Skip to main content

Radiocesium Deposition at the Accident and the Succeeding Movement Through Hydrological Process in Forest Ecosystem in Fukushima

  • 139 Accesses

Abstract

Fukushima Daiichi Nuclear Power Plant accident resulted in radioactive contamination of forest environment over a wide area in Fukushima Prefecture and the neighboring prefectures. In this chapter, initial atmospheric deposition of radiocesium following the Fukushima accident was estimated based on the analysis of multiple dataset derived from different airborne surveys. Furthermore, the canopy interception of fallout radiocesium by forest was reviewed and summarized according to the results reported in the previous studies and intensive field monitoring surveys by the author. The long-term dynamics of radiocesium in Japanese forests, such as transfer from the canopy to forest floor in association with hydrological and biological processes, were presented and discussed based on the field observation results by the author.

The forest area accumulated in total is 1.8 PBq of 137Cs based on the analysis of the airborne monitoring surveys, which is corresponding to 72% of total 137Cs activities deposited on the land area of Japan. The evergreen conifers tend to show high canopy interception rate greater than 70% of atmospheric input in most cases. This indicated that the canopy will act as a secondary source of radioactive contamination of the forest floor. On the other hand, the canopy interception by deciduous broad-leaved forest has not been sufficiently clarified because there have been limited data available for the canopy interception for deciduous broad-leaved species during growing season. The monitoring of radiocesium concentrations in hydrological and biological components effectively determined the transport of radiocesium from forest canopies; a double exponential field-loss model was used to simulate the observed loss of canopy radiocesium from Japanese cedar and konara oak forest mixed with red pine during the early phase of the accident. These results help to gain further understanding of key processes in transfer of atmospherically deposited radiocesium in forest ecosystems particularly during the early phase of the accident.

Keywords

  • Fukushima accident
  • Radiocesium
  • Forest
  • Canopy interception
  • Transfer

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-8606-0_2
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-8606-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14

References

  • Amano H, Akiyama M, Chunlei B, Kawamura T, Kishimoto T, Kuroda T, Muroi T, Odaira T, Ohta T, Takeda K, Watanabe Y, Morimoto T (2012) Radiation measurements in the Chiba Metropolitan Area and radiological aspects of fallout from the Fukushima Dai-ichi Nuclear Power Plants accident. J Environ Radioact 111:42–52

    CAS  CrossRef  PubMed  Google Scholar 

  • Bunzl K, Schimmack W, Kreutzer K, Schierl R (1989) Interception and retention of Chernobyl-derived 134Cs, 137Cs and 106Ru in a spruce stand. Sci Total Environ 78:77–87. https://doi.org/10.1016/0048-9697(89)90023-5

    CAS  CrossRef  PubMed  Google Scholar 

  • Butler C (2011) Radioactivity spreads in Japan. Nature 471:555–556

    CAS  CrossRef  PubMed  Google Scholar 

  • Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48(7):1129–1134

    CAS  CrossRef  Google Scholar 

  • Coppin F, Hurtevent P, Loffredo N, Simonucci C, Julien A, Gonze M-A, Nanba K, Onda Y, Thiry Y (2016) Radiocaesium partitioning in Japanese cedar forests following the “early” phase of Fukushima fallout redistribution. Sci Rep 6(1)

    Google Scholar 

  • Ertel J, Voigt G, Paretzke HG (1989) Weathering of 134/137Cs following leaf contamination of grass cultures in an outdoor experiment. Radiat Environ Biophys 28(4):319–326

    CAS  CrossRef  PubMed  Google Scholar 

  • Fukushima Prefecture (2016) Current situation and future prediction of radionuclides in forest environment. http://www.pref.fukushima.lg.jp/uploaded/attachment/221567.pdf. Last accessed on 1 July 2017

  • Hashimoto S, Ugawa S, Nanko K, Shichi K (2012) The total amounts of radioactivity contaminated materials in forests in Fukushima, Japan. Sci Rep 2:416. https://doi.org/10.1038/srep00416

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hashimoto S, Matsuura T, Nanko K, Linkov I, Shaw G, Kaneko S (2013) Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident. Sci Rep 3:2564. https://doi.org/10.1038/srep02564

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hirose K (2012) Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J Environ Radioact 111:13–17

    CAS  CrossRef  PubMed  Google Scholar 

  • Hisadome K, Onda Y, Kawamori A, Kato H (2013) Migration of radiocaesium with litterfall in hardwood-Japanese red pine mixed forest and sugi plantation. J Jpn For Soc 95:267–274

    CAS  CrossRef  Google Scholar 

  • IAEA (2006) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the Chernobyl forum expert group ‘Environment’, Radiological Assessment Reports Series, International Atomic Energy Agency: Vienna, Austria. p 166

    Google Scholar 

  • Imamura N, Komatsu M, Ohashi S, Hashimoto S, Kajimoto T, Kaneko S, Takano T (2017) Temporal changes in the radiocesium distribution in forests over the five years after the Fukushima Daiichi Nuclear Power Plant accident. Sci Rep 7:8179. https://doi.org/10.1038/s41598-017-08261-x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Imaya A, Kobayashi M (2015) Initial radiocesium deposition on forest ecosystems surrounding the Tokyo metropolitan area due to the Fukushima Daiichi Nuclear Power Plant accident. Hydrol Res Lett 9(1):1–7. https://doi.org/10.3178/hrl.9.1

    CrossRef  Google Scholar 

  • Katata G, Chino M, Kobayashi T, Terada H, Ota M, Nagai H, Kajino M, Draxler R, Hort MC, Malo A, Torii T, Sanada Y (2015) Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos Chem Phys 15:1029–1070. https://doi.org/10.5194/acp-15-1029-2015

    CAS  CrossRef  Google Scholar 

  • Kato H, Onda Y (2018) Determining the initial Fukushima reactor accident-derived cesium-137 fallout in forested areas of municipalities in Fukushima Prefecture. J For Res 23:73–84. https://doi.org/10.1080/13416979.2018.1448566

    CAS  CrossRef  Google Scholar 

  • Kato H, Onda Y, Gomi T (2012) Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys Res Lett 39:L20403. https://doi.org/10.1029/2012GL052928

    CAS  CrossRef  Google Scholar 

  • Kato H, Onda Y, Loffredo N, Hisadome K, Kawamori A (2017) Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 116(3):449–457. https://doi.org/10.1016/j.jenvrad.2015.04.016

    CAS  CrossRef  Google Scholar 

  • Kato H, Onda Y, Gao X, Sanada Y, Saito K (2019) Reconstruction of a Fukushima accident-derived radiocesium fallout map for environmental transfer studies. J Environ Radioact

    Google Scholar 

  • Kinnersley RP, Shaw G, Bell JNB, Minski J, Goddard AJH (1996) Loss of particulate contaminants from plant canopies under wet and dry conditions. Environ Pollut 91(2):227–235. https://doi.org/10.1016/0269-7491(95)00047-X

    CAS  CrossRef  PubMed  Google Scholar 

  • Kitamura A, Yamaguchi M, Kurikami H, Yui M, Onishi Y (2014) Predicting sediment and cesium-137 discharge from catchments in eastern Fukushima. Anthropocene 5:22–31

    CrossRef  Google Scholar 

  • Madoz-Escande C, Garcia-Sanchez L, Bonhomme T, Morello M (2005) Influence of rainfall characteristics on elimination of aerosols of cesium, strontium, barium and tellurium deposited on grassland. J Environ Radioact 84:1–20

    CAS  CrossRef  PubMed  Google Scholar 

  • Melin J, Wallberg L, Suomela J (1994) Distribution and retention of cesium and strontium in Swedish boreal forest ecosystems. Sci Total Environ 157:93–105

    CAS  CrossRef  Google Scholar 

  • MEXT (2011a) Preparation of distribution map of radiation doses, etc. (map of radioactive cesium concentration in soil) by MEXT. radioactivity.nsr.go.jp/en/contents/5000/4165/24/1750_083014.pdf. Last accessed on 1 Jul 2017

  • MEXT (2011b) Results of the third airborne monitoring survey by MEXT. radioactivity.nsr.go.jp/en/contents/5000/4182/24/1304797_0708e.pdf. Last accessed on 1 July 2017

  • Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF) (2011) Monitoring results of ambient dose rate in forest of Fukushima prefecture. In Japanese. http://www.rinya.maff.go.jp/j/press/hozen/111227_3.html (Last accessed on July 1, 2017)

  • Niinemets Y, Tamm U (2005) Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiol 25:1001–1014

    CrossRef  PubMed  Google Scholar 

  • Nuclear Regulation Authority of Japan (NRA) (2017) Monitoring information of environmental radioactivity level. Monitoring survey on radionuclide distribution in environment. Available at http://radioactivity.nsr.go.jp/ja/list/338/list-1.html. Last accessed 1 July 2017. In Japanese

  • Okada N, Nakai W, Ohashi S, Tanaka A (2015) Radiocesium migration from the canopy to the forest floor in pine and deciduous forests. J Jpn For Soc 97:57–62

    CAS  CrossRef  Google Scholar 

  • Onda Y, Kato H, Hoshi M, Takahashi Y, Nguyen M-L (2015) Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 139:300–307

    CAS  CrossRef  PubMed  Google Scholar 

  • Rauret G, Llauradó M, Tent J, Rigol A, Alegre LH, Utrillas MJ (1994) Deposition on holm oak leaf surfaces of accidentally released radionuclides. Sci Total Environ 157:7–16

    CAS  CrossRef  Google Scholar 

  • Ronneau C, Cara J, Apers D (1987) The deposition of radionuclides from Chernobyl to a forest in Belgium. Atmos Environ 21(6):1467–1468

    CAS  CrossRef  Google Scholar 

  • Schimmack W, Bunzl K, Kreutzer K, Rondenkirchen E, Schierl R (1991) Einfluss von fichte (Picea abies L. Karst) und buche (Fagus sylvatica L.) auf die Wanderung von radiocasium im Boden. Fortwiss Forsch 39:242e251

    Google Scholar 

  • Sombre L, Vanhouche M, Thiry Y, Ronneau C, Lambotte JM, Myttenaere C (1990) Transfer of radiocesium in forest ecosystems resulting from a nuclear accident. In: Desmet G et al (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier Applied Science, p 74e83

    Google Scholar 

  • Teramage MT, Onda Y, Kato H, Gomi T (2014) The role of litterfall in transferring Fukushima-derived radiocesium to a coniferous forest floor. Sci Total Environ 490:435–439

    CAS  CrossRef  PubMed  Google Scholar 

  • Thiry Y (1997) Etude du cycle du radiocesium en ecosysteme forestier: Distribution et facteurs de mobilité. Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

    Google Scholar 

  • Thiry Y, Garcia-Sanchez L, Hurtevent P (2016) Experimental quantification of radiocesium recycling in a coniferous tree after aerial contamination: field loss dynamics, translocation and final partitioning. J Environ Radioact 161:42–50

    CAS  CrossRef  PubMed  Google Scholar 

  • Tikhomirov FA, Shcheglov AI (1991) The radiological consequences of the Kyshtym and Chernobyl radiation accidents for forest ecosystems. In: Proceedings of the Seminar on Comparative Assessment of the Environmental Impact of Radionuclides Released during Three Major Nuclear Accidents, Kyshtym, Windscale, Chernobyl. CEC, Luxembourg, 1-5 October 1990, H, EUR 13574, pp 867–888

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kato, H. (2019). Radiocesium Deposition at the Accident and the Succeeding Movement Through Hydrological Process in Forest Ecosystem in Fukushima. In: Takenaka, C., Hijii, N., Kaneko, N., Ohkubo, T. (eds) Radiocesium Dynamics in a Japanese Forest Ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-13-8606-0_2

Download citation