Advertisement

Exploring the Phyllosphere Bacterial Community for Improving Tree Crop Protection

  • Diogo Mina
  • José Alberto Pereira
  • Teresa Lino-Neto
  • Paula BaptistaEmail author
Chapter

Abstract

Plants are able to interact with plentiful bacteria resulting in a number of positive or negative outcomes for plant health. The ecological balance between pathogens and beneficial bacteria could be strategically disturbed and manipulated for improving host plant protection. As bacterial communities present in the phyllosphere of herbaceous plants have been largely studied, a number of biocontrol agents for controlling host diseases are already identified and used with promising results. A few studies on the use of phyllosphere biocontrol agents on woody crop tree plants have revealed encouraging results toward a future where plant disease control could be attained without the application of chemical compounds. In addition to the use of biocontrol agents, disease suppression can be achieved by the manipulation of microbial communities through plant management practices. In this review, an overview of the available knowledge on phyllosphere bacterial communities of woody tree crop species is provided, giving special emphasis to the structural differences of bacterial communities living on and within important tree crop species. Studies and challenges on the application and/or manipulation of these bacteria under in planta conditions are discussed, disclosing new sustainable ways for dealing with woody crop diseases.

Keywords

Woody plants Bacteria Microbiome Plant disease Biological control 

Notes

Acknowledgments

This work was partially funded by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020); and national funds, through the FCT – Portuguese Foundation for Science and Technology under the project POCI-01-0145-FEDER-031133. J.D. Mina thanks FCT, POPH-QREN and FSE for PhD grant SFRH/BD/105341/2014.

References

  1. Abraham A, Philip S, Jacob CK, Jayachandran K (2013) Novel bacterial endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. BioControl 58(5):675–684.  https://doi.org/10.1007/s10526-013-9516-0 CrossRefGoogle Scholar
  2. Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68(10):4906–4914.  https://doi.org/10.1128/AEM.68.10.4906-4914.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284.  https://doi.org/10.1006/bcon.2001.101 CrossRefGoogle Scholar
  4. Baldotto LE, Olivares FL (2008) Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54(11):918–931.  https://doi.org/10.1139/w08-087 CrossRefPubMedGoogle Scholar
  5. Buana RFN, Wahyudi AT, Toruan-Mathius N (2014) Control activity of potential antifungal-producing Burkholderia sp. in suppressing Ganoderma boninense growth in oil palm. AJAR 8:259–268.  https://doi.org/10.3923/ajar.2014.259.268 CrossRefGoogle Scholar
  6. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838.  https://doi.org/10.1146/annurev-arplant-050312-120106 CrossRefPubMedGoogle Scholar
  7. Cabrefiga J, Bonaterra A, Montesinos E (2007) Mechanisms of antagonism of Pseudomonas fluorescens EPS62e against Erwinia amylovora, the causal agent of fire blight. Int Microbiol 10(2):123–132PubMedGoogle Scholar
  8. Carper DL, Carrell AA, Kueppers LM, Frank AC (2018) Bacterial endophyte communities in Pinus flexilis are structured by host age, tissue type, and environmental factors. Plant Soil 428(1–2):335–352.  https://doi.org/10.1007/s11104-018-3682-x CrossRefGoogle Scholar
  9. Carvalho S, Castillo J (2018) Influence of light on plant–Phyllosphere interaction. Front Plant Sci 9.  https://doi.org/10.3389/fpls.2018.01482
  10. Cazorla FM, Mercado-Blanco J (2016) Biological control of tree and woody plant diseases: an impossible task? BioControl 61(3):233–242.  https://doi.org/10.1007/s10526-016-9737-0 CrossRefGoogle Scholar
  11. Cazorla FM, Codina JC, Abad C, Arrebola E, Torés JA, Murillo J, Pérez-García A, de Vicente A (2008) 62-kb plasmids harboring rulAB homologues confer UV-tolerance and epiphytic fitness to Pseudomonas syringae pv. syringae mango isolates. Microb Ecol 56(2):283–291.  https://doi.org/10.1007/s00248-007-9346-7 CrossRefPubMedGoogle Scholar
  12. Chaurasia B, Pandey A, Palni LM, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160(1):75–81.  https://doi.org/10.1016/j.micres.2004.09.013 CrossRefPubMedGoogle Scholar
  13. Ciancio A, Roccuzzo G, Ornat Longaron C (2016) Regulation of the citrus nematode Tylenchulus semipenetrans by a Pasteuria sp. endoparasite in a naturally infested soil. BioControl 61(3):337–347.  https://doi.org/10.1007/s10526-015-9704-1 CrossRefGoogle Scholar
  14. Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW (2018) The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6:31.  https://doi.org/10.1186/s40168-018-0413-8 CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Vleesschauwer D, Höfte M (2007) Using Serratia plymuthica to control fungal pathogens of plants. CAB Rev 2(46).  https://doi.org/10.1079/PAVSNNR20072046
  16. Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438PubMedPubMedCentralGoogle Scholar
  17. El-Sayed A, Akbar A, Iqrar I, Ali R, Norman D, Brennan M, Ali GS (2018) A glucanolytic Pseudomonas sp. associated with Smilax bona-nox L. displays strong activity against Phytophthora parasitica. Microbiol Res 207:140–152.  https://doi.org/10.1016/j.micres.2017.11.018 CrossRefPubMedGoogle Scholar
  18. Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S (2011) Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 77(21):7647–7655.  https://doi.org/10.1128/AEM.05565-11 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gerami E, Hassanzadeh N, Abdollahi H, Ghasemi A, Heydari A (2013) Evaluation of some bacterial antagonists for biological control of fire blight disease. J Plant Pathol 95(1):127–134.  https://doi.org/10.4454/JPP.V95I1.026 CrossRefGoogle Scholar
  20. Gopal M, Gupta A, Thomas GV (2013) Bespoke microbiome therapy to manage plant diseases. Front Microbiol 4:355.  https://doi.org/10.3389/fmicb.2013.00355 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, Botha FC, Anderson IC, Singh BK (2018) Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol 20(1):124–140.  https://doi.org/10.1111/1462-2920.14031 CrossRefPubMedGoogle Scholar
  22. He YH, Isono S, Shibuya M, Tsuji M, Purushothama CA, Tanaka K, Sano T (2012) Oligo-DNA custom macroarray for monitoring major pathogenic and non-pathogenic fungi and bacteria in the phyllosphere of apple trees. PLoS One 7(3):e34249.  https://doi.org/10.1371/journal.pone.0034249 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Orozco-Mosqueda MC, Macías-Rodríguez LI, de la Cruz HR, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92.  https://doi.org/10.1016/j.biocontrol.2014.11.011 CrossRefGoogle Scholar
  24. Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68(9):1306–1310.  https://doi.org/10.1002/ps.3301 CrossRefPubMedGoogle Scholar
  25. Ibáñez F, Tonelli ML, Muñoz V, Figueredo MS, Fabra A (2017) Bacterial endophytes of plants: diversity, invasion mechanisms and effects on the host. In: Maheshwari D (ed) Endophytes: biology and biotechnology. Sustainable development and biodiversity. Springer, Cham, pp 25–40CrossRefGoogle Scholar
  26. Ishimaru CA, Klos EJ, Brubaker RR (1988) Multiple antibiotic production by Erwinia herbicola. Phytopathology 78:746–750CrossRefGoogle Scholar
  27. Jacobs JL, Sundin GW (2001) Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl Environ Microbiol 67(12):5488–5496.  https://doi.org/10.1128/AEM.67.12.5488-5496.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Janisiewicz WJ, Roitman J (1988) Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacian. Phytopathology 78(12):1697–1700CrossRefGoogle Scholar
  29. Jo Y, Cho JK, Choi H, Chu H, Lian S, Cho WK (2015) Bacterial communities in the phylloplane of Prunus species. J Basic Microbiol 55(4):504–508.  https://doi.org/10.1002/jobm.201400651 CrossRefPubMedGoogle Scholar
  30. Johnson KB, Stockwell VO, Sawyer TL, Sugar D (2000) Assessment of environmental factors influencing growth and spread of Pantoea agglomerans on and among blossoms of pear and apple. Phytopathology 90:1285–1294.  https://doi.org/10.1094/PHYTO.2000.90.11.1285 CrossRefPubMedGoogle Scholar
  31. Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci 111(38):13715–13720.  https://doi.org/10.1073/pnas.1216057111 CrossRefGoogle Scholar
  32. Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266.  https://doi.org/10.1094/PHYTO.2004.94.11.1259 CrossRefPubMedGoogle Scholar
  33. Korsten L, De Villiers EE, Wehner FC, Kotzé JM (1997) Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Dis 81(5):455–459.  https://doi.org/10.1094/PDIS.1997.81.5.455 CrossRefPubMedGoogle Scholar
  34. Kroll S, Tagler M, Kemen E (2017) Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding. Curr Opin Plant Biol 90(11):1285–1294.  https://doi.org/10.1094/PHYTO.2000.90.11.1285 CrossRefGoogle Scholar
  35. Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499.  https://doi.org/10.1016/j.micres.2012.05.002 CrossRefPubMedGoogle Scholar
  36. Kupper KC, Correa EB, Moretto C, Bettiol W, De Goes A (2011) Control of Guignardia citricarpa by Bacillus subtilis and Trichoderma spp. Rev Bras Frutic 33(4):1111–1118.  https://doi.org/10.1590/S0100-29452011000400009 CrossRefGoogle Scholar
  37. Laforest-Lapointe I, Messier C, Kembel SW (2016) Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. PeerJ 4:e2367.  https://doi.org/10.7717/peerj.2367 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lambais MR, Crowley DE, Cury JC, Büll RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312(5782):1917.  https://doi.org/10.1126/science.1124696 CrossRefPubMedGoogle Scholar
  39. Larsen OFA, Claassen E (2018) The mechanistic link between health and gut microbiota diversity. Sci Rep 2183(8):2045–2322.  https://doi.org/10.1038/s41598-018-20141-6 CrossRefGoogle Scholar
  40. Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169(4):587–596.  https://doi.org/10.1016/j.cell.2017.04.025 CrossRefPubMedGoogle Scholar
  41. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349(6250):860–864.  https://doi.org/10.1126/science.aaa8764 CrossRefPubMedGoogle Scholar
  42. Lemanceau P, Blouin M, Müller D, Moënne-Loccoz Y (2017a) Let the core microbiota be functional. Trends Plant Sci 22(7):583–595.  https://doi.org/10.1016/j.tplants.2017.04.008 CrossRefPubMedGoogle Scholar
  43. Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017b) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. In: G. Becard (eds) How plants communicate with their biotic environment. London: Academic. Adv Bot Res 82:101–133.  https://doi.org/10.1016/bs.abr.2016.10.007 Google Scholar
  44. Li Q, Xiong C, Li X, Jin X, Huang W (2018) Ectomycorrhization of Tricholoma matsutake with Quercus aquifolioides affects the endophytic microbial community of host plant. J Basic Microbiol 58(3):238–246.  https://doi.org/10.1002/jobm.201700506 CrossRefPubMedGoogle Scholar
  45. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883.  https://doi.org/10.1128/AEM.69.4.1875–1883.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899.  https://doi.org/10.1007/s00203-012-0823-0 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM (2018) Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can J Microbiol 18:1–14.  https://doi.org/10.1139/cjm-2018-0315 CrossRefGoogle Scholar
  48. McIntyre JL, Kuc J, Williams EB (1973) Protection of pears against fireblight by bacteria and bacterial sonicates. Phytopathology 63:872–877CrossRefGoogle Scholar
  49. Meyer KM, Leveau JH (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168(3):621–629.  https://doi.org/10.1007/s00442-011-2138-2 CrossRefPubMedGoogle Scholar
  50. Michavila G, Adler C, De Gregorio PR, Lami MJ, Caram Di Santo MC, Zenoff AM, Cristobal RE, Vincent PA (2017) Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biol J 19(4):608–617.  https://doi.org/10.1111/plb.12556 CrossRefGoogle Scholar
  51. Mikiciński A, Sobiczewski P, Puławska J, Maciorowski R (2016) Control of fire blight (Erwinia amylovora) by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple (Malus spp.). Eur J Plant Pathol 145(2):265–276.  https://doi.org/10.1007/s10658-015-0837-y CrossRefGoogle Scholar
  52. Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87(1):2–17.  https://doi.org/10.1111/1574-6941.12198 CrossRefPubMedGoogle Scholar
  53. Müller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617.  https://doi.org/10.1016/j.tim.2015.07.009 CrossRefGoogle Scholar
  54. Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138.  https://doi.org/10.3389/fmicb.2015.00138 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Newton AC, Gravouil C, Fountaine JM (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157(3):343–359.  https://doi.org/10.1111/j.1744-7348.2010.00437.x CrossRefGoogle Scholar
  56. O’Brien PA (2017) Biological control of plant diseases. Australasian Plant Pathol 46(4):293–304.  https://doi.org/10.1007/s13313-017-0481-4 CrossRefGoogle Scholar
  57. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125.  https://doi.org/10.1016/j.tim.2007.12.009 CrossRefPubMedGoogle Scholar
  58. Orozco-Mosqueda MC, Rocha-Granados MC, Glick BR (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31.  https://doi.org/10.1016/j.micres.2018.01.00 CrossRefPubMedGoogle Scholar
  59. Ozaktan H, Akkopru A, Aslan E, Ilhan K, Koltuksuz T (2011) Integrated control of fire blight in a pear orchard in Turkey using prohexadione-ca and bacterial antagonists. Acta Hortic 896:441–446.  https://doi.org/10.17660/actahortic.2011.896.64 CrossRefGoogle Scholar
  60. Ozaktan H, Erdal M, Akkopru A, Aslan E (2012) Biological control of bacterial blight of walnut by antagonistic bacteria. J Plant Pathol 94(1):53–56Google Scholar
  61. Pandolfi V, Jorge EC, Melo CMR, Albuquerque ACS, Carrer H (2010) Gene expression profile of the plant pathogen Fusarium graminearum under the antagonistic effect of Pantoea agglomerans. Genet Mol Res 9(3):1298–1311.  https://doi.org/10.4238/vol9-3gmr828 CrossRefPubMedGoogle Scholar
  62. Pasche S, Crovadore J, Pelleteret P, Jermini M, Mauch-Mani B, Oszako T, Lefort F (2016) Biological control of the latent pathogen Gnomoniopsis smithogylvyi in European chestnut grafting scions using Bacillus amyloliquefaciens and Trichoderma atroviride. Dendrobiology 75:113–122.  https://doi.org/10.12657/denbio.075.011 CrossRefGoogle Scholar
  63. Passera A, Alizadeh H, Azadvar M, Quaglino F, Alizadeh A, Casati P, Bianco PA (2018) Studies of microbiota dynamics reveals association of “Candidatus Liberibacter asiaticus” infection with citrus (Citrus sinensis) decline in south of Iran. Int J Mol Sci 19(6):1817.  https://doi.org/10.3390/ijms19061817 CrossRefPubMedCentralGoogle Scholar
  64. Pérez-García A, Romero D, Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22(2):187–193.  https://doi.org/10.1016/j.copbio.2010.12.003 CrossRefPubMedGoogle Scholar
  65. Pham VD, Konstantinidis KT, Palden T, Delong EF (2008) Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ Microbiol 10(9):2313–2330.  https://doi.org/10.1111/j.1462-2920.2008.01657.x CrossRefPubMedGoogle Scholar
  66. Pliego C, De Weert S, Lamers GEM, Bloemberg G, Cazorla FM, Ramos C (2006) Ocupación diferencial de la rizosfera de aguacate por cepas de Pseudomonas spp. antagonistas frente a Rosellinia necatrix. In: Proceedings of the XIII Phytopathological Spanish Society Congress. Murcia, Spain, p 127Google Scholar
  67. Puneeth ME (2015) Biocontrol of bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae (Hingorani and Singh) Vauterin et al. Department of plant pathology, University of agricultural sciences, BengaluruGoogle Scholar
  68. Pusey PL (2002) Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis 86(6):639–644.  https://doi.org/10.1094/PDIS.2002.86.6.639 CrossRefPubMedGoogle Scholar
  69. Pusey PL, Curry EA (2004) Temperature and pomaceous flower age related to colonization by Erwinia amylovora and antagonists. Phytopathology 94(8):901–911.  https://doi.org/10.1094/PHYTO.2004.94.8.901 CrossRefPubMedGoogle Scholar
  70. Qvit-Raz N, Finkel OM, Al-Deeb TM, Malkawi HI, Hindiyeh MY, Jurkevitch E, Belkin S (2012) Biogeographical diversity of leaf-associated microbial communities from salt-secreting Tamarix trees of the Dead Sea region. Res Microbiol 163(2):142–150.  https://doi.org/10.1016/j.resmic.2011.11.006 CrossRefPubMedGoogle Scholar
  71. Rahman SFSA, Singh E, Pieterse CMJ, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111.  https://doi.org/10.1016/j.plantsci.2017.11.012 CrossRefGoogle Scholar
  72. Rastogi G, Coaker GL, Leveau JH (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348(1):1–10.  https://doi.org/10.1111/1574-6968.12225 CrossRefPubMedGoogle Scholar
  73. Redford AJ, Fierer N (2009) Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb Ecol 58(1):189–198.  https://doi.org/10.1007/s00248-009-9495-y CrossRefGoogle Scholar
  74. Roat C, Saraf M (2017) Unravelling the interaction of plant and their phyllosphere microbiome. In: Singh R, Kothari R, Koringa P, Singh S (eds) Understanding host-microbiome interactions – an omics approach. Springer, Singapore, pp 157–172CrossRefGoogle Scholar
  75. Rossmann B, Müller H, Smalla K, Mpiira S, Tumuhairwe JB, Staver C, Berg G (2012) Banana-associated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae. Appl Environ Microbiol 78(14):4933–4941.  https://doi.org/10.1128/AEM.00772-12 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PC (2018) Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol Indic.  https://doi.org/10.1016/j.ecolind.2018.05.084 CrossRefGoogle Scholar
  77. Santhanam R, Luu VT, Weinhold A, Goldberg A (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci U S A 112(36):E5013–E5020.  https://doi.org/10.1073/pnas.1505765112 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. AGNR 50(4):250–256.  https://doi.org/10.1016/j.anres.2016.02.003 CrossRefGoogle Scholar
  79. Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-a-vis organophosphorus fungicide. Indian J Microbiol 51(3):266–272.  https://doi.org/10.1007/s12088-011-0170-x CrossRefPubMedPubMedCentralGoogle Scholar
  80. Silva YMUKY, De Costa DM (2014) Potential of pre-harvest application of Burkholderia spinosa for biological control of epiphytic and pathogenic microorganisms on the phyllosphere of banana (Musa spp.). Trop Agric Res 25(4):443–454.  https://doi.org/10.4038/tar.v25i4.8060 CrossRefGoogle Scholar
  81. Silva HSA, Tozzi JPL, Terrasan CRF, Bettiol W (2012) Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust. Biol Control 63(1):62–67.  https://doi.org/10.1016/j.biocontrol.2012.06.005 CrossRefGoogle Scholar
  82. Singh P, Piotrowski M, Kloppstech K, Gau AE (2004) Investigations on epiphytic living Pseudomonas species from Malus domestica with an antagonistic effect to Venturia inaequalis on isolated plant cuticle membranes. Environ Microbiol 6(11):1149–1158.  https://doi.org/10.1111/j.1462-2920.2004.00622.x CrossRefPubMedGoogle Scholar
  83. Subagio A, Foster HL (2003) Implications of Ganoderma disease on loss in stand and yield production of oil palm in North Sumatra. In: Proceedings of MAPPS Conference, Kuala Lumpur, MalaysiaGoogle Scholar
  84. Sundin GW, Kidambi SP, Ullrich M, Bender CL (1996) Resistance to ultraviolet light in Pseudomonas syringae: sequence and functional analysis of the plasmid-encoded rulAB genes. Gene 177(1–2):77–81CrossRefGoogle Scholar
  85. Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58(4):952–964.  https://doi.org/10.1007/s00248-009-9559-z CrossRefPubMedGoogle Scholar
  86. Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96(5):1151–1160.  https://doi.org/10.1111/j.1365-2672.2004.02252.x CrossRefPubMedGoogle Scholar
  87. Trivedi P, Spann T, Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb Ecol 62(2):324–336.  https://doi.org/10.1007/s00248-011-9822-y CrossRefPubMedGoogle Scholar
  88. Utkhede RS (1987) Chemical and biological control of crown and root rot of apple caused by Phytophthora cactorum. Can J Plant Pathol 9(4):295–300.  https://doi.org/10.1080/07060668709501860 CrossRefGoogle Scholar
  89. Vaidya RJ, Shah IM, Vyas PR, Chhatpar HS (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. World J Microbiol Biotechnol 17(7):691–696.  https://doi.org/10.1023/A:1012927116756 CrossRefGoogle Scholar
  90. Valverde A, González-Tirante M, Medina-Sierra M, Rivas R, Santa-Regina I, Igual JM (2017) Culturable bacterial diversity from the chestnut (Castanea sativa Mill.) phyllosphere and antagonism against the fungi causing the chestnut blight and ink diseases. AIMS Microbiol 3(2):293–314.  https://doi.org/10.3934/microbiol.2017.2.293 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vanneste JL (1996) Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear. Biocontrol News Inf 17(4):67–78Google Scholar
  92. Vega FE, Pava-Ripoll M, Posada F, Buyer JS (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45(5):371–380.  https://doi.org/10.1002/jobm.200410551 CrossRefPubMedGoogle Scholar
  93. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840.  https://doi.org/10.1038/nrmicro2910 CrossRefPubMedGoogle Scholar
  94. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97(2):250–256.  https://doi.org/10.1094/PHYTO-97-2-0250 CrossRefPubMedGoogle Scholar
  95. Wilhelm E, Arthofer W, Schafleitner R, Krebs B (1998) Bacillus subtilis, an endophyte of chestnut (Castanea sativa), as antagonist against chestnut blight (Cryphonectria parasitica). Plant Cell Tiss Org 52(1–2):105–108CrossRefGoogle Scholar
  96. Wrather JA, Kuc J, Williams EB (1973) Protection of apple and pear fruit tissue against fireblight with nonpathogenic bacteria. Phytopathology 63:1075–1076CrossRefGoogle Scholar
  97. Xue C, Penton CR, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q (2015) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Nature 5(11124).  https://doi.org/10.1038/srep11124
  98. Yashiro E, McManus PS (2012) Effect of streptomycin treatment on bacterial community structure in the apple Phyllosphere. PLoS One 7(5):e37131.  https://doi.org/10.1371/journal.pone.0037131 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yashiro E, Spear R, McManus P (2011) Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 110(5):1284–1296.  https://doi.org/10.1111/j.1365-2672.2011.04975.x CrossRefPubMedGoogle Scholar
  100. Yenjit P, Intanoo W, Chamswarng C, Siripanich J, Intana W (2004) Use of promising bacterial strains for controlling anthracnose on leaf and fruit of mango caused by Colletotrichum gloeosporioides. Walailak J Sci Tech 1(2):56–69.  https://doi.org/10.2004/wjst.v1i2.186 CrossRefGoogle Scholar
  101. Young (2017) The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356:j831.  https://doi.org/10.1136/bmj.j831 CrossRefPubMedGoogle Scholar
  102. Yuan J, Raza W, Huang Q, Shen Q (2012) The ultrasound-assisted extraction and identification of antifungal substances from Bacillus amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum. J Basic Microbiol 52:721–730.  https://doi.org/10.1002/jobm.201100560 CrossRefPubMedGoogle Scholar
  103. Zengerer V, Schmid M, Bieri M, Müller DC, Remus-Emsermann MNP, Ahrens CH, Pelludat C (2018) Pseudomonas orientalis F9: a potent antagonist against phytopathogens with phytotoxic effect in the apple flower. Front Microbiol 9:145.  https://doi.org/10.3389/fmicb.2018.00145 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Diogo Mina
    • 1
  • José Alberto Pereira
    • 1
  • Teresa Lino-Neto
    • 2
  • Paula Baptista
    • 1
    Email author
  1. 1.CIMO, School of Agriculture – Polytechnic Institute of BragançaBragançaPortugal
  2. 2.Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center (CBFP)University of MinhoBragaPortugal

Personalised recommendations