Advertisement

Glaucoma pp 91-106 | Cite as

What’s New in Optical Coherence Tomography Angiography for Glaucoma

  • Gábor HollóEmail author
Chapter
Part of the Current Practices in Ophthalmology book series (CUPROP)

Abstract

Glaucoma is one of the main clinical areas where OCT angiography is used. In contrast to medical retinal application, where qualitative image analysis and semiquantitative measurements are frequently satisfactory for clinical decision-making, in glaucoma the exact quantitative measurements provide the useful information. Therefore both general ophthalmologists who treat glaucoma patients and glaucoma subspecialists need to be familiar with the measurement details of OCT angiography, the types of complementary structural information necessary to clinical decision-making, and the current limitations of the technology. This chapter attempts to guide the reader through all aspects of glaucoma-related OCT angiography in a stepwise manner.

Keywords

Optical coherence tomography angiography Diagnostic accuracy Glaucoma Optic nerve head perfusion Progression of glaucoma Retinal nerve fiber layer 

Notes

Acknowledgement

Competing Interest: Gábor Holló is an unpaid consultant of Optovue, Inc.

References

  1. 1.
    Tan ACS, Tan GS, Denniston AK, Keane PA, Ang M, Milea D, Chakravarthy U, Cheung CMG. An overview of the clinical applications of optical coherence angiography. Eye. 2018;32:262.  https://doi.org/10.1038/eye.2017.181.CrossRefPubMedGoogle Scholar
  2. 2.
    Grudzinska E, Modrzejewska M. Modern diagnostic techniques for the assessment of ocular blood flow in myopia: current state of knowledge. Aust J Ophthalmol. 2018;2018:4694789.Google Scholar
  3. 3.
    Holló G. Intrasession and between-visit variability of sector peripapillary angioflow vessel density values measured with the Angiovue optical coherence tomograph in different retinal layers in ocular hypertension and glaucoma. PLoS One. 2016;11:e0161631.CrossRefGoogle Scholar
  4. 4.
    Holló G. Vessel density calculated from OCT angiography in three peripapillary sectors in normal, ocular hypertensive and glaucoma eyes. Eur J Ophthalmol. 2016;26:e42–5.CrossRefGoogle Scholar
  5. 5.
    Lee EJ, Lee KM, Lee SH, Kim TW. OCT Angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016;57:6265–70.CrossRefGoogle Scholar
  6. 6.
    Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, Diniz-Filho A, Saunders LJ, Yousefi S, Weinreb RN. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016;123:2309–17.CrossRefGoogle Scholar
  7. 7.
    Venugopal JP, Rao HL, Weinreb RN, Pradhan ZS, Dasari S, Riyazuddin M, Puttiah NK, Rao DAS, Devi S, Mansouri K, Webers CA. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol. 2018;102:352.  https://doi.org/10.1136/bjophthalmol-2017-310637. pii: bjophthalmol-2017-310637.CrossRefPubMedGoogle Scholar
  8. 8.
    Holló G. Optical coherence tomography angiography and glaucoma. In: Chow DR, De Olivieria RPC (eds). OCT angiography. Thieme Medical Publishers Inc., New York, NY 2017, pp. 112-126.Google Scholar
  9. 9.
    Holló G. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values. PLoS One. 2017;12:e0171541.CrossRefGoogle Scholar
  10. 10.
    Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S, Pinhas A, Tantraworasin A, Chui TYP, Ritch R, Rosen RB. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101:1261–8.CrossRefGoogle Scholar
  11. 11.
    Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci. 2017;58:1637–45.CrossRefGoogle Scholar
  12. 12.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016;123:2498–508.CrossRefGoogle Scholar
  13. 13.
    Sakaguchi K, Higashide T, Udagawa S, Ohkubo S, Sugiyama K. Comparison of sectoral structure-function relationships in glaucoma: vessel density versus thickness in the peripapillary retinal nerve fiber layer. Invest Ophthalmol Vis Sci. 2017;58:5251–62.CrossRefGoogle Scholar
  14. 14.
    Igarashi R, Ochiai S, Sakaue Y, Suetake A, Iikawa R, Togano T, Miyamoto F, Miyamoto D, Fukuchi T. Optical coherence tomography angiography of the peripapillary capillaries in primary open-angle and normal-tension glaucoma. PLoS One. 2017;12(9):e0184301.CrossRefGoogle Scholar
  15. 15.
    Holló G. Relationship between OCT angiography temporal peripapillary vessel-density and Octopus perimeter paracentral cluster mean defect. J Glaucoma. 2017;26:397–402.CrossRefGoogle Scholar
  16. 16.
    Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS, Kumar RS, Webers CAB, Shetty R. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101:1066–70.CrossRefGoogle Scholar
  17. 17.
    Rao HL, Pradhan ZS, Weinreb RN, Dasari S, Riyazuddin M, Raveendran S, Puttaiah NK, Venugopal JP, Rao DAS, Devi S, Mansouri K, Webers CAB. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma. J Glaucoma. 2017;26:548–54.CrossRefGoogle Scholar
  18. 18.
    Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017;58:3637–45.CrossRefGoogle Scholar
  19. 19.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57:OCT451–9.CrossRefGoogle Scholar
  20. 20.
    Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S, Palakurthy M, Puttaiah NK, Rao DA, Webers CA. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol. 2016;171:75–83.CrossRefGoogle Scholar
  21. 21.
    Yarmohammadi A, Zangwill LM, Manalastas PIC, Fuller NJ, Diniz-Filho A, Saunders LJ, Suh MH, Hasenstab K, Weinreb RN. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018;125:578.  https://doi.org/10.1016/j.ophtha.2017.10.029. pii: S0161-6420(17)32115-2.CrossRefPubMedGoogle Scholar
  22. 22.
    Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, Puttaiah NK, Rao DA, Devi S, Mansouri K, Webers CA. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One. 2017;12(3):e0173930.CrossRefGoogle Scholar
  23. 23.
    Chihara E, Dimitrova G, Amano H, Chihara T. Discriminatory power of superficial vessel Density and prelaminar vascular flow Index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci. 2017;58:690–7.CrossRefGoogle Scholar
  24. 24.
    Akil H, Huang AS, Francis BA, Sadda SR, Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One. 2017;12(2):e0170476.CrossRefGoogle Scholar
  25. 25.
    Kim SB, Lee EJ, Han JC, Kee C. Comparison of peripapillary vessel density between preperimetric and perimetric glaucoma evaluated by OCT-angiography. PLoS One. 2017;12(8):e0184297.CrossRefGoogle Scholar
  26. 26.
    Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, Puttaiah NK, Rao DAS, Devi S, Mansouri K, Webers CAB. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–15.CrossRefGoogle Scholar
  27. 27.
    Holló G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma. 2017;26:e7–e10.CrossRefGoogle Scholar
  28. 28.
    Shin JW, Sung KR, Uhm KB, Jo J, Moon Y, Song MK, Song JY. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017;58:5993–9.CrossRefGoogle Scholar
  29. 29.
    Holló G. Progressive decrease of peripapillary angioflow vessel-density during structural and visual field progression in early primary open-angle glaucoma. J Glaucoma. 2017;26:661–4.CrossRefGoogle Scholar
  30. 30.
    Holló G. Comparison of peripapillary OCT angiography vessel density and retinal nerve fiber layer thickness measurements for their ability to detect progression in glaucoma. J Glaucoma. 2018;27:302.  https://doi.org/10.1097/IJG.0000000000000868.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of OphthalmologySemmelweis UniversityBudapestHungary

Personalised recommendations