Skip to main content

Emerging Insights on Rhizobacterial Functions

  • Chapter
  • First Online:
Book cover Microbiome in Plant Health and Disease
  • 953 Accesses

Abstract

Plant-rhizobacterial interaction is one of the complex bio-communications in the environment and is highly significant since plants are the primary producers on earth. The rhizosphere region is known to be a multifaceted environment remarkable for the various types of processes mediated by a wide array of biologically active molecules of both plant and microbial origin. Due to these, the design of the rhizosphere architecture can be determined by many factors, and a deeper understanding on the same will enable to modulate the functions related to plant growth and development. The signaling molecules produced by rhizobacteria can induce many beneficial changes in plant system including the enhancement of the nutrient uptake by plants, growth hormone production, stress tolerance, and protection from many pathogens. In addition to this, plant growth-promoting rhizobacteria (PGPR) can remove the heavy metals and detoxify the pesticides present in the contaminated soil. Hence, the exploration of PGPR can be a step toward conserving the greener environment, and for this, deeper insight into the signaling and communications that happen belowground is important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  PubMed  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Sci 348:1261071

    Article  CAS  Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M, Hernandez JP, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fert Soils 40:40–188

    Article  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D, Martinoia E, Sumner LW, Banta LM, Stermitz F, Vivanco JM (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Ramos Solano B, Fray RG, Camara M, Hartmann A, Gutierrez Manero FJ (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    Article  CAS  PubMed  Google Scholar 

  • Begonia MFT, Kremer RJ (1994) Chemotaxis of deleterious rhizobacteria to velvet leaf (Abutilon theophrasti Medik.) seeds and seedlings. FEMS Microbiol Ecol 15:227–236

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bogino P, Oliva M, Sorroche F, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AH, Lamers GE, Chin AWTF, Lugtenberg BJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 16:983–993

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  PubMed  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN, O’Gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol 64:807–838

    Article  CAS  Google Scholar 

  • Camara M, Williams P, Hardman A (2002) Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2:667–676

    Article  CAS  PubMed  Google Scholar 

  • Campos E, Oliveira J, Fraceto L (2014) Applications of controlled release Systems for Fungicides, herbicides, Acaricides, nutrients, and plant growth hormones: a review. Adv Sci Eng Med 6:373–387

    Article  CAS  Google Scholar 

  • Casanovas EM, Barassi C, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Comm 30(3):343–350

    Google Scholar 

  • Chalupowicz L, Barash I, Panijel M, Sessa G, Manulis-Sasson S (2009) Regulatory interactions between quorum-sensing, auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. Mol Plant-Microbe Interact 22:849–856

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020

    PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126

    Article  PubMed  Google Scholar 

  • Datta M, Paul D, Sinha SN, Sengupta C (2015) Plant growth promoting Rhizobacteria improve the production and enhancement of alkaloid content in Chilli. Front Environ Microbiol 1:24–26

    Article  Google Scholar 

  • Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJ (1998) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A 95:7051–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Elsas JDV, Jansson JK, Trevors JT (2007) Modern soil microbiology. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, Shao J, Zhang G, Shen Q, Zhang R (2018) Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting Rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant-Microbe Interact 31:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Fray RG (2002) Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting Bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectrosc 106:170–174

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Grillo R, Chirakkuzhyil Abhilash P, Fraceto L (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16:1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560

    Article  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schroder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560

    Article  CAS  PubMed  Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing Bacteria towards sustainable agriculture. Int J Environ Res Public Health 15:574

    Article  PubMed Central  CAS  Google Scholar 

  • Janardhanan A, Roshmi T, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2013) Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin, Mater Sci-Poland:31

    Google Scholar 

  • Jimtha John C, Jishma P, Karthika NR, Nidheesh KS, Ray JG, Mathew J, Radhakrishnan EK (2017) Pseudomonas fluorescens R68 assisted enhancement in growth and fertilizer utilization of Amaranthus tricolor (L.). 3 Biotech 7:256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimtha JC, Jishma P, Arathy GB, Anisha C, Radhakrishnan EK (2016) Identification of plant growth promoting Rhizosphere Bacillus sp. WG4 antagonistic to Pythium myriotylum and its enhanced antifungal effect in association with Trichoderma. J Soil Sci Plant Nutr 16:578–590

    CAS  Google Scholar 

  • Jimtha JC, Mathew J, Radhakrishnan EK (2017) Bioengineering of Dioscorea nipponica with rhizospheric Proteus spp. for enhanced tuber size and diosgenin content. 3 Biotech 7:261

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kharissova OV, Dias HV, Kharisov BI, Perez BO, Perez VM (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248

    Article  CAS  PubMed  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P (2016) Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci Rep 6:26710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loganathan M, Garg R, Venkataravanappa V, Saha S, Rai AB (2014) Plant growth promoting rhizobacteria (PGPR) induces resistance against Fusarium wilt and improves lycopene content and texture in tomato. Afr J Microbiol Res 8(11):1105–1111

    Article  CAS  Google Scholar 

  • Mathivanan S, Chidambaram A, Sundramoorthy P, Baskaran L, Kalaikandhan R (2014) Effect of combined inoculations of plant growth promoting Rhizobacteria (PGPR) on the growth and yield of groundnut (Arachis hypogaea L.). Int J Curr Microbiol Appl Sci 3:1010–1020

    Google Scholar 

  • Mazzola M, Freilich S (2017) Prospects for biological Soilborne disease control: application of indigenous versus synthetic microbiomes. Phytopathology 107:256–263

    Article  CAS  PubMed  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Pérez G, Fernández-Luqueño F, Vázquez Núñez E, López-Valdez F, Prieto-Mendez J, Madariaga-Navarrete A, Miranda-Arámbula M (2019) Remediating polluted soils using nanotechnologies: environmental benefits and risks. Pol J Environ Stud 28:1–17

    Article  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:e97881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of Agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471

    PubMed  PubMed Central  Google Scholar 

  • Moons P, Van Houdt R, Vivijs B, Michiels CW, Aertsen A (2011) Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Appl Environ Microbiol 77:4704–4704

    Article  CAS  PubMed Central  Google Scholar 

  • Mousa WK, Raizada MN (2016) Natural disease control in cereal grains. Reference Module in Food Science, Elsevier

    Google Scholar 

  • Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phytochemicals. Int J Mol Sci 14:12607–12619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, Nano-guard for pesticides: a new window for safe application. J Agri Food Chem 64:1447–1483

    Article  CAS  Google Scholar 

  • Ogata-Gutierrez K, Chumpitaz-Segovia C, Lirio-Paredes J, Finetti-Sialer MM, Zuniga-Davila D (2017) Characterization and potential of plant growth promoting rhizobacteria isolated from native Andean crops. World J Microbiol Biotechnol 33:203

    Article  PubMed  CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  CAS  PubMed  Google Scholar 

  • Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014:829894

    Article  CAS  Google Scholar 

  • Perez-Montano F, Guasch-Vidal B, Gonzalez-Barroso S, Lopez-Baena FJ, Cubo T, Ollero FJ, Gil-Serrano AM, Rodriguez-Carvajal MA, Bellogin RA, Espuny MR (2011) Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol 162:715–723

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep (Amst) 5:22–26

    Article  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Scharf BE, Hynes MF, Alexandre GM (2016) Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol Biol 90:549–559

    Article  CAS  PubMed  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing Bacteria. Sci 216:1376–1381

    Article  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  PubMed  Google Scholar 

  • Shailendra Singh GG (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 07

    Google Scholar 

  • Sharma A, Shankhdhar D, Sharma A, Shankhdhar SC (2014) Micronutrient enhancement and localization in Rice grains under influence of plant growth promoting Rhizobacteria. J Crop Improv 28:502–517

    Article  CAS  Google Scholar 

  • Singh A, Gupta R, Srivastava M, Gupta MM, Pandey R (2016) Microbial secondary metabolites ameliorate growth, in planta contents and lignification in Withania somnifera (L.) Dunal. Physiol Mol Biol Plants 22:253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016) Root exudates and their molecular interactions with Rhizospheric microbes. Interaction among Rhizospheric microbes, soil, and plant roots: Infl uence on micronutrient uptake and bioavailability. K.R. Hakeem and M. S. Akhtar, Springer International Publishing, Switzerland 2: 59–77

    Chapter  Google Scholar 

  • Takishita Y, Charron JB, Smith DL (2018) Biocontrol Rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Front Microbiol 9:2119

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomihama T, Nishi Y, Mori K, Shirao T, Iida T, Uzuhashi S, Ohkuma M, Ikeda S (2016) Rice bran amendment suppresses potato common scab by increasing antagonistic bacterial community levels in the rhizosphere. Phytopathology 106:719–728

    Article  CAS  PubMed  Google Scholar 

  • Tripathi M, Kumar S, Kumar A, Tripathi P, Kumar S (2018) Agro-nanotechnology: a future Technology for Sustainable Agriculture. Int J Curr Microbiol Appl Sci 7:196–200

    Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14

    Google Scholar 

  • Van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495

    Article  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability—a review. Molecules 21:573

    Article  PubMed Central  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Williams A, Edwards A, Downie JA (2012) A plant arabinogalactan-like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum. Mol Plant-Microbe Interact 25:250–258

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jishma, P., Radhakrishnan, E.K. (2019). Emerging Insights on Rhizobacterial Functions. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (eds) Microbiome in Plant Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_8

Download citation

Publish with us

Policies and ethics