Skip to main content

Abiotic Stress Tolerance in Plants by Priming and Pretreatments with Ascorbic Acid

  • Chapter
  • First Online:
Book cover Priming and Pretreatment of Seeds and Seedlings

Abstract

Ascorbic acid (AA) has been found to play several imperative functions in the regulation of various responses of plants or tolerance to different abiotic stresses. The functions of the exogenous application of AA as a pretreatment or priming are well recognized ranging from the germination to accumulation of biomass or yield production under different types of abiotic stress conditions. AA acts as a signaling molecule, positively influencing vegetative growth and development. It also plays a critical role in oxidative stress amelioration by activating different enzymatic and non-enzymatic antioxidants that eventually helps in scavenging of various reactive oxygen species (ROS) produced during abiotic stresses. AA application ameliorates photosynthesis stress inhibition, impedes chlorophyll loss and leaf senescence, and conserves the integrity of cell membranes under abiotic stresses. In addition, it helps to maintain the ionic homeostasis and interacts with certain other phytohormones and metabolites during stress adaptation and regulation of plant growth under abiotic stresses. The present chapter provides a comprehensive overview about the role of AA in various biochemical, physiological, and molecular responses of plants in response to its pretreatments and short gun priming tool under abiotic stressful conditions. The upcoming research in the near future exploring proteomic, transcriptomic, and metabolic profiling would ensure advance insights regulating the possible mechanistic role of AA in the improvement of growth and amelioration of abiotic stresses of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Ascorbic acid (ascorbate)

AAO:

Ascorbic acid oxidase

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

Cu:

Copper

Cd:

Cadmium

DHA:

Dehydroascorbic acid

DHAR:

Dehydroascorbate reductase

EPR:

Electron paramagnetic resonance spectroscopy

Fe:

Iron

GSH:

Glutathione

GR:

Glutathione reductase

GSSG:

Glutathione disulfide

GPX:

Glutathione peroxidase

ET:

Ethylene

H2O2:

Hydrogen peroxide

JA:

Jasmonic acid

GA:

Gibberellins

MAPK:

Mitogen-activated protein kinase

MDHAR:

Monodehydroascorbate reductase

MDA:

Malondialdehyde

Mn:

Manganese

NADPH:

Nicotinamide adenine dinucleotide phosphate

Ni:

Nickel

Pb:

Lead

POD:

Peroxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutase

sAPX:

Stromal ascorbate peroxidase

tAPX:

Thylakoid-bounded ascorbate peroxidase

Zn:

Zinc

References

  • Afzal I, Basra SM, Farooq M, Nawaz A (2006) Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int J Agric Biol 8(1):23–28

    CAS  Google Scholar 

  • Ahmad I, Basra SMA, Wahid A (2014) Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize under at low temperature stress. Int J Agric Biol 16:825–830

    CAS  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613. https://doi.org/10.3389/fpls.2017.00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Alhasnawi AN, Kadhimi AA, Isahak A, Mohamad A, Yusoff WMW, Zain CRCM (2015) Exogenous application of ascorbic acid ameliorates detrimental effects of salt stress in rice (MRQ74 and MR269) seedlings. Asian J Crop Sci 7(3):186–196

    Article  Google Scholar 

  • AL-Mayahi AMW (2016) Influence of salicylic acid (SA) and ascorbic acid (ASA) on in vitro propagation and salt tolerance of date palm (Phoenix dactylifera L.) cv. ‘Nersy’. Aust J Crop Sci 10:969–976

    Article  CAS  Google Scholar 

  • Amjad M, Ziaf K, Iqbal Q, Ahmad I, Riaz MA, Saqib ZA (2007) Effect of seed priming on seed vigour and salt tolerance in hot pepper. Pak J Agric Sci 44(3):408–416

    Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Arefi F, Ganjali HR, Rad MRN (2016) Influence of drought stress and ascorbic acid on some characteristics of sorghum. Int J Agric Biosci 5(3):113–115

    Google Scholar 

  • Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ (2015) 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiol 167:1592–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azooz MM, Alzahrani AM, Youssef MM (2013) The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean (Vicia faba L.). Aust J Crop Sci 7(13):2091–2100

    Google Scholar 

  • Baldet P, Bres C, Okabe Y, Mauxion JP, Just D, Bournonville C, Ferrand C, Mori K, Ezure H, Rothan C (2013) Investigating the role of vitamin C in tomato through TILLING identification of ascorbate-deficient tomato mutants. Plant Biotechnol 30:308–314

    Article  CAS  Google Scholar 

  • Ballaré CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultra-violet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241

    Article  PubMed  CAS  Google Scholar 

  • Balliu A, Sallaku G, Nasto T (2014) The effects of some osmoprotectant compounds on growth parameters of pea plants (Pisum sativum) under saline conditions. Acta Hortic 1142:377–382

    Google Scholar 

  • Bánhegyi G, Loewus FA (2004) Ascorbic acid catabolism: breakdown pathways in animals and plants. In: Asard H, May JM, Smirnoff N (eds) Vitamin C: functions and biochemistry in animals and plants. BIOS Scientific Publishers Ltd, Oxford, pp 31–48

    Google Scholar 

  • Barnes JD, Zheng Y, Lyons TM (2002) Plant resistance to ozone: the role of ascorbate. In: OmAA K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology. Springer, Tokyo, pp 235–254

    Chapter  Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Bastam N, Banin AAb B, Ghobadi C (2013) Interactive effects of ascorbic acid and salinity stress on the growth and photosynthetic capacity of pistachio (Pistacia vera L.) seedlings. J Hortic Sci Biotechnol 88(5):610–616

    Article  CAS  Google Scholar 

  • Behn H, Albert A, Marx F, Noga G, Ulbrich A (2010) Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha × piperita L.). J Agric Food Chem 58:7361–7367

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102:18225–18230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandna R, Azooz MM, Ahmad P (2013) Recent advances of metabolomics to reveal plant response during salt stress. In: Ahmad P, Azooz MM, Prasad MNV (eds) Signaling, omics and adaptations. Springer, New York, pp 1–14

    Google Scholar 

  • Chao YY, Hong CY, Kao CH (2010) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman JM (2006) Hydrogen peroxide concentrations in leaves under natural conditions. J Exp Bot 57:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman JM (2007) Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1:4–15

    Google Scholar 

  • Chen SX, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. FEBS J 260:726–735

    CAS  Google Scholar 

  • Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH, Vanková R (2014) Ascorbate peroxidase protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166:370–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Citterio S, Sgorbati S, Scippa S, Sparvoli E (1994) Ascorbic acid effect on the onset of cell proliferation in pea root. Physiol Plant 92:601–607

    Article  CAS  Google Scholar 

  • Clifton IJ, McDonough MA, Ehrismann D (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded B-helix fold proteins. J Inorg Biochem 100:644–669

    Article  CAS  PubMed  Google Scholar 

  • Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Conklin PL, Pallanca JE, Last RL, Smirnoff N (1997) L-ascorbic acid metabolism in the ascorbate-deficient arabidopsis mutant vtc1. Plant Physiol 115:1277–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci U S A 96:4198–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Currey CJ, Lopez RG, Rapaka VK, Faust JE, Runkle ES (2013) Exogenous applications of benzyladenine and gibberellic acid inhibit lower-leaf senescence of geraniums during propagation. Hortic Sci 48:1352–1357

    CAS  Google Scholar 

  • Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant l – ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • De Pinto MC, Tommasi F, De Gara L (2000) Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco Bright Yellow 2. Plant Physiol Biochem 38:541–550

    Article  Google Scholar 

  • De Tullio M, Guether M, Balestrini R (2013) Ascorbate oxidase is the potential conductor of a symphony of signaling pathways. Plant Signal Behav 8:e23213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Ann Bot 99:3–8

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Dietz K-J (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21:1356–1372

    Article  CAS  PubMed  Google Scholar 

  • Dietz K-J (2016) Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drazkiewicz M, Skórzyńska-Polit E, Krupa Z (2003) Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L). Plant Sci 164:195–202

    Article  CAS  Google Scholar 

  • Duan M, Ma N-N, Li D, Deng Y-S, Kong F-Y, Lv W, Meng Q-W (2012) Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem 58:37–45

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed HEA, El-Sayed A (2013) Exogenous application of ascorbic acid for improve germination, growth, water relations, organic and inorganic components in tomato (Lycopersicon esculentum Mill.) plant under salt-stress. NY Sci J 6:123–139

    Google Scholar 

  • Ergin S, Aydogan C, Ozturk N, Turhan E (2014) Effects of ascorbic acid application in strawberry plants during heat stress. Turk J Agric Nat Sci 7(7):1486–1491

    Google Scholar 

  • Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faize M, Nicolás E, Faize L, Díaz-Vivancos P, Burgos L, Hernández JA (2015) Cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theor Exp Plant Physiol 27:215–226

    Article  CAS  Google Scholar 

  • Farooq M, Irfan M, Aziz T, Ahmad I, Cheema SA (2013) Seed priming with ascorbic acid improves drought resistance of wheat. J Agron Crop Sci 199(1):12–22

    Article  CAS  Google Scholar 

  • Fatemi SN (2014) Ascorbic acid and its effects on alleviation of salt stress in sunflower. Ann Res Rev Biol 4(24):3656–3665

    Article  Google Scholar 

  • Fazlali R, Asli DE, Moradi P (2013) The effect of seed priming by ascorbic acid on bioactive compounds of naked seed pumpkin (Cucurbita pepo var. styriaca) under salinity stress. Int J Farm Allied Sci 2(17):587–590

    Google Scholar 

  • Fecht CMM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol Plant 117:237–244

    Article  Google Scholar 

  • Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open – air field conditions. Environ Pollut 158:3539–3545

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. Plant J 33:691–705

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signalling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gao Q, Zhang L (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148

    Article  CAS  PubMed  Google Scholar 

  • Gloser V, Korovetska H, Martín-Vertedor AI, Hájíčková M, Prokop Z, Wilkinson S, Davies W (2016) The dynamics of xylem sap pH under drought: A universal response in herbs? Plant Soil 409:259–272

    Article  CAS  Google Scholar 

  • Gómez F, Fernández L, Gergoff G, Guiamet JJ, Chaves A, Bartoli CG (2008) Heat shock increases mitochondrial H2O2 production and extends postharvest life of spinach leaves. Postharvest Biol Technol 49:229–234

    Article  CAS  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83–87

    Article  CAS  PubMed  Google Scholar 

  • Hamama H, Murniati E (2010) The effect of ascorbic acid treatment on viability and vigor maize (Zea mays L.) seedling under drought stress. Hayati J Biosci 17(3):105–109

    Article  Google Scholar 

  • Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL, Brennan RM, Viola R (2007) L-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway. Funct Plant Biol 34:1080–1091

    Article  CAS  Google Scholar 

  • He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    Article  CAS  PubMed  Google Scholar 

  • Hemavathi CP, Upadhyaya N, Akula HS, Kim JH, Jeon MH, Oh SC, Chun DHK, Park SW (2011) Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d – galacturonicacidreductase gene in response to various abiotic stresses. Mol Breed 28:105–115

    Article  CAS  Google Scholar 

  • Hemmati K, Ebadi A, Khomari S, Sedghi M (2018) Influence of ascorbic acid and 24-epibrassinolide on physiological characteristics of pot marigold under water-stress condition. J Plant Interact 13(1):364–372

    Article  CAS  Google Scholar 

  • Heydariyan M, Basirani N, Sharifi-Rad M, Khmmari I, Rafat Poor S (2014) Effect of seed priming on germination and seedling growth of the caper (Capparis spinosa) under drought stress. Int J Adv Biol Biomed Res 2(8):2381–2389

    CAS  Google Scholar 

  • Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hideg É, Rosenqvist E, Váradi G, Bornman J, Vincze É (2006) A comparison of UV-B induced stress responses in three barley cultivars. Func Plant Biol 33:77–90

    Article  CAS  Google Scholar 

  • Hideg É, Jansen MAK, Strid Å (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18:107–115

    Article  CAS  PubMed  Google Scholar 

  • Hocking B, Tyerman SD, Burton RA, Gilliham M (2016) Fruit calcium: transport and physiology. Front Plant Sci 7:569

    Article  PubMed  PubMed Central  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    Article  CAS  PubMed  Google Scholar 

  • Horemans N, Raeymaekers T, Van Beek K, Nowocin A, Blust R, Broos K, Cuypers A, Vangronsveld J, Guisez Y (2007) Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot 58:4307–4317

    Article  CAS  PubMed  Google Scholar 

  • Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Hu Z, Li H, Chen S, Yang Y (2013) Chlorophyll content and photosystem II efficiency in soybean exposed to supplemental ultraviolet-B radiation. Photosynthetica 51:151–157

    Article  CAS  Google Scholar 

  • Huang J, Levine A, Wang Z (2013) Plant abiotic stress. Scientific World J. https://doi.org/10.1155/2013/432836

    Google Scholar 

  • Innocenti AM, Bitonti MB, Arrigoni O, Liso R (1990) The size of quiescent centre in roots of Allium cepa L. grown with ascorbic acid. New Phytol 114:507–509

    Article  PubMed  Google Scholar 

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Jan S, Hamayun M, Wali S, Bibi A, Gul H, Rahim F (2016) Foliar application of ascorbic acid mitigates sodium chloride induced stress in eggplant (Solanum melongena L.). Pak J Bot 48(3):869–876

    CAS  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  • Kangasjärvi S, Kangasjärvi J (2014) Towards understanding extracellular ROS sensory and signaling systems in plants. Adv Bot 2014:538946

    Google Scholar 

  • Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM, Aro EM, Rintamäki E (2008) Diverse roles for chloroplast stromal and thylakoid bound ascorbate peroxidases in plant stress responses. Biochem J 412:275–285

    Article  PubMed  CAS  Google Scholar 

  • Kärkönen A, Fry SC (2006) Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Piceaabies and in the absence of cells. J Exp Bot 57:1633–1644

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Gupta N (2018) Ameliorative Effect of proline and ascorbic acid on seed germination and vigour parameters of tomato (Solanum lycopersicum L.) under salt stress. Int J Curr Microbiol App Sci 7(1):3523–3532

    Article  CAS  Google Scholar 

  • Kausar R, Hossain Z, Makino T, Komatsu S (2012) Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Mol Biol Rep 39:10573–10579

    Article  CAS  PubMed  Google Scholar 

  • Kerr JB, Fioletov VE (2008) Surface ultraviolet radiation. Atmosphere-Ocean 46:159–184

    Article  Google Scholar 

  • Klem K, Ač A, Holub P, Kovác D, Špunda V, Robson TM, Urban O (2012) Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ Exp Bot 75:52–64

    Article  CAS  Google Scholar 

  • Kobayakawa H, Imai K (2017) Exogenous ascorbic acid scarcely ameliorates inhibition of photosynthesis in rice leaves by O3. Plant Prod Sci 20(1):83–89

    Article  CAS  Google Scholar 

  • Koffler BE, Polanschütz L, Zechmann B (2014) Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. Protoplasma 251:755–769

    Article  CAS  PubMed  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Google Scholar 

  • Krupa-Małkiewicz M, Smolik B, Ostojski D, Sędzik M, Pelc J (2015) Effect of ascorbic acid on morphological and biochemical parameters in tomato seedling exposure to salt stress. Och Srod Zasob Nat 26(2):21–25

    Google Scholar 

  • Kukavica B, Mojović M, Vučinić Ž, Maksimović V, Takahama U, Veljović-Jovanović S (2008) Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol 50:304–317

    Article  PubMed  CAS  Google Scholar 

  • Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285

    Article  PubMed  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress – tolerance of transgenic plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    Article  CAS  PubMed  Google Scholar 

  • Laing W, Norling C, Brewster D, Wright M, Bulley S (2017) Ascorbate concentration in Arabidopsis thaliana and expression of ascorbate related genes using RNAseq in response to light and the diurnal cycle. BioRxiv:138008

    Google Scholar 

  • Larkindale J, Hall JD, Knightand MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latif M, Akram NA, Ashraf M (2016) Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. J Hortic Sci Biotechnol 91(2):129–137

    Article  CAS  Google Scholar 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179

    Article  CAS  PubMed  Google Scholar 

  • Lidon FJ, Reboredo FH, Leitã AE, Silva MMA, Duarte MP, Ramalho JC (2012) Impact of UV-B radiation on photosynthesis-an overview. Emirates J Food Agric 24:546–556

    Article  Google Scholar 

  • Liebthal M, Maynard D, Dietz K-J (2017) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7164

    Article  CAS  Google Scholar 

  • Lima-Silva V, Rosado A, Amorim-Silva V (2012) Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 13:187. https://doi.org/10.1186/1471-2164-13-187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liso R, Innocenti AM, Bitonti MB, Arrigoni O (1988) Ascorbic acid-induced progression of quiescent centre cells from G1 to S phase. New Phytol 110:469–471

    Article  CAS  Google Scholar 

  • Long SP, Naidu SL (2002) Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, Chichester, pp 69–88

    Google Scholar 

  • Lucini L, Bernardo L (2015) Comparison of proteome response to saline and zinc stress in lettuce. Front Plant Sci 6:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukatkin AS, Anjum NA (2014) Control of cucumber (Cucumis sativus L.) tolerance to chilling stress—evaluating the role of ascorbic acid and glutathione. Front Environ Sci 2:62

    Article  Google Scholar 

  • Majer P, Hideg É (2012) Existing antioxidant levels are more important in acclimation to supplemental UV-B irradiation than inducible ones: studies with high light pretreated tobacco leaves. Emirates J Food Agric 24:598–606

    Article  Google Scholar 

  • Majer P, Vidović M, Czégény G, Veljović-Jovanović S, Strid Å, Hideg E (2016) Evaluation of procedures for assessing anti- and pro-oxidants in plant samples. Anal Methods 8:5569–5580

    Article  CAS  Google Scholar 

  • Malik S, Ashraf M (2012) Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil Environ 31(1):72–77

    CAS  Google Scholar 

  • Malik S, Ashraf M, Arshad M, Malik TA (2015) Effect of ascorbic acid application on physiology of wheat under drought stress. Pak J Agric Sci 52(1):209–217

    Google Scholar 

  • McAdam SA, Brodribb TJ (2016) Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants. Plant Physiol 171:2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melino VJ, Soole KL, Ford CM (2009) Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol 9:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mock HP, Dietz K-J (2016) Redox proteomics for the assessment of redox-related posttranslational regulation in plants. Biochim Biophys Acta 1864:967–973

    Article  CAS  PubMed  Google Scholar 

  • Morina F, Jovanović LJ, Mojović M, Vidović M, Panković D, Veljović-Jovanović S (2010) Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol Plant 140:209–224

    CAS  PubMed  Google Scholar 

  • Munir N, Aftab F (2011) Enhancement of salt tolerance in sugarcane by ascorbic acid pretreatment. Afr J Biotechnol 10(80):18362–18370

    CAS  Google Scholar 

  • Munné BS, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Article  CAS  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Article  CAS  PubMed  Google Scholar 

  • Nishikimi M, Yagi K (1996) Biochemistry and molecular biology of ascorbic acid biosynthesis. Subcell Biochem 25:17–39

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiol 164:1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noshi M, Hatanaka R, Tanabe N, Terai Y, Maruta T, Shigeoka S (2016) Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Biosci Biotechnol Biochem 80:870–877

    Article  CAS  PubMed  Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAP Kinase transcript levels. Environ Exp Bot 83:53–61

    Article  CAS  Google Scholar 

  • Orman-Ligeza B, Parizot B, de Rycke R (2016) RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 143:3328–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Espín A, Sánchez-Guerrero A, Sevilla F, Jiménez A (2017) The role of ascorbate in plant growth and development. In: Hossain MA, MunneBosch S, Burritt DJ, Dian-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 24–45

    Google Scholar 

  • Page M, Sultana N, Paszkiewicz K, Florance H, Smirnoff N (2012) The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Plant Cell Environ 35:388–404

    Article  CAS  PubMed  Google Scholar 

  • Pallanca JE, Smirnoff N (2000) The control of ascorbic acid synthesis and turnover in pea seedlings. J Exp Bot 51:669–674

    Article  CAS  PubMed  Google Scholar 

  • Parsons HT, Fry SC (2012) Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry 75:41–49

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signalling. Plant Cell 15:939–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penella C, Calatayud Á, Melgar JC (2017) Ascorbic acid alleviates water stress in young peach trees and improves their performance after rewatering. Front Plant Sci 8:1627

    Article  PubMed  PubMed Central  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyngrope S, Bhoomika K, Dubey RS (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma 250:585–600

    Article  CAS  PubMed  Google Scholar 

  • Rafique N, Raza SH, Qasim M, Iqbal N (2011) Pre-sowing application of ascorbic acid and salicylic acid to seed of pumpkin and seedling response to salt. Pak J Bot 43(6):2677–2682

    CAS  Google Scholar 

  • Rahantaniaina MS, Li S, Chatel-Innocenti G, Tuzet A, Issakidis-Bourguet E, Mhamdi A, Noctor G (2017) Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway. Plant Physiol 174:956–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadak MS, Elhamid EMA, Mostafa HM (2013) Alleviation of adverse effects of salt stress in wheat cultivars by foliar treatment with antioxidants I. changes in growth, some biochemical aspects and yield quantity and quality. Am Eur J Agric Environ Sci 13:1476–1487

    Google Scholar 

  • Saeidi-Sar S, Abbaspour H, Afshari H, Yaghoobi SR (2013) Effects of ascorbic acid and gibberellin A 3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiol Plant 35(3):667–677

    Article  CAS  Google Scholar 

  • Sanmartin M, Drogoudi PA, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    CAS  PubMed  Google Scholar 

  • Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK (2007) Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225:873–885

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene. OsAPXa Plant Cell Rep 30:399–406

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten H-M, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JHM, Mueller-Roeber B (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632

    Article  CAS  PubMed  Google Scholar 

  • Shah F, Huang J, Cui K, Nie L, Shah T, Wu W, Chen C (2011) Physiological and biochemical changes in rice associated with high night temperature stress and their amelioration by exogenous application of ascorbic acid (vitamin C). Aust J Crop Sci 5(13):1810–1816

    CAS  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 524:2207–2211

    Article  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: Properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 217037

    Google Scholar 

  • Singh N, Bhardwaj RD (2016) Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants. Biologia 71(4):402–413

    CAS  Google Scholar 

  • Sivaci A, Kaya A, Duman S (2014) Effects of ascorbic acid on some physiological changes of pepino (Solanum muricatum Ait.) under chilling stress. Acta Biol Hung 65(3):305–318

    Article  CAS  PubMed  Google Scholar 

  • Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50

    CAS  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond Ser B Biol Sci 355:1455–1464

    Article  CAS  Google Scholar 

  • Smirnoff N (2011) Vitamin C: The metabolism and functions of ascorbic acid in plants. Adv Bot Res 59:107–177

    Article  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005) Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169(2):403–412

    Article  CAS  Google Scholar 

  • Spasojević I, Bogdanović-Pristov J (2010) The potential physiological implications of polygalacturonic acid-mediated production of superoxide. Plant Signal Behav 5:1525–1529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suekawa M, Kondo T, Fujikawa Y, Esaka M (2017) Regulation of ascorbic acid biosynthesis in plants. In: Hossain MA, MunneBosch S, Burritt DJ, Dian-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer. Cham.Springer, Cham, pp 157–176

    Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542

    Article  CAS  PubMed  Google Scholar 

  • Sun WH, Duan M, Li F, Shu DF, Yang S, Meng QW (2010) Overexpression of tomato tAPX gene in tobacco improves tolerance to high or low temperature stress. Biol Plant 54:614–620

    Article  CAS  Google Scholar 

  • Szechyńska HM, Karpiński S (2013) Light intensity-dependent retrograde signalling in higher plants. J Plant Physiol 170:1501–1516

    Article  CAS  Google Scholar 

  • Tabatabaei SA, Naghibalghora SM (2013) The effect of ascorbic acid on germination characteristics and proline of sesame seeds under drought stress. Int J Agric Crop Sci 6(4):208–212

    CAS  Google Scholar 

  • Takahama U, Oniki T (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33:379–387

    CAS  Google Scholar 

  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852

    Article  CAS  Google Scholar 

  • Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36:163–173

    Article  CAS  PubMed  Google Scholar 

  • Tamás L, Bočová B, Huttová J, Mistrík I, Ollé M (2006) Cadmium-induced inhibition of apoplastic ascorbate oxidase in barley roots. Plant Growth Regul 48:41–49

    Article  CAS  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Tenhaken R (2014) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    PubMed  Google Scholar 

  • Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449

    Article  PubMed  PubMed Central  Google Scholar 

  • Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K1 channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veljović-Jovanović S, Kukavica B, Cvetić T, Mojović M, Vučinić Ž (2005) Ascorbic acid and the oxidative processes in pea root cell wall isolates: characterization by fluorescence and EPR spectroscopy. Ann N Y Acad Sci 1048:500–504

    Article  PubMed  CAS  Google Scholar 

  • Veljović-Jovanović S, Vidović M, Morina F (2017) Ascorbate as a key player in plant abiotic stress response and tolerance. In: Hossain MA, MunneBosch S, Burritt DJ, Dian-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 47–109

    Chapter  Google Scholar 

  • Venkatesh J, Park SW (2014) Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot Stud 55:38. http://www.as-botanicalstudies.com/content/55/1/38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkatesh J, Upadhyaya CP, Yu JW, Hemavathi A, Kim DH, Strasser RJ, Park SW (2012) Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D-galacturonic acid reductase gene for salinity stress tolerance. Hortic Environ Biotechnol 53:320–328

    Article  CAS  Google Scholar 

  • Vidović M, Morina F, Milić S, Albert A, Zechmann B, Tosti T, Winkler JB, Jovanović SV (2015a) Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiol Biochem 93:44–55

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Milić S, Zechmann B, Albert A, Winkler JB, Veljović-Jovanović S (2015b) Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated leaves depending on background light. Plant Cell Environ 38(5):968–979

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Lj P, Milić-Komić S, Živanović B, Veljović-Jovanović S (2016) Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H2O2 in (peri)vascular tissue induced by sunlight and paraquat. J Plant Physiol 206:25–39

    Article  PubMed  CAS  Google Scholar 

  • Vidović M, Morina F, Veljović-Jovanović S (2017) Stimulation of various phenolics in plants under ambient UV-B radiation. In: Singh VP, Singh S, Prasad SM, Parihar P (eds) UV-B Radiation: from environmental stressor to regulator of plant growth. Wiley-Blackwell, Chichester, pp 9–56

    Chapter  Google Scholar 

  • Vuletić M, Hadži-Tašković Šukalović V, Marković K, Kravić N, Vučinić Ž, Maksimović V (2014) Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress. Plant Biol 16:88–96

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV–B and heat stress. J Appl Hortic 8:87–90

    Google Scholar 

  • Wang HS, Yu C, Zhu ZJ, Yu XC (2011) Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. Plant Cell Rep 30:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dismutase site of synthesis and intra-mitochondrial localization. J Biol Chem 248:4793–4796

    CAS  PubMed  Google Scholar 

  • West M, Harada JJ (1993) Embryogenesis in higher plants: An overview. Plant Cell 5:1361–1369

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Lu Y, Yang H, He J, Hu Z, Hu X et al (2015) ZmGRF, a GA regulatory factor from maize, promotes flowering and plant growth in Arabidopsis. Plant Mol Biol 87:157–167

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2012) Ascorbic acid in plants. Biosynthesis, regulation and enhancement. Springer, Boston. ISSN 2192-1210

    Google Scholar 

  • Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K (2007) Metabolic engineering of plant L – ascorbic acid biosynthesis: recent trends and applications. Crit Rev Biotechnol 27:173–182

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2017) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  Google Scholar 

  • Zipor G, Oren SM (2013) Do vacuolar peroxidases act as plant caretakers? Plant Sci 199:41–47

    Article  PubMed  CAS  Google Scholar 

  • Zonouri M, Javadi T, Ghaderi N (2014) Effect of foliar spraying of ascorbic acid on cell membrane stability, lipid peroxidation, total soluble protein, ascorbate peroxidase and leaf ascorbic acid under drought stress in grapes. Int J Adv Biol Biomed Res 2:349–354

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajid Ali or Shakeel Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, S., Nawaz, A., Hussain, S., Khan, S.M., Ejaz, S., Ahmad, S. (2019). Abiotic Stress Tolerance in Plants by Priming and Pretreatments with Ascorbic Acid. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_23

Download citation

Publish with us

Policies and ethics