Ahmad, S. (2019). Alterations in Plant Secondary Metabolism by Seed Priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_7

Download citation

Publish with us

Policies and ethics