Skip to main content

Seed Priming-Mediated Improvement of Plant Morphophysiology Under Salt Stress

  • Chapter
  • First Online:

Abstract

This chapter is describing the adverse effect of the salinity stress on the crop growth and development and how seed priming can alleviate salinity-induced devastating effects on plants. Growth of plant under salt stress is affected negatively due to oversynthesis of reactive oxygen species (ROS), leading to oxidative damage to biomolecule and plant membranes. The water stress and accumulation of toxic ions are the other major effects observed under salt stress. Overproduction of ROS reacts with key cellular molecules and metabolites including proteins, lipids, photosynthetic pigments, and DNA. However, numerous plant species have effective defense system based on antioxidants that activates once plant undergoes any abiotic stress. Among various antioxidants, nonenzymatic and enzymatic are essential to detoxify ROS and its scavenging. Recently, seed priming has gained popularity as it develops tolerance in plants against salinity during the germination process and seedling development stage. In various types of environmental stresses, the different priming techniques as osmopriming, hydropriming, hormonal priming, nutrient priming, chemical priming, bio-priming, matrix priming, and redox priming are employed. There has been increasing evidence that priming stimulates the cellular defense response that induces tolerance to biotic and abiotic stresses upon exposure in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel Latef AA, Tran LSP (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdolahi M, Shekari F(2013) Effect of priming by salicylic acid on the vigor and performance of wheat seedlings at different planting dates. Cereal Res 3:17–32. (In Persian with English abstract)

    Google Scholar 

  • Afzal I, Rauf S, Barsa SMA, Murtaza G (2008) Halopriming improves vigour, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ 54:382–388

    Article  CAS  Google Scholar 

  • Ahmad I, Ahmad TKA, Basra SMA, Hasnain Z, Ali A (2012) Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. Afr J Biotechnol 11:1127–1137

    CAS  Google Scholar 

  • Ahmadi A, Sio-Se Mardeh A, Poustini K, Esmailpour Jahromi M (2007) Influence of osmo and hydropriming on seed germination and seedling growth in wheat (Triticum aestivum L.) cultivars under different moisture and temperature conditions. Pak J Biol Sci 10:4043–4049

    Article  CAS  PubMed  Google Scholar 

  • Ali Q, Ashraf M (2011) Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ Exp Bot 71:249–259

    Article  CAS  Google Scholar 

  • Ali Q, Javed MT, Noman A, Haider MZ, Waseem M, Iqbal N, Waseem M, Shah MS, Shahzad F, Perveen R (2017) Assessment of drought tolerance in mung bean cultivars/lines as depicted by the activities of germination enzymes, seedling’s antioxidative potential and nutrient acquisition. Arch Agron Soil Sci:84–102

    Article  CAS  Google Scholar 

  • Amjad M, Akhtar J, Anwar-ul-Haq M, Yang AZ, Akhtar SS, Jacobsen SE (2014) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic 172:109–116

    Article  CAS  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22:17022–17030

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, Bajwa AA (2016a) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Ashraf U, Hussain S, Shahzad B, Khan I, Wang L (2016b) Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ Sci Pollut Res 23:17132–17141

    Article  CAS  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8

    Google Scholar 

  • Anwar MP, Juraimi AS, Puteh A, Selamat A, Rahman MM, Samedani B (2012) Seed priming influences weed competitiveness and productivity of aerobic rice. Acta Agri Scand. 62(6):499-509

    Google Scholar 

  • Anwar S, Iqbal M, Raza SH, Iqbal N (2013) Efficacy of seed preconditioning with salicylic and ascorbic acid in increasing vigor of rice (Oryza sativa L.) seedling. Pak J Bot 45:157–162

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2005) Presowing seed treatment – a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv Agron 88:223–265

    Article  Google Scholar 

  • Ashraf M, Rauf H (2001) Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: growth and ion transport at early growth stages. Acta Physiol Plant 23:407–414

    Article  CAS  Google Scholar 

  • Bakht J, Shafi M, Jamal Y, Sher H (2011) Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Span J Agric Res 9:252–261

    Article  Google Scholar 

  • Benamar A, Tallon C, Macherel D (2003) Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Sci Res 13:35–45

    Article  CAS  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds physiology of development. In: Germination and dormancy, 3rd edn. Springer, New York

    Google Scholar 

  • Brocklehurst PA, Dearman J (2008) Interaction between seed priming treatments and nine seed lots of carrot, celery and onion II. Seedling emergence and plant growth. Ann Appl Biol 102:583–593

    Google Scholar 

  • Bruce T, Matthes MC, Napier JA, Pickett JA (2007) Stressful memories of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Carvalho RF, Piotto FA, Schmidt D, Peters LP, Monteiro CC, Azevedo RA (2011) Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Sci Agric 68:598–602

    Article  CAS  Google Scholar 

  • Casenave EC, Toselli ME (2007a) Hydropriming as a pre-treatment for cotton germination under thermal and water stress conditions. Seed Sci Technol 35:88–98

    Article  Google Scholar 

  • Casenave EC, Toselli ME (2007b) Hydropriming as a pre-treatment for cotton germination under thermal and water stress conditions. Seed Sci Technol 35:88–98

    Article  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    Article  CAS  Google Scholar 

  • Chen X, Yuan H, Chen R, Zhu L, Du BQ, Weng Q, He G (2002) Isolation and characterization of triacontanol regulated genes in rice (Oryza sativa L.): possible role of triacontanol as plant growth stimulator. Plant Cell Physiol 43:869–876

    Article  CAS  PubMed  Google Scholar 

  • Cherel L (2004) Regulation of K+ channel activities in plants: from physiological to molecular aspects. J Exp Bot 55:337–351

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y (2001) The BABA story of induced resistance. Phytoparasitica 29:375–378

    Article  Google Scholar 

  • Dai LY, Zhu HD, Yin KD, Du JD, Zhang YX (2017) Seed priming mitigates the effects of saline-alkali stress in soybean seedlings. Chilean J Agric Res 77:118–125

    Google Scholar 

  • Elouaer MA, Hannachi C (2012) Seed priming to improve germination and seedling growth of safflower (Carthamus tinctorius) under salt stress. Eur Asian J Biosci 6:76–84

    Article  CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences the net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Farooq M, Ullah A, Lee DJ, Alghamdi SS, Siddique KHM (2018a) Desi chickpea genotypes tolerate drought stress better than kabuli types by modulating germination metabolism, trehalose accumulation, and carbon assimilation. Plant Physiol Biochem 126:47–54

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Ullah A, Lee DJ, Alghamdi SS (2018b) Terminal drought-priming improves the drought tolerance in desi and Kabuli chickpea. Int J Agric Biol 20:1129–1136

    CAS  Google Scholar 

  • Farooq M, Ullah A, Lee DJ, Alghamdi SS (2018c) Effects of surface drying and re-drying primed seeds on germination and seedling growth of chickpea. Seed Sci Technol 46:211–215

    Article  Google Scholar 

  • Farooq M, Hussain M, Nawaz A, Lee DJ, Alghamdi SS, Siddique KHM (2017) Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiol Biochem 111:274–283

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Hafeez K (2006) Seed invigoration by osmohardening in coarse and fine rice. Seed Sci Technol 34:181–187

    Article  Google Scholar 

  • Farooq M, Basra SMA, Hafeez K, Ahmad N (2005) Thermal hardening: a new seed vigor enhancement tool in rice. Acta Bot Sin 47:187–193

    Google Scholar 

  • Farooq M, Basra SMA, Rehman H, Hussain M, Amanat Y (2007) Pre-sowing salicylicate seed treatments improve the germination and early seedling growth in fine rice. Pak J Agric Sci 44:1–8

    Google Scholar 

  • Farsiani A, Ghobadi ME (2009) Effects of PEG and NaCl stress on two cultivars of corn (Zea mays L.) at germination and early seedling stages. World Acad Sci Eng Technol 57:382–385

    Google Scholar 

  • Foti R, Abureni K, Tigere A, Gotosa J, Gerem J (2008) The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J Arid Environ 72:1127–1130

    Article  Google Scholar 

  • Ghassemi-Golezani K, Esmaeilpour B (2008) The effect of salt priming on the performance of differentially matured cucumber (Cucumis sativus) seeds. Not Bot Horti Agrobot Cluj-Napoca 36:67–70

    CAS  Google Scholar 

  • Ghassemi-Golezani K, Sheikhzadeh-Mosaddegh P, Valizadeh M (2008) Effects of hydropriming duration and limited irrigation on field performance of chickpea. Res J Seed Sci 1:34–40

    Article  Google Scholar 

  • Ghiyasi M, Abbasi Seyahjani A, Mehdi T, Reza A, Hojat S (2008) Effect of osmopriming with polyethylene glycol (2008) on germination and seedling growth of wheat (Triticum aestivum L.) seeds under salt stress. Res J Biol Sci 3:1249–1251

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gobinathan P, Sankar B, Murali PV, Panneerselvam RN (2009) Effect of calcium chloride on salinity-induced oxidative stress in Pennisetum typoidies. Bot Res Int 2:143–148

    CAS  Google Scholar 

  • Habib N, Ashraf M, Ali Q, Perveen R (2012) Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugar beet extract. S Afr J Bot 83:151–158

    Article  CAS  Google Scholar 

  • Harris D (2006) Development and testing of on-farm seed priming. Adv Agron 90:129–278

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular response to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61:521–535

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Zheng M, Khan F, Khaliq A, Fahad S, Peng S (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5:8101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Ashraf M (2013) Salt tolerance and regulation of gas exchange and hormonal homeostasis by auxin-priming in wheat. Pesq Agrop Brasileira 48:1210–1219

    Article  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A, Ur-Rehman S (2006) Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress. J Integr Plant Biol 48:181–189

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2007) Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J Integr Plant Biol 49:1003–1015

    Article  CAS  Google Scholar 

  • Jakab G, Cottier V, Toquin V, Rigoli G, Zimmerli L, Metraux JP, MauchMani B (2001) D-Aminobutyric acid-induced resistance in plants. Eur J Plant Pathol 107:29–37

    Article  CAS  Google Scholar 

  • Janmohammadi M, Dezfuli PM, Sharifzadeh F (2008) Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol 34:215–226

    Google Scholar 

  • Jisha KC, Puthur JT (2016) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253:277–289

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Kaczmarek M, Fedorowicz-Strońska O, Głowacka K, Waśkiewicz A, Sadowski J (2017) CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiol Plant 39:41

    Article  CAS  Google Scholar 

  • Kant S, Pahuja SS, Pannu RK (2006) Effect of seed priming on growth and phenology of wheat under late-sown conditions. Trop Sci 44:9–150

    Article  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2002) Effect of osmo- and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul 37:17–22

    Article  CAS  Google Scholar 

  • Khaje-Hosseini M, Powell AA, Bingham IJ (2003) The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Sci Technol 31:715–725

    Article  Google Scholar 

  • Khalil SK, Mexal JG, Murray LW (2001) Germination of soybean seed primed in aerated solution of polyethylene glycol (8000). J Biol Sci 1:105–107

    Article  Google Scholar 

  • Khan HA, Ayub CM, Pervez MA, Bilal RM, Shahid MA, Ziaf K (2009) Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil Environ 28:81–87

    CAS  Google Scholar 

  • Khodary SFA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Kishor K, Polavarapu B, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  Google Scholar 

  • Lee SS, Kim JH, Hong SB, Yun SH, Park EH (1998) Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean J Crop Sci 43:194–198

    Google Scholar 

  • Lee SS, Kim JH (2000) Total sugars, α-amylase activity, and germination after priming of normal and aged rice seeds. Korean J Crop Sci. 45(2):108–111

    Google Scholar 

  • Li X, Zhang L (2012) SA and PEG induced priming for water stress tolerance in rice seedling. In: Zhu E, Sambath S (eds) Information technology and agricultural engineering, AISE, vol 134. Springer, Berlin/Heidelberg, pp 25–87

    Google Scholar 

  • Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crop Prod 31:13–19

    Article  CAS  Google Scholar 

  • Liu FL, Jensen CR, Shahanzari A, Andersen MN, Jacobsen SE (2005) ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci 168:831–836

    Article  CAS  Google Scholar 

  • Liu L, Shahnazari A, Andersen MN, Jacobsen SE, Jensen CR (2006) Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J Exp Bot 57:3727–3735

    Article  CAS  PubMed  Google Scholar 

  • Merritt F, Kemper A, Tallman G (2001) Inhibitors of ethylene synthesis inhibit auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba L. Plant Cell Physiol 42:223–230

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi L, Shekari F, Saba J, Zangani E (2011) Seed priming by salicylic acid affected vigor and morphological traits of safflower seedlings. Modern Agric Sci 7:63–72

    Google Scholar 

  • Mohammadi L, Shekari F, Saba J, Zangani E (2017) Effects of priming with salicylic acid on safflower seedlings photosynthesis and related physiological parameters. J Plant Physiol Breed 7:1–13

    Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Patade VY, Sujata B, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134:24–28

    Article  CAS  Google Scholar 

  • Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) salt stress and nonstressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Qiao W, Fan LM (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Rehman MZ, Rizwan M, Sabir M, Shahjahan Ali S, Ahmed HR (2016) Comparative effects of different soil conditioners on wheat growth and yield grown in saline-sodic soils. Sains Malaysiana 45:339–346

    Google Scholar 

  • Rehman A, Farooq M, Naveed M, Nawaz A, Shahzad B (2018) Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur J Agron 94:98–107

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R (2018) Brassinosteroid-mediated pesticide detoxification in plants: a mini-review. Cogent Food Agric 4(1):1436212

    Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R (2018a) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol Biochem 130:69–79

    Article  CAS  PubMed  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Khan EA (2018b) 24-Epibrassinolide application in plants: an implication for improving drought stress tolerance in plants. Plant Physiol Biochem 135:295–303

    Article  PubMed  CAS  Google Scholar 

  • Fahad S, Rehman A, Shahzad B, Tanveer M, Saud S, Kamran M, Ihtisham M, Khan SU, Turan V, Ur Rahman MH (2019) Rice responses and tolerance to metal/metalloid toxicity. In: Advances in rice research for abiotic stress tolerance. Woodhead Publishing, pp 299–312

    Google Scholar 

  • Shahzad B, Fahad S, Tanveer M, Saud S, Khan IA (2019) Plant responses and tolerance to salt stress. In: Approaches for enhancing abiotic stress tolerance in plants. Taylor & Francis, pp 61–77

    Google Scholar 

  • Riahi M, Ehsanpour AA (2013) Responses of transgenic tobacco (Nicotiana plumbaginifolia) over-expressing P5CS gene under in vitro salt stress. Prog Biol Sci 2:76–84

    Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi H, Khazaei F, Yari L, Sheidaei S (2011) Effect of seed osmopriming on seed germination behaviour and vigor of soybean (Glycine max L.). J Agric Biol Sci 6:39–43

    Google Scholar 

  • Saeidi MR, Abdolghaium A, Hassanzadeh M, Rouhi A, Nikzad P (2008) Investigation of seed priming on some germination aspects of different canola cultivars. J Food Agric Environ 6:188–191

    Google Scholar 

  • Sairam RK (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 14:173–181

    Article  CAS  Google Scholar 

  • Sarwar M, Amjad M, Ayyub CM (2017) Alleviation of salt stress in cucumber (Cucumis sativus) through seed priming with triacontanol. Int J Agric Biol 19:771–778

    Article  CAS  Google Scholar 

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Song H, Rehman S, Zhaorong D (2018a) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Saf 147:935–944

    Article  CAS  PubMed  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018b) Nickel; whether toxic or essential for plants and environment-a review. Plant Physiol Biochem 132:641–651

    Article  CAS  PubMed  Google Scholar 

  • Shakirova FM, Sakhabutdinova RA, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Sivritepe N, Sivritepe HO, Eris A (2003) The effect of NaCl priming on salt tolerance in melon seedling grown under saline conditions. Sci Hortic 97:229–237

    Article  CAS  Google Scholar 

  • Signorelli S, Imparatta C, Rodríguez-Ruiz M, Borsani O, Corpas FJ, Monza J (2016) In vivo and in vitro approaches demonstrate proline is not directly involved in the protection against superoxide, nitric oxide, nitrogen dioxide and peroxynitrite. Funct Plant Biol 43:870–879

    Article  CAS  PubMed  Google Scholar 

  • Summart J, Thanonkeo P, Panichajakul S, Prathepha P, McManus MT (2010) Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. Afr J Biotechnol 9:145–152

    CAS  Google Scholar 

  • Sun YY, Sun YJ, Wang MT, Li XY, Guo X, Hu R, Ma J (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36:1931–1940

    Article  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide-and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    Article  CAS  PubMed  Google Scholar 

  • Tanveer M, Shabala, S. (2018). Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In: Salinity responses and tolerance in plants, vol. 1, pp 213–234. Springer, Cham

    Chapter  Google Scholar 

  • Ullah A, Farooq M, Hussain M, Ahmad R, Wakeel A (2019) Zinc seed priming improves stand establishment, zinc uptake and early seedling growth of chickpea. J Anim Plant Sci. In press

    Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The sub cellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Qi Z, Alandia G, Saddiq MS, Jacobsen SE (2018) Saponin seed priming improves salt tolerance in quinoa. J Agron Crop Sci 204:31–39

    Article  CAS  Google Scholar 

  • Zhang WP, Jiang B, Li WG, Song H, Yu YS, Chen JF (2009) Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Hortic 122:200–208

    Article  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismal AM (2006) Role of ABA integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S (2008) The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermo-tolerance. Plant J 53:144–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rehman, A. et al. (2019). Seed Priming-Mediated Improvement of Plant Morphophysiology Under Salt Stress. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_10

Download citation

Publish with us

Policies and ethics