Skip to main content

Metagenomic Approach in Relation to Microbe–Microbe and Plant–Microbiome Interactions

  • Chapter
  • First Online:

Abstract

Metagenomics is the study of the genetic material of microbes in their natural living environment, which involves complex microbial communities. This study helps to identify the sequences of uncultured microbes present in the plant rhizosphere and their diversity in the environment through quicker and less expensive methods. This is a new challenge for technicians and bioinformaticians to gain knowledge about microbes through millions of genomes. From culture, only single-clone data are obtained, which are then further used in sequence formation, whereas in metagenomics, usually data on more than 10,000 species in microbial communities are studied. From these samples, new genes and their functions have been observed. In the future, this technique will be used in the same way as 16S ribosomal RNA gene sequencing methods are used to describe profiles of microbial communities. Metagenomics is new to science and is a novel technique for handling of genomic data by scientists, used in the last few years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Elsalam KA, Almohimeed I, Moslem MA, Bahkali AH (2010) M13-microsatellite PCR and rDNA sequence markers for identification of Trichoderma (Hypocreaceae) species in Saudi Arabian soil. Genet Mol Res 9:2016–2024

    Article  CAS  PubMed  Google Scholar 

  • Aguirre-Garrido JF, Montiel-Lugo D, Hernandez-Rodriguez F, Torres-Cortes G, Millan V, Toro N (2012) Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in Central Mexico. Antonie Van Leeuwenhoek 101:891–904

    Article  PubMed  Google Scholar 

  • Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzubaidy H, Essack M, Malas TB, Bokhari A, Motwalli O, Kamanu FK, Jamhor SA, Okhtar NA, Antunes A, Simoes MF, Alam I, Bougouffa S, Lafi FF, Bajic VB, Archer JAC (2016) Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 576:626–636

    Article  CAS  PubMed  Google Scholar 

  • Amador CI, Canosa I, Govantes F, Santero G (2010) Lack of CbrB in Pseudomonas putida affects not only amino acids metabolism but also different stress responses and biofilm development. Environ Microbiol 12:1748–1761

    Article  CAS  PubMed  Google Scholar 

  • Arjun JK, Harikrishnan K (2011) Metagenomic analysis of bacterial diversity in the rice rhizosphere soil microbiome. Biotechnol Bioinformatics Bioeng 1:361–367

    Google Scholar 

  • Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bacilio-Jimenez M, Aguilar-Flores S, Ventura-Zapata E, Perez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim K, Choi YH (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai XG, Todd CD, Desikan R, Yang YP, Hu XY (2012) N-3-oxo-decanoyl-lhomoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide– and nitric oxide–dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736

    Article  CAS  PubMed  Google Scholar 

  • Baig KS, Arshad M, Shaharoona B, Khalid A, Ahmed I (2012) Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Ann Microbiol 62:1109–1119

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Baldani JI, Pot B, Kirchof G, Falsen E, Baldani VLD, Olivares FL (1996) Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (Ef group 1) as Herbaspirillum species 3. Int J Syst Bacteriol 46:802–810

    Article  CAS  PubMed  Google Scholar 

  • Bell TH, El-Din Hassan S, Lauron-Moreau A, Al-Otaibi F, Hijri M, Yergeau E, St-Arnaud M (2014) Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME J 8:331–343. https://doi.org/10.1038/ismej.2013.149

    Article  CAS  PubMed  Google Scholar 

  • Ben-David EA, Zaady E, Sher Y, Nejidat A (2011) Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses. FEMS Microbiol Ecol 76:492–503

    Article  CAS  PubMed  Google Scholar 

  • Bernedsen RL, Pieterse CMJ, Bakker AHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  Google Scholar 

  • Bertrand H, Poly F, Van VT, Lombard N, Nalin R, Vogel TM, Simonet P (2005) High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J Microbiol Methods 62:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977

    Article  Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Bhattacharyya PKS, Roy M, Dasa S, Raya D, Balachandar S, Karthikeyan AK, Mohapatra NT (2016) Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach. Sci Total Environ 542:886–898

    Article  CAS  PubMed  Google Scholar 

  • Biteen JS, Paul C, Blainey CZG, Chun M, George M (2016) Church tools for the microbiome: nano and beyond. ACS Nano 10:6–37

    Article  CAS  PubMed  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329. https://doi.org/10.1371/journal.pone.0056329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 20:526–533

    Article  PubMed  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bresolin JD, Bustamante MMC, Kruger RH, Silva MRSS, Perez KS (2010) Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian Cerrado. Braz J Microbiol 41:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmann N, Tebbe C (2007) Differences in the rhizosphere bacterial community of a transplastomic tobacco plant compared to its non-engineered counterpart. Environ Biosaf Res 6:113–119

    Article  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:844–856

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burdon JJ, Thrall PH (2009) Coevolution of plants and their pathogens in natural habitats. Science 324:755–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buscot F, Varma A (eds) (2005) Microorganism in soils: roles in genesis and functions. Springer, Berlin/Heidelberg, pp 139–153

    Google Scholar 

  • Cahill JF, Elle E, Smith GR, Shore BH (2008) Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology 89:791–801

    Google Scholar 

  • Callaway RM, Rout ME (2011) Soil biota and plant invasions: biogeographic effects on plant–microbe interactions. In: Richardson DH (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, West Sussex, pp 131–142

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wiren N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Chen AH, Chen LJ, Wu ZJ (2012) Relationships among persistence of Bacillus thuringiensis and cowpea trypsin inhibitor proteins, microbial properties and enzymatic activities in the rhizosphere soil after repeated cultivation with transgenic cotton. Appl Soil Ecol 53:23–30

    Article  Google Scholar 

  • Cheng W, Gershenson A (2007) Carbon fluxes in the rhizosphere. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere—an ecological perspective. Academic, San Diego, pp 31–56

    Google Scholar 

  • Chhabra S, Brazil D, Morrissey J, Burke JI, Gara FO, Dowling DN (2013) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. MicrobiologyOpen 2:717–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth–promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 42:669–678

    Google Scholar 

  • Compant S, Kaplan H, Sessitsch A, Nowak J, Barka EA, Clement C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth–promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 71:4951–4959

    Google Scholar 

  • Curlango-Rivera G, Pew T, Vanetten HD, Zhongguo X, Yu N, Hawes MC (2013) Measuring root disease suppression in response to a compost water extract. Phytopathology 103:255–260

    Article  PubMed  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JC (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czaran TL, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci U S A 99:786–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    Article  CAS  Google Scholar 

  • Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083

    Article  CAS  PubMed  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  CAS  PubMed  Google Scholar 

  • de Bello F, Lavorel S, Diaz S, Harrington R, Cornelissen JHC (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Article  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev 7:312–320

    CAS  Google Scholar 

  • Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg JJ (1998) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A 95:7051–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–628

    Article  CAS  PubMed  Google Scholar 

  • Doornbos R, van Loon L, Bakker P (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Agron Sustain Dev 32:227–234

    Article  Google Scholar 

  • Egamberdiyeva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown in salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickman E (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferluga S, Venturi V (2009) OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonas oryzae pv. oryzae and rice. J Bacteriol 191:890–897

    Article  CAS  PubMed  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Gerlach W, Stoye J (2011) Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res 39:e91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach W, Jünemann S, Tille F, Goesmann A, Stoye J (2009) WebCARMA: a web application for the functional and taxonomic classification of unassembled metagenomic reads. BMC Bioinformatics 10:430. https://doi.org/10.1186/1471-2105-10-430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimsing AL, Blum J, Dyan FE, Locke MA, Sejer LH, Jacobsen CS (2009) Mineralization of the allelochemical sorgoleone in soil. Chemosphere 76:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1999) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599

    Article  CAS  PubMed  Google Scholar 

  • Haldar S, Sengupta S (2015) Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis. J Basic Microbiol 55:922–928

    Article  CAS  PubMed  Google Scholar 

  • Hallmann L, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean–RhizobiumGlomus associations. New Phytol 101:427–440

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schröder P. Bacterial (2014) quorum sensing compounds are important modulators of microbe-plant interactions. Frontiers in plant science. 5:131

    Google Scholar 

  • Hernandez-Leon R, Martinez-Trujillo M, Valencia-Cantero E (2012) Construction and characterization of a metagenomic DNA library from the rhizosphere of wheat (Triticum aestivum). Phyton Int J Exp Bot 81:12

    Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982

    Article  CAS  PubMed  Google Scholar 

  • Hu FY, Tao DY, Sacks E, Xu P, Li J (2003) Convergent evolution of perenniality in grasses. Proc Natl Acad Sci U S A 100:4050–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481–483

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Weber N (2013) Microbial community analysis using MEGAN. Methods Enzymol 531:465–485. https://doi.org/10.1016/B978-0-12-407863-5.00021-6

    Article  CAS  PubMed  Google Scholar 

  • Illeghems K, Weckx S, De Vuyst L (2015) Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample. Food Microbiol 50:54–63

    Article  CAS  PubMed  Google Scholar 

  • Jackson CR, Randolph KC, Osborn SL, Tyler HL (2013) Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol 13:274

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeger CH III, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  • James E (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  • James EK, Olivares FL, Baldani JI, Dobreiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor. J Exp Bot 48:785–797

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP (2002) Infection and colonization of rice seedlings by the plant growth–promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Jang CS, Lemke C, Tang H, Bowers JE, Paterson AH (2008) Evolutionary fate of rhizome specific genes in a non-rhizomatous Sorghum genotype. Heredity 102:266–273

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Di Rienzi SC, Janzon A, Werner JJ, Angenent LT, Dangl JL, Fowler DM, Ley RE (2016) Novel rhizosphere soil alleles for the enzyme 1- aminocyclopropane-1-carboxylate deaminase queried for function with an in vivo competition assay. Appl Environ Microbiol 82:1050–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 1:25–44

    Article  Google Scholar 

  • Jones JDG, Dangle JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kaplan D, Maymon M, Agapakis CM, Lee A, Wang A, Prigge BA (2013) A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum Boiss. and Atriplex halimus, using cultivation-dependent and -independent methods. Am J Bot 100:1713–1725

    Article  PubMed  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Article  Google Scholar 

  • Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236

    Article  Google Scholar 

  • Kirchof G, Eckert B, Stoffels M, Baldani JI, Reis V, Hartman A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt A (2011) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J:1–13

    Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. https://doi.org/10.1038/nm.3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Krishnani KK, Bhushan B, Brahmane MP (2015) Metagenomics: retrospect and prospects in high throughput age. Biotechnol Res Int 2015:121735. https://doi.org/10.1155/2015/121735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagos ML, Maruyama F, Nannipieri P, Mora ML, Ogram A, Jorquera MA (2015) Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini review. J Soil Sci Plant Nutr 15:04–523

    Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc N, Kinkel LL, Kistler HC (2015) Soil fungal communities respond to grassland plant community richness and soil edaphics. Microb Ecol 70:188–195

    Article  CAS  PubMed  Google Scholar 

  • Lesuffleur F, Paynel F, Bataille MP, Cliquet JB (2007) Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species. Plant Soil 294:235–246

    Article  CAS  Google Scholar 

  • Li C, Weidong XL, Ying K, Wang WJ (2010) Effect of monoculture soybean on soil microbial community in the northeast China. Plant Soil 330:423

    Article  CAS  Google Scholar 

  • Lin W, Wu L, Lin S, Zhang A, Zhou M, Lin R, Wang H, Chen J, Zhang Z, Lin R (2013) Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol 13:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial source of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Mader U, Antelmann H, Buder T, Dahl MK, Hecker M, Homuth G (2002) Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Gen Genomics 268:455–467

    Article  CAS  Google Scholar 

  • Mahyarudin I, Rusmana YL (2015) Metagenomic of actinomycetes based on 16S rRNA and nifH genes in soil and roots of four Indonesian rice cultivars using PCR-DGGE. Hayati J Biosci 22:113–121

    Article  Google Scholar 

  • Majeed A, Abbasi KM, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth–promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Romero E (2006) Dinitrogen-fixing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 793–817

    Chapter  Google Scholar 

  • Massart S, Martinez-Medina M, Jijakli MH (2015) Biological control in the microbiome era: challenges and opportunities. Biol Control 89:108

    Article  Google Scholar 

  • Matilla MA, Ramos JL, Bakker P, Doornbos R, Badri DV, Vivanco JM (2010) Pseudomonas putida KT2440 caused induced systemic resistance and changes in Arabidopsis root exudation. Environ Microbiol Rep 2:381–388

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi DV, Mavrodi OV, Parejko JA, Weller DM, Thomashow LS (2011) The role of 2,4-diacetylphloroglucinol– and phenazine-1-carboxylic acid–producing Pseudomonas spp. In: Maheshwari DK (ed) Natural protection of wheat from soilborne pathogens. Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 60–63

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  • Moreno R, Martines-Gomariz M, Yuste L, Gil C, Rojo F (2009) The Pseudomonas putida Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: evidence from proteomic and genomic analyses. Proteomics 9:2910–2928

    Article  CAS  PubMed  Google Scholar 

  • Morris AC, Djordjevic MA (2006) The Rhizobium leguminosarum biovar trifolii ANU794 includes novel developmental responses on the subterranean clover cultivar Woogenellup. Mol Plant-Microbe Interact 19:471–479

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar S, Mirza MS, Awan HA, Asma M, Mehnaz S, Malik K (2016) Microbial diversity and metagenomic analysis of the rhizosphere of para grass (Urochloa mutica) growing under saline conditions. Pak J Bot 48:779–791

    CAS  Google Scholar 

  • Nacke H, Will C, Herzog S, Nowka B, Engelhaupt M, Daniel R (2011) Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German biodiversity exploratories. FEMS Microbiol Ecol 78:188–201

    Article  CAS  PubMed  Google Scholar 

  • Naz I, Mirza MS, Bano A (2014) Molecular characterization of rhizosphere bacterial communities associated with wheat (Triticum aestivum L.) cultivars at flowering stage. J Anim Plant Sci 24:1123–1134

    Google Scholar 

  • Neal AL, Ton J (2013) Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudate from roots. Plant Signal Behav 8:e22655. https://doi.org/10.4161/psb.22655

    Article  CAS  PubMed  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:35498. https://doi.org/10.1371/journal.pone.0035498

    Article  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Romheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshram E, Beeckman T (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 617–649

    Chapter  Google Scholar 

  • Newton AC, Fitt BD, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373

    Article  CAS  PubMed  Google Scholar 

  • Niemi RM, Heiskanen I, Wallenius K, Lindstrom K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods 45:155–165

    Article  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Owen AG, Jones DL (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33:651–657

    Article  CAS  Google Scholar 

  • Palumbo JD, Kado CI, Phillips DA (1998) An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180:3107–3113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel HK, Suárez-Moreno ZR, Degrassi G, Subramoni S, González JF (2013) Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. Front Plant Sci 4:447

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence in Johnson grass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci U S A 92:6127–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patton CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  Google Scholar 

  • Phillips DA, Fow TC, Six J (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Glob Chang Biol 12:561–567

    Article  Google Scholar 

  • Piel J (2011) Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol 65:431–453

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Zheng S, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    Article  CAS  PubMed  Google Scholar 

  • Pisa G, Magnani GS, Weber H, Souza EM, Faoro H, Monteiro RA, Daros E, Baura V, Bespalhok JP, Pedrosa FO, Cruz LM (2011) Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil. Braz J Med Biol Res 44:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rabausch U, Juergensen J, Ilmberger N, Böhnke S, Fischer S, Schubach B (2013) Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl Environ Microbiol 79:4551–4563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rivero J, Gamir J, Aroca R, Pozo MJ, Flors V (2015) Metabolic transition in mycorrhizal tomato roots. Front Microbiol 6:598

    Article  PubMed  PubMed Central  Google Scholar 

  • Rout ME, Callaway RM (2009) An invasive plant paradox. Science 324:724–725

    Article  Google Scholar 

  • Rout ME, Callaway RM (2012) Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest ‘everything is not everywhere’. Ann Bot 110:213–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil 315:163–172

    Article  CAS  Google Scholar 

  • Rout ME, Chrzanowski TH, DeLuca TH, Westlie TK, Callaway RM, Holben WE (2013a) Bacterial endophytes enhance invasive plant competition. Am J Bot 100:1726–1737

    Article  CAS  PubMed  Google Scholar 

  • Rout ME, Chrzanowski TH, Smith WK, Gough L (2013b) Ecological impacts of the invasive grass Sorghum halepense on native tallgrass prairie. Biol Invasions 15:327–339

    Article  Google Scholar 

  • Rudgers JA, Afkhami MA, Rua MA, Davitt SH, Hammer S, Huguet VM (2009) A fungus among us: broad pattern of endophyte distribution in the grasses. Ecology 90:1531–1539

    Article  PubMed  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160

    Article  PubMed  Google Scholar 

  • Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172:261–269

    Article  CAS  Google Scholar 

  • Schade J, Hobbie SE (2005) Spatial and temporal variation in the islands of fertility in the Sonoran Desert. Biogeochemistry 73:541–553

    Article  Google Scholar 

  • Schreiter S, Ding G, Heuer H, Neumann G, Sandmann M, Grosch R et al (2014) Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 5:144

    Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of pseudomonads for improving growth, yield and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Ranjan R, Kapardar RK, Grover A (2005) Unculturable bacterial diversity: an untapped resource. Curr Sci 89:72–77

    CAS  Google Scholar 

  • Sharma PK, Capalash N, Kaur J (2007) An improved method for single step purification of metagenomic DNA. J Mol Biotechnol 36:61

    Article  CAS  Google Scholar 

  • Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SV (2011) Selection of plant growth–promoting Pseudomonas spp. that enhanced productivity of soybean wheat cropping system in central India. J Microbiol Biotechnol 21:1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Shenton M, Iwamoto C, Kurata N, Ikeo K (2016) Effect of wild and cultivated rice genotypes on rhizosphere bacterial community composition. Rice 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Simoes MF, Antunes A, Ottoni CA, Amini MS, Alam I, Alzubaidy H, NA Mokhtar JA, Archer C, Bajic VB (2015) Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the Red Sea—a metagenomic approach. Genomics Proteomics Bioinformatics 13:310–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh C, Soni R, Jain S, Roy S, Goel R (2010) Diversification of nitrogen fixing bacterial community using nifH gene as a biomarker in different geographical soils of western Indian Himalayas. J Environ Biol 31:553–556

    CAS  PubMed  Google Scholar 

  • Soni R, Acahrya C, Primalatha K (2012) Metagenomics technology. In: Kumar A, Pareek A, Gupta SM (eds) Biotechnology in medicine and agriculture principles and practice. IK International, New Delhi, p 835

    Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23

    Article  CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen phosphorus, sulphur and micronutrients, 2nd edn. Wiley, New York

    Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics—the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  CAS  PubMed  Google Scholar 

  • Subramoni S, Venturi V (2009) PpoR is a conserved unpaired LuxR solo of Pseudomonas putida which binds N-acyl homoserine lactones. BMC Microbiol 9:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subramoni S, Florez Salcedo DV, Suarez-Moreno ZR (2015) A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria. Front Cell Infect Microbiol 5:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9:e100709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanveer A, Yadav S, Yadav D (2016) Comparative assessment of methods for metagenomic DNA isolation from soils of different crop growing fields. 3 Biotech 6(2):220

    PubMed  PubMed Central  Google Scholar 

  • Tilman D (2000) Global environmental impacts of agricultural expansions: the need for sustainable and efficient practices. Proc Natl Acad Sci U S A 96:5995–6000

    Article  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol 56:776–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Øvreås L (2002a) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Øvreås L, Thingstad TF (2002b) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Toussaint JP, Pham TTM, Barriault D, Sylvestre M (2012) Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol 95:1589–1603

    Article  CAS  PubMed  Google Scholar 

  • Tschaplinski TJ, Plett JM, Engle NL, Deveau A, Cushman KC, Martin MZ, Doktycz MJ, Tuskan GA, Brun A, Kohler A, Martin F (2014) Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Mol Plant-Microbe Interact 27:546–556

    Article  CAS  PubMed  Google Scholar 

  • Tsurumaru H, Okubo T, Okazaki K, Hashimoto M, Kakizaki K, Hanzawa E, Hiroyuki T, Noriyuki A, Fukuyo T, Yasuyo S, Seishi I, Minamisawa K (2015) Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 30:63–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraiser-Liggett CM, Knight R, Gordon JI (2007) The Human Microbiome Project: a strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease. Nature 449:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28:120–127

    Article  PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y (2013) Plant growth–promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, De-Maayer P, Oberholster T, Henschel J, Louw MK, Cowan D (2016) Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS One 11:e0153353

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA (2008) The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems Ecol Lett 11:651-651

    Google Scholar 

  • van der Heijden MGA, and Horton TR (2009) Socialism in soil? The importance of 536 mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139-1150

    Google Scholar 

  • van Hees PAW, Jones DL, Nyberg L, Holstrom SJM, Godbold DL, Lundstrom US (2005) Modeling low molecular weight organic acid dynamics in forest soils. Soil Biol Biochem 37:517–531

    Article  CAS  Google Scholar 

  • van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245

    Article  PubMed  Google Scholar 

  • Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M (2008) Differential effectiveness against herbivorous insects in Arabidopsis. Mol Plant-Microbe Interact 21:919–930

    Article  PubMed  CAS  Google Scholar 

  • Vander Ent S, VanHulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CMJ (2009) Priming of plant innate immunity by rhizobacteria and b-aminobutyric acid: differences and similarities in regulation. New Phytol 183:419–431

    Article  CAS  Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    Article  CAS  PubMed  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828840

    Article  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Grishkan I, Steinbrener Y (2012) Microfungal community diversity in Zygophyllum dumosum and Hammada scoparia root zones in the northern Negev Desert. J Basic Microbiol 52:1–12

    Article  Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

  • Zhan J, Sun Q (2012) Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiol Res 167:157–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang AH, Sun H, Wang P, Han Y, Wang XJ (2012) Modern analytical techniques in metabolomics analysis. Analyst 137:293–300

    Article  CAS  PubMed  Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Viyanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ijaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rehman, A., Ijaz, M., Mazhar, K., Ul-Allah, S., Ali, Q. (2019). Metagenomic Approach in Relation to Microbe–Microbe and Plant–Microbiome Interactions. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (eds) Microbiome in Plant Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_22

Download citation

Publish with us

Policies and ethics