Skip to main content

Internet of Things—The Concept, Inherent Security Challenges and Recommended Solutions

  • 397 Accesses

Abstract

The exponential growth observed as well as predicted in the development and deployment of the Internet of Things (IoT) based applications in every walk of our life brings forth the mandatory requirement of the secure communication system which is seamless yet effective in the highly heterogeneous and resource-constrained network. The core philosophy of the proposed research work is that existing cryptographic modelling will be required to be scaled down for its complexities by investigating the actual communication problems in security protocols between sensor nodes, Internet host, data centres, cloud clusters, virtual machines, etc. The inclusion of more operational actions while modelling security protocols is highly prioritised in the proposed research work. In this paper, the prime emphasis is (i) to establish secure pipelining using novel public key cryptography between the sensor network and Internet host, (ii) a robust authentication scheme considering both local and global IoT to offer better secure pervasiveness in its applications, and (iii) to apply optimisation towards key management techniques.

Keywords

  • Authentication
  • Internet of Things
  • IoT security
  • Key management

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-8614-5_5
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-8614-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1

(reproduced from [29])

Fig. 2

(reproduced from [11])

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. S.A. Al-Qaseemi, H.A. Almulhim, M.F. Almulhim, S.R. Chaudhry, IoT architecture challenges and issues: lack of standardization, in Future Technologies Conference (FTC) (IEEE, 2016), pp. 731–738

    Google Scholar 

  2. S. Anand, S.K. Routray, Issues and challenges in healthcare narrowband IoT, in International Conference on Inventive Communication and Computational Technologies (ICICCT) (IEEE, 2017), pp. 486–489

    Google Scholar 

  3. V. Angelakis, E. Tragos, H. Pöhls, A. Kapovits, A. Bassi, Designing, Developing, and Facilitating Smart Cities (Springer, Berlin, 2017)

    Google Scholar 

  4. F. Anwar, M.H. Masud, B.U.I. Khan, R.F. Olanrewaju, S.A. Latif, Bandwidth allocation policy using the game theory model in heterogeneous wireless networks. IPASJ Int. J. Inf. Technol. (IIJIT) 6(7), 1–8 (2018)

    Google Scholar 

  5. F. Anwar, M.H. Masud, B.U.I. Khan, R.F. Olanrewaju, S.A. Latif, Game theory for resource allocation in heterogeneous wireless networks-a review. Indones. J. Electr. Eng. Comput. Sci. 12(2), 843–851 (2018)

    CrossRef  Google Scholar 

  6. A. Arış, S.F. Oktuğ, S.B. Yalçın, Internet-of-Things security: denial of service attacks, in Signal Processing and Communications Applications Conference (SIU) (IEEE, 2015), pp. 903–906

    Google Scholar 

  7. I.E. Bagci, M.R. Pourmirza, S. Raza, U. Roedig, T. Voigt, Codo: confidential data storage for wireless sensor networks, in 9th International Conference on Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 1–6

    Google Scholar 

  8. A. Banafa, Three major challenges facing IoT, in IEEE Internet of Things (2017). http://iot.ieee.org/newsletter/march-2017/three-major-challenges-facing-iot. Accessed 7 Feb 2018

  9. F. Bao, R.H. Deng, W. Mao, Efficient and practical fair exchange protocols with off-line TTP, in Symposium on Security and Privacy, Proceedings (IEEE, 1998), pp. 77–85

    Google Scholar 

  10. P.S. Barreto, B. Libert, N. McCullagh, J.J. Quisquater, Efficient and provably-secure identity-based signatures and signcryption from bilinear maps, in International Conference on the Theory and Application of Cryptology and Information Security (Springer, Berlin, 2005), pp. 515–532

    Google Scholar 

  11. A.A. Boulogeorgos, P.D. Diamantoulakis, G.K. Karagiannidis, Low power wide area networks (LPWANs) for internet of things (IoT) applications: research challenges and future trends (2016). arXiv:1611.07449

  12. X. Boyen, Multipurpose identity-based signcryption, in Annual International Cryptology Conference (Springer, Berlin, 2003), pp. 383–399

    CrossRef  Google Scholar 

  13. I. Butun, M. Erol-Kantarci, B. Kantarci, H. Song, Cloud-centric multi-level authentication as a service for secure public safety device networks. IEEE Commun. Mag. 54(4), 47–53 (2016)

    CrossRef  Google Scholar 

  14. E. Cavalcante, M.P. Alves, T. Batista, F.C. Delicato, P.F. Pires, An analysis of reference architectures for the internet of things, in Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (ACM, 2003), pp. 13–16

    Google Scholar 

  15. K.D. Chang, J.L. Chen, A survey of trust management in WSNs, internet of things and future internet. KSII Trans. Internet Inf. Syst. 6(1), 5–23 (2012)

    Google Scholar 

  16. D. Chasaki, C. Mansour, Security challenges in the internet of things. Int. J. Space-Based Situated Comput. 5(3), 141–149 (2015)

    CrossRef  Google Scholar 

  17. D. Chasaki, C. Mansour, Selective encryption of video transmissions over multi-hop wireless networks, in Symposium on Computers and Communication (ISCC) (IEEE, 2014), pp. 1–5

    Google Scholar 

  18. D. Chen, G. Chang, D. Sun, J. Li, J. Jia, X. Wang, TRM-IoT: a trust management model based on fuzzy reputation for internet of things. Comput. Sci. Inf. Syst. 8(4), 1207–1228 (2011)

    CrossRef  Google Scholar 

  19. X. Chen, K. Makki, K. Yen, N. Pissinou, Sensor network security: a survey. IEEE Commun. Surv. Tutor. 11(2), 52–73 (2009)

    CrossRef  Google Scholar 

  20. K.J. Choi, J.I. Song, Investigation of feasible cryptographic algorithms for wireless sensor network, in The 8th International Conference on Advanced Communication Technology, ICACT, vol. 2 (IEEE, 2006), pp. 1379–1381

    Google Scholar 

  21. S.S. Chow, S.M. Yiu, L.C. Hui, K.P. Chow, Efficient forward and provably secure ID-based signcryption scheme with public verifiability and public ciphertext authenticity, in International Conference on Information Security and Cryptology (Springer, Berlin, 2003), pp. 352–369

    CrossRef  Google Scholar 

  22. M. Conti, A. Dehghantanha, K. Franke, S. Watson, Internet of Things security and forensics: challenges and opportunities. Futur. Gener. Comput. Syst. 78, 544–546

    CrossRef  Google Scholar 

  23. Council Working Groups and Expert Group. http://www.itu.int/en/council/Pages/groups.aspx. Accessed 7 Feb 2018

  24. A. Cui, S.J. Stolfo, A quantitative analysis of the insecurity of embedded network devices: results of a wide-area scan, in Proceedings of the 26th Annual Computer Security Applications Conference (ACM, 2010), pp. 97–106

    Google Scholar 

  25. H.S. Dhillon, H. Huang, H. Viswanathan, Wide-area wireless communication challenges for the Internet of Things. IEEE Commun. Mag. 55(2), 168–174 (2017)

    CrossRef  Google Scholar 

  26. A. Dunkels, B. Gronvall, T. Voigt, Contiki-a lightweight and flexible operating system for tiny networked sensors, in 29th Annual IEEE International Conference on Local Computer Networks (IEEE, 2004), pp. 455–462

    Google Scholar 

  27. S. Feng, P. Setoodeh, S. Haykin, Smart home: cognitive interactive people-centric Internet of Things. IEEE Commun. Mag. 55(2), 34–39 (2017)

    CrossRef  Google Scholar 

  28. C. Gamage, J. Leiwo, Y. Zheng, Encrypted message authentication by firewalls, in International Workshop on Public Key Cryptography (Springer, Berlin, 1999), pp. 69–81

    CrossRef  Google Scholar 

  29. A. Gerber, Simplify the development of your IoT solutions with IoT architectures: strategies for creating scalable, flexible, and robust IoT solutions (2017). https://www.ibm.com/developerworks/library/iot-lp201-iot-architectures/. Accessed 8 Feb 2018

  30. J. Granjal, E. Monteiro, J.S. Silva, Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Surv. Tutor. 17(3), 1294–1312 (2015)

    CrossRef  Google Scholar 

  31. S. Greengard, The Internet of Things. (MIT Press, 2015)

    Google Scholar 

  32. Y. Guo, H. Zhu, L. Yang, Smart service system (SSS): a novel architecture enabling coordination of heterogeneous networking technologies and devices for internet of things. China Commun. 14(3), 130–144 (2017)

    CrossRef  Google Scholar 

  33. M.T. Hammi, E. Livolant, P. Bellot, A. Serhrouchni, P. Minet, A lightweight mutual authentication protocol for the IoT, in International Conference on Mobile and Wireless Technology (Springer, Singapore, 2017), pp. 3–12

    Google Scholar 

  34. G.P. Hancke, K. Markantonakis, K.E. Mayes, Security challenges for user-oriented RFID applications within the Internet of things. J. Internet Technol. 11(3), 307–313 (2010)

    Google Scholar 

  35. T. Heer, O. Garcia-Morchon, R. Hummen, S.L. Keoh, S.S. Kumar, K. Wehrle, Security challenges in the IP-based Internet of Things. Wireless Pers. Commun. 61(3), 527–542 (2011)

    CrossRef  Google Scholar 

  36. J.L. Hernandez-Ramos, M.P. Pawlowski, A.J. Jara, A.F. Skarmeta, L. Ladid, Toward a lightweight authentication and authorization framework for smart objects. IEEE J. Sel. Areas Commun. 33(4), 690–702 (2015)

    CrossRef  Google Scholar 

  37. T. Hu, J. Wang, G. Zhao, X. Long, An improved mutual authentication and key update scheme for multi-hop relay in Internet of Things, in 7th IEEE Conference on Industrial Electronics and Applications (ICIEA) (IEEE, 2012), pp. 1024–1029

    Google Scholar 

  38. Q. Huang, D.S. Wong, G. Yang, Heterogeneous signcryption with key privacy. Comput. J. 54(4), 525–536 (2011)

    CrossRef  Google Scholar 

  39. R. Hummen, J. Hiller, H. Wirtz, M. Henze, H. Shafagh, K. Wehrle, 6LoWPAN fragmentation attacks and mitigation mechanisms, in Proceedings of The Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks (ACM, 2013), pp. 55–66

    Google Scholar 

  40. Internet of things research study 2015 report. https://www.hpe.com/h20195/V4/Getdocument.aspx?docname=4AA5-4759ENW. Accessed 7 Feb 2018

  41. Internet of Things. http://www.itu.int/en/ITU-T/techwatch/Pages/internetofthings.aspx. Accessed 8 Feb 2018

  42. IoT Sensor Node Block Diagram | Mouser. https://www.mouser.in/applications/internet-of-things-block-diagram/. Accessed 8 Feb 2018

  43. H.J. Jo, J.H. Paik, D.H. Lee, Efficient privacy-preserving authentication in wireless mobile networks. IEEE Trans. Mob. Comput. 13(7), 1469–1481 (2014)

    CrossRef  Google Scholar 

  44. B.U.I. Khan, R.F. Olanrewaju, F. Anwar, R.N. Mir, A.R. Najeeb, A critical insight into the effectiveness of research methods evolved to secure IoT ecosystem. Int. J. Inf. Comput. Secur. (2018) (In press)

    Google Scholar 

  45. B.U.I. Khan, A.M. Baba, R.F. Olanrewaju, S.A. Lone, N.F. Zulkurnain, SSM: Secure-Split-Merge data distribution in cloud infrastructure, in IEEE Conference on Open Systems (ICOS) (IEEE, 2015), pp. 40–45

    Google Scholar 

  46. B.U.I. Khan, R.F. Olanrewaju, M.H. Habaebi, Malicious behaviour of node and its significant security techniques in MANET-A review. Aust. J. Basic Appl. Sci. 7(12), 286–293 (2013)

    Google Scholar 

  47. K. Lampropoulos, S. Denazis, Identity management directions in future internet. IEEE Commun. Mag. 49(12), 74–83 (2011)

    CrossRef  Google Scholar 

  48. Y.W. Law, J. Doumen, P. Hartel, Survey and benchmark of block ciphers for wireless sensor networks. ACM Trans. Sens. Netw. (TOSN) 2(1), 65–93 (2006)

    CrossRef  Google Scholar 

  49. C.K. Li, G. Yang, D.S. Wong, X. Deng, S.S. Chow, An efficient signcryption scheme with key privacy and its extension to ring signcryption. J. Comput. Secur. 18(3), 451–473 (2010)

    CrossRef  Google Scholar 

  50. F. Li, P. Xiong, Practical secure communication for integrating wireless sensor networks into the internet of things. IEEE Sens. J. 13(10), 3677–3684 (2013)

    CrossRef  Google Scholar 

  51. F. Li, Y. Han, C. Jin, Practical signcryption for secure communication of wireless sensor networks. Wireless Pers. Commun. 89(4), 1391–1412 (2016)

    CrossRef  Google Scholar 

  52. X. Li, R. Lu, X. Liang, X. Shen, J. Chen, X. Lin, Smart community: an internet of things application. IEEE Commun. Mag. 49(11), 68–75 (2011)

    CrossRef  Google Scholar 

  53. B. Libert, J.J. Quisquater, Identity based undeniable signatures, in Cryptographers’ track at the RSA conference (Springer, Berlin, 2004), pp. 112–125

    CrossRef  Google Scholar 

  54. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)

    CrossRef  Google Scholar 

  55. A. Liu, N. TinyECC, A configurable library for elliptic curve cryptography in wireless sensor networks 2008, in Proceedings of the 7th International Conference on Information Processing in Sensor Networks (IEEE Computer Society, Washington DC, 2008), pp. 245–256

    Google Scholar 

  56. H. Ma, B. Chen, An authentication protocol based on quantum key distribution using decoy-state method for heterogeneous IoT. Wireless Pers. Commun. 91(3), 1335–1344 (2016)

    CrossRef  Google Scholar 

  57. R. Mahmoud, T. Yousuf, F. Aloul, I. Zualkernan, Internet of things (IoT) security: current status, challenges and prospective measures, in 10th International Conference for Internet Technology and Secured Transactions (ICITST) (IEEE, 2015), pp. 336–341

    Google Scholar 

  58. J. Malone-Lee, W. Mao, Two birds one stone: signcryption using RSA, in Cryptographers’ Track at the RSA Conference (Springer, Berlin, 2003), pp. 211–226

    CrossRef  Google Scholar 

  59. F.V. Meca, J.H. Ziegeldorf, P.M. Sanchez, O.G. Morchon, S.S. Kumar, S.L. Keoh, HIP security architecture for the IP-based internet of things, in 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA) (IEEE, 2013), pp. 1331–1336

    Google Scholar 

  60. A. Meddeb, Internet of things standards: who stands out from the crowd? IEEE Commun. Mag. 54(7), 40–47 (2016)

    CrossRef  Google Scholar 

  61. M.S. Mir, B. Suhaimi, M. Adam, B.U.I. Khan, M.M.U.I. Mattoo, R.F. Olanrewaju, Critical security challenges in cloud computing environment: an appraisal. J. Theor. Appl. Inf. Technol. 95(10), 2234–2248 (2017)

    Google Scholar 

  62. A. Mosenia, N.K. Jha, A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 5(4), 586–602 (2017)

    CrossRef  Google Scholar 

  63. I. Nadir, W.K. Zegeye, F. Moazzami, Y. Astatke, Establishing symmetric pairwise-keys using public-key cryptography in Wireless Sensor Networks (WSN), in IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (IEEE, 2016), pp. 1–6

    Google Scholar 

  64. K. Narayanan, Addressing the challenges facing IoT adoption. Microw. J. 60(1), 110–118 (2017)

    Google Scholar 

  65. C. Neuman, J. Kohl RFC 4120: the Kerberos network authentication service (V5) 2005 (2015)

    Google Scholar 

  66. K.T. Nguyen, M. Laurent, N. Oualha, Survey on secure communication protocols for the Internet of Things. Ad Hoc Netw. 32, 17–31 (2015)

    CrossRef  Google Scholar 

  67. H. Ning, H. Liu, L. Yang, Cyber-entity security in the Internet of things. Computer 46(4), 46–53 (2013)

    CrossRef  Google Scholar 

  68. R.F. Olanrewaju, B.U.I. Khan, A.L. Mechraoui, Game theory based probabilistic approach to detect misbehaving nodes in ad-hoc networks, in Proceedings of the 2nd IEEE International Conference on Intelligent Systems Engineering (ICISE), Kuala Lumpur, Malaysia (2018)

    Google Scholar 

  69. R.F. Olanrewaju, B.U.I. Khan, M.M. Mattoo, F. Anwar, A.N. Nordin, R.N. Mir, Z. Noor, Adoption of cloud computing in higher learning institutions: a systematic review. Indian J. Sci. Technol. 10(36), 1–9 (2017)

    CrossRef  Google Scholar 

  70. R.F. Olanrewaju, B.U.I. Khan, A. Baba, R.N. Mir, S.A. Lone, RFDA: reliable framework for data administration based on split-merge policy, in SAI Computing Conference (SAI) (IEEE, 2016), pp. 545–552

    Google Scholar 

  71. R.F. Olanrewaju, B.U.I. Khan, R.N. Mir, A. Shah, Behaviour visualization for malicious-attacker node collusion in MANET based on probabilistic approach. Am. J. Comput. Sci. Eng. 2(3), 10–19 (2015)

    Google Scholar 

  72. V. Oleshchuk, Internet of things and privacy preserving technologies, in 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Wireless VITAE (IEEE, 2009), pp. 336–340

    Google Scholar 

  73. S. Patel, D.R. Patel, A.P. Navik, Energy efficient integrated authentication and access control mechanisms for Internet of Things, in International Conference on Internet of Things and Applications (IOTA) (IEEE, 2016), pp. 304–309

    Google Scholar 

  74. P.P. Pereira, J. Eliasson, J. Delsing, An authentication and access control framework for CoAP-based Internet of Things, in IECON 2014-40th Annual Conference of the Industrial Electronics Society (IEEE, 2014), pp. 5293–5299

    Google Scholar 

  75. P. Pongle, G. Chavan, A survey: attacks on RPL and 6LoWPAN in IoT, in International Conference on Pervasive Computing (ICPC) (IEEE, 2015), pp. 1–6

    Google Scholar 

  76. S. Raza, S. Duquennoy, J. Höglund, U. Roedig, T. Voigt, Secure communication for the Internet of Things—a comparison of link-layer security and IPsec for 6LoWPAN. Secur. Commun. Netw. 7(12), 2654–2668 (2014)

    CrossRef  Google Scholar 

  77. S. Raza, H. Shafagh, K. Hewage, R. Hummen, T. Voigt, Lithe: lightweight secure CoAP for the internet of things. IEEE Sens. J. 13(10), 3711–3720 (2013)

    CrossRef  Google Scholar 

  78. F. Ren, J. Ma, Attribute-based access control mechanism for perceptive layer of the internet of things. Int. J. Digit. Content Technol. Appl. 5(10), 396–403 (2011)

    CrossRef  Google Scholar 

  79. C. Rigney, S. Willens, A. Rubens, W. Simpson, Remote authentication dial in user service (RADIUS). No. RFC 2865 (2000)

    Google Scholar 

  80. R. Roman, C. Alcaraz, J. Lopez, N. Sklavos, Key management systems for sensor networks in the context of the Internet of Things. Comput. Electr. Eng. 37(2), 147–159 (2011)

    CrossRef  Google Scholar 

  81. R. Roman, J. Lopez, C. Alcaraz, Do wireless sensor networks need to be completely integrated into the internet? in 3rd CompanionAble Workshop-Future Internet of People, Things and Services (IoPTS) Eco-Systems (2009)

    Google Scholar 

  82. R. Roman, J. Lopez, S. Gritzalis, Situation awareness mechanisms for wireless sensor networks. IEEE Commun. Mag. 46(4), 102–107 (2008)

    CrossRef  Google Scholar 

  83. M. Sain, Y.J. Kang, H.J. Lee, Survey on security in Internet of Things: state of the art and challenges, in 19th International Conference on Advanced Communication Technology (ICACT) (IEEE, 2017), pp. 699–704

    Google Scholar 

  84. N. Saleh Al Marzouqi, ITU-T Study Group 20: IoT and its applications including smart cities and communities. Presentation, Hammamet, Tunisia (2016)

    Google Scholar 

  85. M.G. Samaila, M. Neto, D.A. Fernandes, M.M. Freire, P.R. Inácio, Security challenges of the Internet of Things, Beyond the Internet of Things (Springer, Cham, 2017), pp. 53–82

    CrossRef  Google Scholar 

  86. Z. Shelby, K. Hartke, C. Bormann, The constrained application protocol (CoAP) (2014)

    Google Scholar 

  87. S. Sridhar, A. Hahn, M. Govindarasu, Cyber-physical system security for the electric power grid. Proc. IEEE 100(1), 210–224 (2012)

    CrossRef  Google Scholar 

  88. J. Srinivas, S. Mukhopadhyay, D. Mishra, Secure and efficient user authentication scheme for multi-gateway wireless sensor networks. Ad Hoc Netw. 54, 147–169 (2017)

    CrossRef  Google Scholar 

  89. Study Group 11 at a glance. https://www.itu.int/en/ITU-T/about/groups/Pages/sg11.aspx. Accessed 8 Feb 2018

  90. Study Group 13 at a glance. https://www.itu.int/en/ITU-T/about/groups/Pages/sg13.aspx. Accessed 8 Feb 2018

  91. Study Group 16 at a glance. https://www.itu.int/en/ITU-T/about/groups/Pages/sg16.aspx. Accessed 8 Feb 2018

  92. Study Group 17 at a glance. https://www.itu.int/en/ITU-T/about/groups/Pages/sg17.aspx. Accessed 8 Feb 2018

  93. Study Group 2 at a glance. https://www.itu.int/en/ITU-T/about/groups/Pages/sg02.aspx. Accessed 8 Feb 2018

  94. Y. Sun, H. Li, Efficient signcryption between TPKC and IDPKC and its multi-receiver construction. Sci. China Inf. Sci. 53(3), 557–566 (2010)

    CrossRef  MathSciNet  Google Scholar 

  95. R.T. Tiburski, L.A. Amaral, E. De Matos, F. Hessel, The importance of a standard security architecture for SOA-based IoT middleware. IEEE Commun. Mag. 53(12), 20–26 (2015)

    CrossRef  Google Scholar 

  96. K. Toumi, M. Ayari, L.A. Saidane, M. Bouet, G. Pujolle, HAT: HIP address translation protocol for hybrid RFID/IP internet of things communication, in International Conference on Communication in Wireless Environments and Ubiquitous Systems: New Challenges (ICWUS) (IEEE, 2010), pp. 1–7

    Google Scholar 

  97. J.F. Valenzuela-Valdes, M.A. Lopez, P. Padilla, J.L. Padilla, J. Minguillon, Human neuro-activity for securing body area networks: application of brain-computer interfaces to people-centric internet of things. IEEE Commun. Mag. 55(2), 62–67 (2017)

    CrossRef  Google Scholar 

  98. X. Wang, X. Sun, H. Yang, S.A. Shah, An anonymity and authentication mechanism for internet of things. J. Converg. Inf. Technol. 6(3), 98–105 (2011)

    Google Scholar 

  99. W. Xie, Y. Tang, S. Chen, Y. Zhang, Y. Gao, Security of web of things: a survey (short paper), in International Workshop on Security (Springer, Cham, 2016), pp. 61–70

    CrossRef  Google Scholar 

  100. T. Yan, Q. Wen, Building the Internet of Things using a mobile RFID security protocol based on information technology, Advances in Computer Science, Intelligent System and Environment (Springer, Berlin, 2011), pp. 143–149

    CrossRef  Google Scholar 

  101. Z. Yan, P. Zhang, A.V. Vasilakos, A survey on trust management for Internet of Things. J. Netw. Comput. Appl. 42, 120–134 (2014)

    CrossRef  Google Scholar 

  102. Y. Yang, L. Wu, G. Yin, L. Li, H. Zhao, A survey on security and privacy issues in internet-of-things. IEEE Internet Things J. 4(5), 1250–1258 (2017)

    CrossRef  Google Scholar 

  103. X. Yao, X. Han, X. Du, X. Zhou, A lightweight multicast authentication mechanism for small scale IoT applications. IEEE Sens. J. 13(10), 3693–3701 (2013)

    CrossRef  Google Scholar 

  104. N. Ye, Y. Zhu, R.C. Wang, R. Malekian, L. Qiao-min, An efficient authentication and access control scheme for perception layer of internet of things. Appl. Math. Inf. Sci. 8(4), 1617–1624 (2014)

    CrossRef  Google Scholar 

  105. G. Zhao, X. Si, J. Wang, X. Long, T. Hu, A novel mutual authentication scheme for Internet of Things, in Proceedings of 2011 International Conference on Modelling, Identification and Control (ICMIC) (IEEE, 2011), pp. 563–566

    Google Scholar 

  106. K. Zhao, L. Ge, A survey on the internet of things security, in 9th International Conference on Computational Intelligence and Security (CIS) (IEEE, 2013), pp. 663–667

    Google Scholar 

  107. K. Zhou, T. Liu, L. Liang, Security in cyber-physical systems: challenges and solutions. Int. J. Auton. Adapt. Commun. Syst. 10(4), 391–408 (2017)

    CrossRef  Google Scholar 

  108. L. Zhou, H.C. Chao, Multimedia traffic security architecture for the internet of things. IEEE Netw. 25(3), 35–40 (2011)

    CrossRef  Google Scholar 

  109. B.U.I. Khan, R.F. Olanrewaju, F. Anwar, R.N. Mir, ECM-GT: Design of efficient computational modelling based on game theoretical approach towards enhancing the security solutions in MANET. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 8(7), 506–519 (2019)

    Google Scholar 

  110. R.F. Olanrewaju, B.U.I. Khan, F. Anwar, R.N. Mir, M. Yaacob, T. Mehraj, in Bayesian signaling game based efficient security model for MANETs, ed. by K. Arai, R. Bhatia. Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70 (Springer, Cham, 2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Higher Education Malaysia (Kementerian Pendidikan Tinggi) under Research Initiative Grant Scheme number: RIGS16-334-0498.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burhan Ul Islam Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Khan, B.U.I., Olanrewaju, R.F., Anwar, F., Mir, R.N., Oussama, A., Jusoh, A.Z.B. (2019). Internet of Things—The Concept, Inherent Security Challenges and Recommended Solutions. In: Elhoseny, M., Singh, A. (eds) Smart Network Inspired Paradigm and Approaches in IoT Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8614-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8614-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8613-8

  • Online ISBN: 978-981-13-8614-5

  • eBook Packages: Computer ScienceComputer Science (R0)