Dynamics of Plant Microbiome and Its Effect on the Plant Traits

  • Shivali Sharma
  • Shanu Magotra
  • Sneha Ganjoo
  • Tabia Andrabi
  • Rikita Gupta
  • Shilpi Sharma
  • Jyoti Vakhlu


Plants host a plethora of complex microbial communities in and on their surfaces designated as plant microbiome. The plant microbiome symbolizes the collective communities of microbes, their (meta) genomes and their interactions (mutualism-antagonism continuum) in a particular environment. The cross-talk between plant microbiome plays an important function in the performance of plant and is hot topic for research in biology. Plant microbiome endows the plant with resistance to biotic and abiotic factors, promotes plant growth and enriches the soil associated with the plant. The plant trait expression is regulated by the orchestrated effect of plant as well as microbial genes. Therefore, there is an urgent need to explore the diversity and the functionally potential of microbial communities. However, a big challenge in the present scenario is to widen technologies to improve agricultural management, e.g. plant growth promotion, biocontrol and bioremediation. Recent advances in sequencing technologies and multi-omics approaches integrate the studies on plant-microbe interactions, which gives an insight about what’s happening in real-time within the cells. Metatranscriptomics and metaproteomics have come up as a holistic approach that give a picture of major metabolic pathways and the plant-associated interactions. These technologies clearly depict which functional microbial communities are dominant in crop plants and under different environmental conditions. The integration of various computational tools helps to decode the functions of proteins, individual signal molecules and gene cascades, with respect to their pathways.


Plants microbes Microbiome Plant-microbe interactions Metagenomics Plant traits 


  1. Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13(4):583–594CrossRefPubMedGoogle Scholar
  2. Allen MS, Hurst GB, Lu TYS, Perry LM, Pan C, Lankford PK, Pelletier DA (2015) Rhodopseudomonas palustris CGA010 proteome implicates extracytoplasmic function sigma factor in stress response. J Proteome Res 14(5):2158–2168CrossRefPubMedGoogle Scholar
  3. Ambardar S, Vakhlu J (2013) Plant growth promoting bacteria from Crocussativus rhizosphere. World J Microbiol Biotechnol 29(12):2271–2279CrossRefPubMedGoogle Scholar
  4. Ambardar S, Sangwan N, Manjula A, Rajendhran J, Gunasekaran P, Lal R, Vakhlu J (2014) Identification of bacteria associated with underground parts of Crocus sativus by 16S rRNA gene targeted metagenomic approach. World J Microbiol Biotechnol 30(10):2701–2709CrossRefPubMedGoogle Scholar
  5. Ambardar S, Gupta R, Kour R, Trakroo D, Sharma S, Vakhlu J (2016a, November) Overview of the microbial associations of below ground parts of Crocus sativus. In: V international symposium on saffron biology and technology: advances in biology, technologies, uses and market 1184, pp 71–78Google Scholar
  6. Ambardar S, Heikham RS, Gowda M, Vakhlu J (2016b) Temporal and spatial changes in the fungal community associated with belowground parts of Crocus sativus during flowering and dormant growth stages. PLoS One 11(9):e0163300. Scholar
  7. Atkinson GF (1892) Some diseases of cotton (No. 41). Agricultural Experiment Station of the Agricultural and Mechanical CollegeGoogle Scholar
  8. Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C, Santoyo G, Valencia-Cantero E (2016) The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula. Rev Argent Microbiol 48(4):342–346PubMedGoogle Scholar
  9. Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151(4):2006–2017CrossRefPubMedPubMedCentralGoogle Scholar
  10. Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273CrossRefPubMedGoogle Scholar
  11. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013a) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic related compounds predominantly modulate the soil microbiome. J Biol Chem:jbc–M112Google Scholar
  12. Bahrndorff S, Alemu T, Alemneh T, Lund Nielsen J (2016) The microbiome of animals: implications for conservation biology. Int J Genomics 2016Google Scholar
  13. Baker KF, Cook RJ (1974) Biological control of plant pathogens. WH Freeman and Company, San FranciscoGoogle Scholar
  14. Bakker PA, Pieterse CM, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell 172(6):1178–1180CrossRefPubMedGoogle Scholar
  15. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Boutell JM (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53CrossRefPubMedPubMedCentralGoogle Scholar
  16. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486CrossRefPubMedGoogle Scholar
  17. Berg G, Zachow Z, Müller H, Philipps J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656CrossRefGoogle Scholar
  18. Berg G, Grube M, Schloter M, Smalla K (2014a) The plant microbiome and its importance for plant and human health. Front Microbiol 5:1Google Scholar
  19. Berg G, Grube M, Schloter M, Smalla K (2014b) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148PubMedPubMedCentralGoogle Scholar
  20. Boer WD, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811CrossRefGoogle Scholar
  21. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207CrossRefGoogle Scholar
  22. Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Gamalero E (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25(3):181–193CrossRefPubMedGoogle Scholar
  23. Bouffaud ML, Poirier MA, Muller D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol 16(9):2804–2814CrossRefPubMedGoogle Scholar
  24. Boundy-Mills K (2006) Methods for investigating yeast biodiversity. In: Biodiversity and ecophysiology of yeasts. Springer, Berlin/Heidelberg, pp 67–100CrossRefGoogle Scholar
  25. Bowen GD, Rovira AD (1991) The rhizosphere: the hidden half of the hidden half.Google Scholar
  26. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. In: Advances in agronomy, vol 66. Academic Press, pp 1–102Google Scholar
  27. Brady A, Salzberg SL (2009) Phymm and Phymm BL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 6(9):673CrossRefPubMedPubMedCentralGoogle Scholar
  28. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Jovanovich SB (2010) The potential and challenges of nanopore sequencing. In: Nanoscience and technology: a collection of reviews from nature journals, pp 261–268Google Scholar
  29. Bressan M, Roncato MA, Bellvert F, Comte G, el Zahar Haichar F, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3(11):1243CrossRefPubMedGoogle Scholar
  30. Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569CrossRefPubMedGoogle Scholar
  31. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Peplies J (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91CrossRefGoogle Scholar
  32. Cao Y, Tian B, Ji X, Shang S, Lu C, Zhang K (2015) Associated bacteria of different life stages of Meloidogyne incognita using pyrosequencing-based analysis. J Basic Microbiol 55(8):950–960CrossRefPubMedGoogle Scholar
  33. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Giaever G (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. SME J 10(1):119Google Scholar
  35. Chan CKK, Hsu AL, Halgamuge SK, Tang SL (2008) Binning sequences using very sparse labels within a metagenome. BMC Bioinf 9(1):215CrossRefGoogle Scholar
  36. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48(5):489–499CrossRefGoogle Scholar
  37. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):e55731CrossRefPubMedPubMedCentralGoogle Scholar
  38. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790CrossRefPubMedGoogle Scholar
  39. Chen Y, Ding Q, Chao Y, Wei X, Wang S, Qiu R (2018) Structural development and assembly patterns of the root-associated microbiomes during phytoremediation. Sci Total Environ 644:1591–1601CrossRefPubMedGoogle Scholar
  40. Chevreux B, Wetter T, Suhai S (1999, October) Genome sequence assembly using trace signals and additional sequence information. German Conf Bioinform 99(1):45–56Google Scholar
  41. Chng S, Cromey MG, Dodd SL, Stewart A, Butler RC, Jaspers MV (2015) Take-all decline in New Zealand wheat soils and the microorganisms associated with the potential mechanisms of disease suppression. Plant Soil 397(1-2):239–259. Scholar
  42. Cullen DW, Hirsch PR (1998) Simple and rapid method fordirect extraction of microbial DNA fromsoil for PCR. Soil Biol Biochem 30(8-9):983–993CrossRefGoogle Scholar
  43. Davies K (2010) It’s “Watson Meets Moore” as Ion Torrent Introduces Semiconductor Sequencing. Bio-IT WorldGoogle Scholar
  44. de Bary A (1866) Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. W. Engelmann, LeipzigCrossRefGoogle Scholar
  45. del Carmen Orozco-Mosqueda M, del Carmen Rocha-Granados M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31CrossRefGoogle Scholar
  46. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci 106(38):16428–16433CrossRefPubMedGoogle Scholar
  47. Dimitrijevic S, Pavlovic M, Maksimovic S, Ristic M, Filipovic V, Antonovic D, Dimitrijevic-Brankovic S (2018) Plant growth promoting bacteria elevate the nutritional and functional properties of black cumin and flax seed fixed oil. J Sci Food Agric 98:1584–1590CrossRefPubMedGoogle Scholar
  48. Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Schulze-Lefert P (2017) Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME J 11(1):43CrossRefPubMedGoogle Scholar
  49. Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69(12):7310–7318CrossRefPubMedPubMedCentralGoogle Scholar
  50. Durán P, Jorquera M, Viscardi S, Carrion VJ, Mora MDLL, Pozo MJ (2017) Screening and characterization of potentially suppressive soils against Gaeumannomyces graminis under extensive wheat cropping by Chilean indigenous communities. Front Microbiol 8:1552CrossRefPubMedPubMedCentralGoogle Scholar
  51. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci 112(8):E911–E920CrossRefPubMedGoogle Scholar
  52. Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, Sundaresan V (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 16(2):e2003862CrossRefPubMedPubMedCentralGoogle Scholar
  53. Eissenstat DM, Yanai RD (2002) Root life span, efficiency, and turnover. Plant Roots Hidden Half 3:221–238Google Scholar
  54. Erlejman AG, Lagadari M, Toneatto J, Piwien-Pilipuk G, Galigniana MD (2014) Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. Biochim Biophys Acta, Gene Regul Mech 1839(2):71–87CrossRefGoogle Scholar
  55. Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB (2012) Animal behavior and the microbiome. Science 338(6104):198–199CrossRefPubMedGoogle Scholar
  56. Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. Azospirillum/plant associations, pp 77–85Google Scholar
  57. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Holm L (2009) The PFAM protein families database. Nucleic Acids Res 38(suppl. 1):D211–D222PubMedPubMedCentralGoogle Scholar
  58. Foo JL, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: Current applications and its future. Biotechnol J 12(3):1600099CrossRefGoogle Scholar
  59. Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46CrossRefGoogle Scholar
  60. Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63(2):418–428CrossRefPubMedGoogle Scholar
  61. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010(1):pdb-prot5368CrossRefPubMedGoogle Scholar
  62. Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM (2017) Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol 8:2529CrossRefPubMedPubMedCentralGoogle Scholar
  63. Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163(4):381–385CrossRefGoogle Scholar
  64. Gupta R, Vakhlu J (2015) Native Bacillus amyloliquefaciens W2 as a potential biocontrol for Fusarium oxysporum R1 causing corm rot of Crocussativus. Eur J Plant Pathol 143(1):123–131. Scholar
  65. Gupta R, Vakhlu J, Agarwal A, Nilaweb PD (2014) Draft genome sequence of plant growth-promoting Bacillus amyloliquefaciens strain W2 associated with crocus sativus (Saffron). Genome Announc 2(5):00862–00814CrossRefGoogle Scholar
  66. Hamilton CE, Bever JD, Labbé J, Yang X, Yin H (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308CrossRefGoogle Scholar
  67. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G (2011) Metagenomic discovery of biomass degrading genes and genomes from cow rumen. Science 331(6016):463–467CrossRefPubMedGoogle Scholar
  69. Hiltner L (1904) Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter besonderer BerUcksichtigung der Grundungung und Brache. Arb Deut Landw Gesell 98:59–78Google Scholar
  70. Huang YF, Chen SC, Chiang YS, Chen TH, Chiu KP (2012, December) Palindromic sequence impedes sequencing-by-ligation mechanism. BMC Syst Biol 6(2):S10CrossRefPubMedPubMedCentralGoogle Scholar
  71. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17(3):377–386CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hussain MB, Zahir ZA, Asghar HN, Asgher M (2014) Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? Int J Agric Biol 16(1)Google Scholar
  73. Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4(14):923–929Google Scholar
  74. Jansson JK, Neufeld JD, Moran MA, Gilbert JA (2012) Omics for understanding microbial functional dynamics. Environ Microbiol 14(1):1–3CrossRefPubMedGoogle Scholar
  75. Kandel SL (2016) Salicaceae endophytes: growth promotion potential in rice (Oryza sativa L.) and maize (Zea mays L.) and bio-control of plant pathogen. Doctoral DissertationGoogle Scholar
  76. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(suppl. 1):D277–D280CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124CrossRefGoogle Scholar
  78. Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci 111(38):13715–13720CrossRefPubMedGoogle Scholar
  79. Khan AL, Gilani SA, Waqas M, Al-Hosni K, Al-Khiziri S, Kim YH et al (2017) Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. J Zhejiang Univ Sci B 18(2):125–137CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kittelmann S, Devente SR, Kirk MR, Seedorf H, Dehority BA, Janssen PH (2015) Phylogeny of the intestinal ciliates including first sequences from Charonina ventriculi and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis. Appl Environ Microbiol AEM-03697Google Scholar
  81. Kour R (2014) Corm-associated plant growth promoting bacteria during three different stages of life cycle of Crocus sativus. Dissertation Mphil. University of Jammu.Google Scholar
  82. Kour R, Ambardar S, Vakhlu J (2018) Plant growth promoting bacteria associated with corm of Crocus sativus during three growth stages. Lett Appl Microbiol 67(5):458–464CrossRefPubMedGoogle Scholar
  83. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol AEM-01043Google Scholar
  84. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F et al (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36(7):2230–2239CrossRefPubMedPubMedCentralGoogle Scholar
  85. Krsek M, Wellington EM (1999) Comparison of different methods for the isolation and purification of total community DNA from soil. J Microbiol Methods 39:1–16CrossRefPubMedGoogle Scholar
  86. Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192(1):215–224CrossRefPubMedGoogle Scholar
  87. Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci 109(35):14058–14062CrossRefPubMedGoogle Scholar
  88. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349(6250):860–864CrossRefPubMedGoogle Scholar
  89. Lee HN, Lee NO, Han SJ, Ko IJ, Oh JI (2014) Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis. PLoS One 9(11):e111680CrossRefPubMedPubMedCentralGoogle Scholar
  90. Leung HC, Yiu SM, Yang B, Peng Y, Wang Y, Liu Z, Chin FY (2011) A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio. Bioinformatics 27(11):1489–1495CrossRefPubMedGoogle Scholar
  91. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24(5):713–714CrossRefPubMedGoogle Scholar
  92. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S et al (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14(8):16207–16225CrossRefPubMedPubMedCentralGoogle Scholar
  94. Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, Qi J (2012) Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res 41(1):e3–e3CrossRefPubMedPubMedCentralGoogle Scholar
  95. Lone R, Shuab R, Koul KK (2016) AMF association and their effect on metabolite mobilization, mineral nutrition and nitrogen assimilating enzymes in saffron (Crocus sativus) plant. J Plant Nutr 39(13):1852–1862CrossRefGoogle Scholar
  96. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Edgar RC (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86CrossRefPubMedPubMedCentralGoogle Scholar
  97. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7(2):e30087CrossRefPubMedPubMedCentralGoogle Scholar
  98. Maizel JV, Burkhardt HJ, Mitchell HK (1964) Avenacin, an antimicrobial substance isolated from Avena sativa. I. Isolation and antimicrobial activity. Biochemistry 3(3):424–426CrossRefPubMedGoogle Scholar
  99. Manching HC, Carlson K, Kosowsky S, Smitherman CT, Stapleton AE (2017) Maize phyllosphere microbial community niche development across stages of host leaf growth. F1000 Research, 6Google Scholar
  100. Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60(1):157–166CrossRefPubMedGoogle Scholar
  101. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Lykidis A (2007) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36. (suppl. 1:D534–D538CrossRefPubMedPubMedCentralGoogle Scholar
  102. Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81(1-4):557–564CrossRefPubMedGoogle Scholar
  103. McNear DH Jr (2013) The Rhizosphere-Roots, Soil and Everything In Between. Nat Educ Knowl 4(3):1Google Scholar
  104. Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 1203980Google Scholar
  105. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663CrossRefPubMedGoogle Scholar
  106. Micallef SA, Channer S, Shiaris MP, Colón-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4(8):777–780CrossRefPubMedPubMedCentralGoogle Scholar
  107. Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC, Stougaard P (2015) Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. MBio 6(2):e00079–e00015. Scholar
  108. Miller DN (2001) Evaluation of gel filtration resins for removal of PCR inhibitors substances from soils and sediments. J Microbiol Methods 44:49–58CrossRefPubMedGoogle Scholar
  109. Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724PubMedPubMedCentralGoogle Scholar
  110. Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:11PubMedPubMedCentralGoogle Scholar
  111. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS (2009) SOrt-ITEMS: Sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics 25(14):1722–1730CrossRefPubMedGoogle Scholar
  112. Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60(5):1572–1580PubMedPubMedCentralGoogle Scholar
  113. Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170(1):165–175CrossRefPubMedGoogle Scholar
  114. Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23(10):606–617CrossRefPubMedGoogle Scholar
  115. Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651CrossRefPubMedGoogle Scholar
  116. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448CrossRefPubMedGoogle Scholar
  117. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014Google Scholar
  118. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Altaf-Ul-Amin M (2011) Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39(13):e90–e90CrossRefPubMedPubMedCentralGoogle Scholar
  119. Niemi RM, Heiskanen I, Wallenius K, Lindström K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods 45(3):155–165CrossRefGoogle Scholar
  120. Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15(6):387–396CrossRefPubMedPubMedCentralGoogle Scholar
  121. Nunes CF, Ferreira JL, Fernandes MCN, Breves SDS, Generoso AL, Soares BDF et al (2011) An improved method for genomic DNA extraction from strawberry leaves. Ciência Rural 41(8):1383–1389CrossRefGoogle Scholar
  122. Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950CrossRefPubMedGoogle Scholar
  123. Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90(1-3):3–16CrossRefGoogle Scholar
  124. Orsini M, Romano-Spica V (2001) A microwave-based method for nucleic acid isolation from environmental saples. Lett Appl Method 33:17–21CrossRefGoogle Scholar
  125. Osbourn AE, Clarke BR, Lunness P, Scott PR, Daniels MJ (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol Mol Plant Pathol 45(6):457–467CrossRefGoogle Scholar
  126. Osono T, Mori A (2005) Seasonal and leaf age-dependent changes in occurrence of phyllosphere fungi of giant dogwood. Mycoscience 46(5):273–279CrossRefGoogle Scholar
  127. Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9(4):980CrossRefPubMedGoogle Scholar
  128. Panke-Buisse K, Lee S, Kao-Kniffin J (2017) Cultivated sub-populations of soil microbiomes retain early flowering plant trait. Microb Ecol 73(2):394–403CrossRefPubMedGoogle Scholar
  129. Parray JA, Kamili AN, Reshi ZA, Hamid R, Qadri RA (2013) Screening of beneficial properties of rhizobacteria isolated from Saffron (Crocus sativus L) rhizosphere. Afr J Microbiol Res 7(23):2905–2910CrossRefGoogle Scholar
  130. Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93(2):105–111CrossRefPubMedGoogle Scholar
  131. Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7(8):e43093CrossRefPubMedPubMedCentralGoogle Scholar
  132. Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS (2018) Long Reads: their Purpose and Place. Hum Mol GenetGoogle Scholar
  133. Porteous LA, Seider RJ, Watrud LS (1997) An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications. Mol Ecol 6:787–791CrossRefGoogle Scholar
  134. Prober JM, Trainor GL, Dam GL, Hobbs FW, Robertson CW, Zagursky RJ (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238(4825):336–341CrossRefPubMedGoogle Scholar
  135. Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G, Zhang J (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci Rep 7(1):3940CrossRefPubMedPubMedCentralGoogle Scholar
  136. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2):341–361CrossRefGoogle Scholar
  137. Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8(1):2504CrossRefPubMedPubMedCentralGoogle Scholar
  138. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL (2016) Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469(4):967–977CrossRefPubMedGoogle Scholar
  139. Rastogi G, Coaker GL, Leveau JH (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348(1):1–10CrossRefPubMedGoogle Scholar
  140. Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 38(20):e191–e191CrossRefPubMedPubMedCentralGoogle Scholar
  141. Richardson LA (2017) Evolving as a holobiont. PLoS Biol 15(2):e2002168CrossRefPubMedPubMedCentralGoogle Scholar
  142. Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39(4):183–190CrossRefGoogle Scholar
  143. Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2016) Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405(1-2):381–396CrossRefGoogle Scholar
  144. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9CrossRefPubMedGoogle Scholar
  145. Saano A, Tas E, Pippola S, Lindstrom K, Van Elsas JD (1995) Extraction and analysis of microbial DNA from soil. In: Van Elsas JD, Trevors JT (eds) Nucleic acids in the environment: methods and applications. Springer, Berlin, pp 49–67CrossRefGoogle Scholar
  146. Salvetti E, Campanaro S, Campedelli I, Fracchetti F, Gobbi A, Tornielli GB, Felis GE (2016) Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Front Microbiol 7:937CrossRefPubMedPubMedCentralGoogle Scholar
  147. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467. Scholar
  148. Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99CrossRefPubMedGoogle Scholar
  149. Schikora A, Schenk ST, Hartmann A (2016) Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol 90:605–612CrossRefPubMedGoogle Scholar
  150. Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107(11):1284–1297CrossRefPubMedGoogle Scholar
  151. Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Bacteria in Agrobiology: Stress Management. Springer, Berlin, Heidelberg, pp 205–224CrossRefGoogle Scholar
  152. Shen Z, Ruan Y, Chao X, Zhang J, Li R, Shen Q (2015) Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol Fertil Soils 51(5):553–562. Scholar
  153. Shuab R, Lone R, Naidu J, Sharma V, Imtiyaz S, Koul KK (2014) Benefits of inoculation of arbuscular mycorrhizal fungi on growth and development of onion (Allium cepa) plant. Am Eurasian J Agric Environ Sci 14(6):527–535Google Scholar
  154. Shuab R, Lone R, Koul KK (2017) Influence of arbuscular mycorrhizal fungi on storage metabolites, mineral nutrition, and nitrogen-assimilating enzymes in potato (Solanum tuberosum L.) plant. J Plant Nutr 40(10):1386–1396CrossRefGoogle Scholar
  155. Singh BK, Trivedi P, Singh S, Macdonald CA, Verma JP (2018) Emerging microbiome technologies for sustainable increase in farm productivity and environmental security. Microbiology Australia.Google Scholar
  156. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67(10):4742–4751CrossRefPubMedPubMedCentralGoogle Scholar
  157. Song J, Li S, Xu Y, Wei W, Yao Q, Pan F (2016) Diversity of parasitic fungi from soybean cyst nematode associated with long-term continuous cropping of soybean in black soil. Acta Agric Scand Secti B Soil Plant Sci 66(5):432–442Google Scholar
  158. Steffan RJ, Goksoyr J, Bej AK, Atlas RM (1988) Recovery of DNAfrom soils and sedim. Appl Environ Microbiol 54:2908–2915PubMedPubMedCentralGoogle Scholar
  159. Stevens V (2016) The structure of phyllospheric microbial communities and their role in phytoremediation of air pollution. Doctoral dissertation, Universiteit AntwerpenGoogle Scholar
  160. Streitwolf-Engel R, Van der Heijden MGA, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82(10):2846–2859CrossRefGoogle Scholar
  161. Suenaga H (2012) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14(1):13–22CrossRefPubMedGoogle Scholar
  162. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Rao BS (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4(1):41CrossRefGoogle Scholar
  163. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59(8):2657–2665PubMedPubMedCentralGoogle Scholar
  164. Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188(1):291–301CrossRefPubMedGoogle Scholar
  165. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75(2-3):291–295CrossRefPubMedGoogle Scholar
  166. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5(3):240–245CrossRefPubMedGoogle Scholar
  167. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50CrossRefGoogle Scholar
  168. Tsai YL, Park MJ, Olson BH (1991) Rapid method for direct extraction of mRNA from seeded soils. Appl Environ Microbiol 57(3):765–768PubMedPubMedCentralGoogle Scholar
  169. Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7(12):2248CrossRefPubMedPubMedCentralGoogle Scholar
  170. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43CrossRefPubMedGoogle Scholar
  171. Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310CrossRefPubMedGoogle Scholar
  172. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206CrossRefPubMedGoogle Scholar
  173. Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A (2016) Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biol 18(4):627–637CrossRefPubMedGoogle Scholar
  174. Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21(3):218–229CrossRefPubMedPubMedCentralGoogle Scholar
  175. Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2008) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33(1):236–255CrossRefPubMedGoogle Scholar
  176. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840CrossRefPubMedGoogle Scholar
  177. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett 17(6):717–726CrossRefPubMedPubMedCentralGoogle Scholar
  178. Whipps J, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105(6):1744–1755CrossRefPubMedGoogle Scholar
  179. Wu R, Taylor E (1971) Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol 57:491–411CrossRefPubMedGoogle Scholar
  180. Xiong W, Li R, Ren Y, Liu C, Zhao Q, Wu H, Shen Q (2017) Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol Biochem 107:198–207CrossRefGoogle Scholar
  181. Xu Y, Wang G, Jin J, Liu J, Zhang Q, Liu X (2009) Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol Biochem 41(5):919–925CrossRefGoogle Scholar
  182. Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107(6):1519–1532CrossRefPubMedGoogle Scholar
  183. Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–351CrossRefPubMedPubMedCentralGoogle Scholar
  184. Yang Y, Liang Y, Han X, Chiu TY, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469CrossRefPubMedPubMedCentralGoogle Scholar
  185. Young CC, Cheng KT, Waller GR (1991) Phenolic compounds in conducive and suppressive soils on clubroot disease of crucifers. Soil Biol Biochem 23(12):1183–1189CrossRefGoogle Scholar
  186. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150CrossRefPubMedGoogle Scholar
  187. Zerbino D, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res gr-074492Google Scholar
  188. Zheng H, Wu H (2010) Short prokaryotic DNA fragment binning using a hierarchical classifier based on linear discriminant analysis and principal component analysis. J Bioinforma Comput Biol 8(06):995–1011CrossRefGoogle Scholar
  189. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shivali Sharma
    • 1
  • Shanu Magotra
    • 1
  • Sneha Ganjoo
    • 1
  • Tabia Andrabi
    • 1
  • Rikita Gupta
    • 1
  • Shilpi Sharma
    • 1
  • Jyoti Vakhlu
    • 1
  1. 1.Microbiomics Laboratory, School of BiotechnologyUniversity of JammuJammuIndia

Personalised recommendations