Advertisement

Microbiome in Plant Health and Disease: Challenges and Opportunities

  • Ranjini Ramesh
Chapter

Abstract

In this chapter, the role played by the “plant microbiome” has been discussed in detail, with reference to their diversity, mechanisms of growth promotion in plants, and methods of their defense against predators and disease. The effects of plants on the diversity of the microbiome, and “co-adaptation” between the two have also been elaborated. The mechanisms of biocontrol detailed are “antagonism,” “signal interference,” “predation,” “parasitism,” “induced systemic resistance,” and the role played by ferric ions. Direct plant growth promotion methods discussed are “rhizoremediation,” “phytostimulation,” and “stress control,” among others. The diversity of the rhizosphere microbiome has also been detailed, with reference to Azotobacter, Azospirillum, mycorrhizae, and blue-green algae.

References

  1. Agrios GN (2005) Plant pathology, 4th edn. Academic. 635 pp, AmsterdamGoogle Scholar
  2. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefPubMedCentralGoogle Scholar
  3. Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Phys 151:2006–2017CrossRefGoogle Scholar
  4. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bashan Y, de-Bashan LE (2018) How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136Google Scholar
  6. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol2: 582–587PubMedCrossRefPubMedCentralGoogle Scholar
  7. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas bio control strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 16:983–993PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 72:418–427PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bremer C, Braker G, Matthies D, Beierkuhnlein C, Conrad R (2009) Plant presence and species combination, but not diversity, influence denitrifier activity and the composition of K-type denitrifier communities in grassland soil. FEMS Microbiol Ecol 70:377–387PubMedCrossRefPubMedCentralGoogle Scholar
  11. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744CrossRefGoogle Scholar
  12. Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa. ISME J 1:763–765CrossRefGoogle Scholar
  13. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol 64: 807-838PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cazorla FM, Duckett SB, Bergstrom ET, Noreen S, Odijk R, Lugtenberg BJ, Thomas-Oates JE, Bloemberg GV (2006) Biocontrol of avocado Dematophora root rot by the antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant-Microbe Interact 19:418–428PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 57:503–523CrossRefGoogle Scholar
  16. Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinine is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668PubMedPubMedCentralCrossRefGoogle Scholar
  17. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for bio control of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  18. Copping LG (2004) The Manual of Biocontrol Agents. Alton, Hampshire, UK: Br. Crop Prot Counc Publ 702 pp. 3rd ed.Google Scholar
  19. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751PubMedCrossRefPubMedCentralGoogle Scholar
  20. De Bruijn I, De Kock MJD, Yang M, De Waard P, Van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428PubMedCrossRefPubMedCentralGoogle Scholar
  21. De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact 15:1173–1180PubMedCrossRefPubMedCentralGoogle Scholar
  22. De Weert S, Kuiper I, Lagendijk EL, Lamers GEM, Lugtenberg BJJ (2003) Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact 16:1185–1191Google Scholar
  23. Egamberdiyeva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown in salinated soil in Uzbekistan. Environ Microbiol 10:1–9Google Scholar
  24. Emmert EA, Klimowicz AK, Thomas MG, Handelsman J (2004) Genetics of zwittermicin A production by Bacillus cereus. Appl Environ Microbiol 70:104–113PubMedPubMedCentralCrossRefGoogle Scholar
  25. Flores-Fargas RD, O’Hara GW (2006) Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J Appl Microbiol 100:946–954CrossRefGoogle Scholar
  26. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gilbert GS, Handelsman J, Parke JL (1994) Root camouflage by disease control. Phytopathology 84:222–225Google Scholar
  28. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  29. Grunsven RHA, Putten WH, Bezemer TM, Veenendaal EM (2009) Plant-soil feedback of native and range expanding plant species is insensitive to temperature. Oecologia 162:1059–1069PubMedPubMedCentralCrossRefGoogle Scholar
  30. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefGoogle Scholar
  31. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153CrossRefGoogle Scholar
  32. Harman GE, Howel CH, Viterbo A, Chet I, Lorito M (2004) Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefGoogle Scholar
  33. Hwang SF, Ahmed HU, Gossen BD, Kutcher HR, Brandt SA, Strelkov SE, Chang KF, Turnbull GD (2009) Effect of crop rotation on the soil pathogen population dynamics and canola seedling establishment. Plant Pathol J 8:106–112CrossRefGoogle Scholar
  34. Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858CrossRefGoogle Scholar
  35. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizo deposition. New Phytol 163:459–480CrossRefGoogle Scholar
  36. Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg BJJ (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the bio control bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microbe Interact 19:1121–1126PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kamilova F, Leveau JHJ, Lugtenberg B (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo bio control agent for the suppression of tomato foot and root rot. Environ Microbiol 9:1597–1603PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 10:2455–2461PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconic acid, an antifungal agent produced by Pseudomonas species in biological control of take-all. Phytochemistry 67:595–604PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pée KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943PubMedPubMedCentralGoogle Scholar
  43. Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant-Microbe Interact 17:6–15PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115CrossRefGoogle Scholar
  46. Lin YH, Xu JL, Hu JY, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860PubMedCrossRefPubMedCentralGoogle Scholar
  47. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefPubMedCentralGoogle Scholar
  48. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation. Annu Rev Phytopathol 44:417–445PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van der Voor TM, Schneider JH, Piceno YM, De Santis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100CrossRefGoogle Scholar
  50. Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizo bacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742PubMedPubMedCentralCrossRefGoogle Scholar
  51. Milner J, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065PubMedPubMedCentralGoogle Scholar
  52. Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can “omic” analyses be more than the sum of their parts? FEMS Microbiol Ecol 75:2–16PubMedCrossRefPubMedCentralGoogle Scholar
  53. Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174PubMedPubMedCentralGoogle Scholar
  54. Okon Y, Bloemberg GV, Lugtenberg BJJ (1998) Biotechnology of bio fertilization and phytostimulation. In: Altman A (ed) Agricultural Biotechnology. Marcel Dekker, New York, pp 327–349Google Scholar
  55. Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Ann Rev Genet 45:119–144PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9: 1084–1090PubMedCrossRefPubMedCentralGoogle Scholar
  57. Pechy-Tarr M, Bruck DJ, Maurhofer M, Fisher E, Vogne C, Henkels MD, Donahue KM, Grunder J, Loper JE, Keel C (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10:2368–2386PubMedCrossRefPubMedCentralGoogle Scholar
  58. Perneel M, D’Hondt L, De Maeyer K, Adiobo A, Rabaey K, Hofte M (2008) Phenazines and bio surfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788PubMedCrossRefPubMedCentralGoogle Scholar
  59. Pliego C, De Weert S, Lamers G, De Vicente A, Bloemberg G, Cazorla FM, Ramos C (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia neatrix hyphae. Environ Microbiol 10:3295–3304PubMedCrossRefPubMedCentralGoogle Scholar
  60. Ranjini R, Padmavathi T (2012) Differential phenol tolerance and degradation by Lentinula edodes cultures in differing levels of carbon and nitrogen. Asiatic J Biotech Res 3 10(1):1457–1471Google Scholar
  61. Ranjini R, Padmavathi T (2013a) A preliminary assessment of phenol tolerance and degradation by spent mycelium substrate (SMS) of novel edible mushroom Hypsizygus ulmarius. J Science Ind Res 72:767–771Google Scholar
  62. Ranjini R, Padmavathi T (2013b) Phenol tolerance and degradation profile of novel edible mushroom Hypsizygus ulmarius in ligninolytic and non-ligninolytic media. Int J Pharma Biol Sci 3(4(B):987–994Google Scholar
  63. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedPubMedCentralCrossRefGoogle Scholar
  64. Rudrappa T, Czymmek KJ, Par’e PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932PubMedPubMedCentralCrossRefGoogle Scholar
  66. Salles JF, Van Veen JA, Van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70:4012–4020PubMedPubMedCentralCrossRefGoogle Scholar
  67. Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358CrossRefGoogle Scholar
  68. Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. The American Phytopathological Society, MPMI 28(3):212–217Google Scholar
  69. Shepherd RW, Lindow SE (2008) Two dissimilar N-acyl-Homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 75(1):45–53PubMedPubMedCentralCrossRefGoogle Scholar
  70. Shuhegge R, Ihring A, Gantner S, Bahnweg G, Knaooe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918CrossRefGoogle Scholar
  71. Simons M, van der Bij Arjan J, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growthpromoting Pseudomonas bacteria. Mol Plant Microbe Int 9(7):600–607CrossRefGoogle Scholar
  72. Singh VP, Trehan T (1973) Effect of extracellular products of Aulosira fertilissima on the growth of rice seedlings. Plant Soil 38:457–464CrossRefGoogle Scholar
  73. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506PubMedCrossRefPubMedCentralGoogle Scholar
  74. Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9(3):240–244PubMedCrossRefPubMedCentralGoogle Scholar
  75. Subhashini D, Kaushik BD (1981) Amelioration of sodic soils with blue green algae. Aust J Soil Res 19:361–367CrossRefGoogle Scholar
  76. Tallapragada P, Rajiv R, Anjanappa V, Sardesai S, Selvaraj S, Khan S (2011) Comparing the potential of spent mycelium substrate of Pleurotus florida with biofertilizers to enhance growth of Capsicum annuum. Asian J Plant Sci Res 1(4):76–86Google Scholar
  77. Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant-microbe interact, vol 1. Chapman & Hall, New York, pp 187–235CrossRefGoogle Scholar
  78. Torsvik V, Goksoyr J, Daae F (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787PubMedPubMedCentralGoogle Scholar
  79. UNEP (1996a) Farm the City. Our Planet (Jac Smit)Google Scholar
  80. UNEP (1996b) Food for all: the world food summit. Our Planet (Jacques Diouf)Google Scholar
  81. UNEP (1996c) Greening the fields. Our Planet (Hans Johnson)Google Scholar
  82. Validov S (2007) Biocontrol of tomato foot and root rot by Pseudomonas bacteria in stonewool. PhD thesis. Leiden Univ. http://hdl.handle.net/1887/12480
  83. Validov SZ, Kamilova F, Lugtenberg BJJ (2009) Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stone wool under industrial conditions in a certified greenhouse. Biol Control 48:6–11CrossRefGoogle Scholar
  84. Van Elsas JD, Costa R, Jansson J, Sjoling S, Bailey M, Nalin R et al (2008) The metagenomics of disease-suppressive soils – experiences from the METACONTROL project. Trends Biotechnol 26:591–601PubMedCrossRefPubMedCentralGoogle Scholar
  85. Van Loon LC (2007) Plant responses to plant growth-promoting bacteria. Eur J Plant Pathol 119:243–254CrossRefGoogle Scholar
  86. Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734CrossRefGoogle Scholar
  87. Venkatraman GS, Neelkantan S (1967) Effect of the cellular constituents of the nitrogen fixing blue-green algae Cylindrosporum muscicola on the root growth of rice seedlings. J Gen Appl Microbiol 13:53–61CrossRefGoogle Scholar
  88. Vorholt J (2012) Microbial life in the phyllosphere. Nature Rev Microbiol 10:828–840CrossRefGoogle Scholar
  89. Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512CrossRefGoogle Scholar
  90. Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8:344–358PubMedCrossRefPubMedCentralGoogle Scholar
  91. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989PubMedPubMedCentralGoogle Scholar
  92. Zhang H, Xie X, Kim M-S, Kornyeyev DA, Holaday S, Par’e PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in plantae. Plant J 56:264–273PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ranjini Ramesh
    • 1
  1. 1.St Joseph’s College, AutonomousBangaloreIndia

Personalised recommendations