Shortliffe, E.H., Cimino, J.J.: Essential concepts for biomedical computing. Biomedical Informatics: Computer Applications in Health Care and Biomedicine, pp. 186–232 (2006)
Google Scholar
Yadav, P., Steinbach, M., Kumar, V., Simon, G.: Mining Electronic Health Records: A Survey, vol. 1(1), pp. 1–41 (2017)
Google Scholar
Gullo, F.: From patterns in data to knowledge discovery: what data mining can do. Phys. Procedia 62, 18–22 (2015)
CrossRef
Google Scholar
Iavindrasana, J., Cohen, G., Depeursinge, A., Müller, H., Meyer, R., Geissbuhler, A.: Clinical data mining: a review. Yearb. Med. Inform. 18(01), 121–133 (2009)
CrossRef
Google Scholar
Wang, Y., Kung, L.A., Wang, W.Y.C., Cegielski, C.G.: An integrated big data analytics-enabled transformation model: application to health care. Inf. Manag. 55(1), 64–79 (2018)
CrossRef
Google Scholar
Eladl, G.H.: A Proposed Quality Preserving Framework for Ensuring the Property of Medical Patient Information, vol. 4(3), pp. 247–251 (2017)
Google Scholar
Pradhan, M.: Data mining and health care: techniques of application. Int. J. Innov. Res. Comput. Commun. Eng. 2(12), 7445–7455 (2014)
CrossRef
Google Scholar
Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., Chouvarda, I.: Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 15, 104–116 (2017)
CrossRef
Google Scholar
Ramírez, M.R., Moreno, H.B.R., Rojas, E.M.: Big data in healthcare. In: Ntalampiras, S., Roy, S.S., Samui, P., Deo, R. (eds.) Big Data in Engineering Applications, pp. 143–159. Springer, Singapore (2018)
Google Scholar
Marungo, F., et al.: Creating a data science platform for developing complication risk models for personalized treatment planning in radiation oncology. In: 2015 48th Hawaii International Conference on System Sciences, pp. 3132–3140 (2015)
Google Scholar
Nadauld, L.D., Ford, J.M., Pritchard, D., Brown, T.: Strategies for clinical implementation: precision oncology at three distinct institutions. Heal. Aff. 37(5), 751–756 (2018)
CrossRef
Google Scholar
Churpek, M.M., Yuen, T.C., Park, S.Y., Gibbons, R., Edelson, D.P.: Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards. Crit. Care Med. 42(4), 841–848 (2014)
CrossRef
Google Scholar
Khalilia, M., Choi, M., Henderson, A., Iyengar, S., Braunstein, M., Sun, J.: Clinical predictive modeling development and deployment through FHIR web services. AMIA … Annu. Symp. Proc. AMIA Symp. 2015, 717–726 (2015)
Google Scholar
Kwon, J.M., Lee, Y., Lee, Y., Lee, S., Park, H., Park, J.: Validation of deep-learning-based triage and acuity score using a large national dataset. PLoS One 13(10), 1–10 (2018)
CrossRef
Google Scholar
Reps, J.M., Schuemie, M.J., Suchard, M.A., Ryan, P.B., Rijnbeek, P.R.: Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data. J. Am. Med. Inform. Assoc. 25(8), 969–975 (2018)
CrossRef
Google Scholar
Gotz, D., Wang, F., Perer, A.: A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. J. Biomed. Inform. 48, 148–159 (2014)
CrossRef
Google Scholar
Peddinti, G., et al.: Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia 60(9), 1740–1750 (2017)
CrossRef
Google Scholar
Jelinek, H.F., Stranieri, A., Yatsko, A., Venkatraman, S.: Data analytics identify glycated haemoglobin co-markers for type 2 diabetes mellitus diagnosis. Comput. Biol. Med. 75, 90–97 (2016)
CrossRef
Google Scholar
Oh, W., et al.: Type 2 diabetes mellitus trajectories and associated risks. Big Data 4(1), 25–30 (2016)
CrossRef
Google Scholar
Lagani, V., et al.: Development and validation of risk assessment models for diabetes-related complications based on the DCCT/EDIC data. J. Diabetes Complicat. 29(4), 479–487 (2015)
CrossRef
Google Scholar
Yadav, P., et al.: Causal inference in observational data (2016)
Google Scholar
Casula, M., et al.: Statin use and risk of new-onset diabetes: a meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 27(5), 396–406 (2017)
CrossRef
Google Scholar
Dankwa-Mullan, I., Rivo, M., Sepulveda, M., Park, Y., Snowdon, J., Rhee, K.: Transforming diabetes care through artificial intelligence: the future is here. Popul. Health Manag. (2018) https://doi.org/10.1089/pop.2018.0129
CrossRef
Google Scholar
DeJournett, L., DeJournett, J.: In silico testing of an artificial-intelligence-based artificial pancreas designed for use in the intensive care unit setting. J. Diabetes Sci. Technol. 10(6), 1360–1371 (2016)
CrossRef
Google Scholar
Kovatchev, B., Tamborlane, W.V., Cefalu, W.T., Cobelli, C.: The artificial pancreas in 2016: a digital treatment ecosystem for diabetes. Diabetes Care 39, 1123–1126 (2016)
CrossRef
Google Scholar
U.S. Food and Drug Administration, “What is the pancreas? What is an artificial pancreas device system?,” US Food and Drug Administration (2018). https://www.fda.gov/medicaldevices/productsandmedicalprocedures/homehealthandconsumer/consumerproducts/artificialpancreas/ucm259548.htm. Accessed 10 Jan 2019
Yi, H.-G., Lee, H., Cho, D.-W.: 3D printing of organs-on-chips. Bioengineering 4(1), 10 (2017)
CrossRef
Google Scholar
Cohen, I.G., Amarasingham, R., Shah, A., Xie, B., Lo, B.: The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff. 33(7), 1139–1147 (2014)
CrossRef
Google Scholar
Soa, 2018 predictive analytics in healthcare trend forecast (2017)
Google Scholar
Islam, M., Hasan, M., Wang, X., Germack, H., Noor-E-Alam, M.: A systematic review on healthcare analytics: application and theoretical perspective of data mining. Healthcare 6(2), 54 (2018)
CrossRef
Google Scholar