Skip to main content

In Vitro Alveolar Epithelial Models Toward the Prediction of Toxicity and Translocation of Nanoparticles: A Complementary Method for Mechanism Analyses in Humans

  • Chapter
  • First Online:
In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials

Abstract

Nanoparticles are promising materials in research and industrial fields because of their unique characteristics, their safety and toxicity are still being investigated. Although the safety and toxicity of nanomaterials are predicted by animal experiments, obtained results may be inconsistent with human outcomes due to the species difference. Recently, there has been an increasing interest in in vitro lung models, which allow control of experimental parameters and quantitative analyses, for the prediction of lung injuries and translocation into secondary organs of nanoparticles. In this section, we focus on developing in vitro alveolar models consisting of not only human-derived cell lines but also primary rat cells as complementary methods for intratracheal instillation in rats. We also coculture with macrophages to approach physiologically relevant alveolar environment. In addition, cytotoxicity and permeability tests of nanoparticles are presented to evaluate the in vitro alveolar coculture modles developed here. To further improve the physiological relevance of in vitro alveolar models, we discuss future issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nano level. Science. 2006;311:622–7.

    Article  CAS  Google Scholar 

  2. De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Med. 2008;3:133–49.

    Google Scholar 

  3. Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–70.

    Article  CAS  Google Scholar 

  4. Klein CL, Wiench K, Wiemann M, Ma-Hock L, van Ravenzwaay B, Landsiedel R. Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol. 2012;86:1137–51.

    Article  CAS  Google Scholar 

  5. Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 2007;97:163–80.

    Article  CAS  Google Scholar 

  6. Yacobi NR, Phuleria HC, Demaio L, Liang CH, Peng CA, Sioutas C, Borok Z, Kim KJ, Crandall ED. Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol In Vitro. 2007;21:1373–81.

    Article  CAS  Google Scholar 

  7. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009;69:8784–9.

    Article  CAS  Google Scholar 

  8. Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213:66–73.

    Article  CAS  Google Scholar 

  9. Kim IS, Baek M, Choi SJ. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol. 2010;10:3453–8.

    Article  CAS  Google Scholar 

  10. Lai JCK, Lai MB, Jandhyam S, Dukhande VV, Bhushan A, Daniels CK, Leung SW. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomedicine. 2008;3:533–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin W, Huang YW, Zhou XD, Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217:252–9.

    Article  CAS  Google Scholar 

  12. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev. 2011;111:5610–37.

    Article  CAS  Google Scholar 

  13. Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976;17:62–70.

    Article  CAS  Google Scholar 

  14. Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL. Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res. 1998;243:359–66.

    Article  CAS  Google Scholar 

  15. Daigneault M, Preston JA, Marriott HM, Whyte KB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 2010;5:e8668.

    Article  Google Scholar 

  16. Fleit HB, Kobasiuk CD. The human monocyte-like cell line THP-1 expresses FcγRI and FcγRII. J Leukoc Biol. 1991;49:556–65.

    Article  CAS  Google Scholar 

  17. Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MVDZ, Bellmann S, van der Zande M, Gac SL, Krystek P, Peters RB, Rietjents IMCM, Bouwmeester H. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol. 2015;89:1469–95.

    Article  CAS  Google Scholar 

  18. Dobbs LG, Mason RJ. Pulmonary alveolar type II cells isolated from rats. J Clin Invest. 1979;63:378–87.

    Article  CAS  Google Scholar 

  19. Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58:1030–60.

    Article  CAS  Google Scholar 

  20. Wallace WAH, Gillooly M, Lamb D. Intra-alveolar macrophage numbers in current smokers and non-smokers: a morphometric study of tissue sections. Thorax. 1992;47:437–40.

    Article  CAS  Google Scholar 

  21. Iwasawa K, Tanaka G, Aoyama T, Chowdhury MM, Komori K, Tanaka-Kagawa T, Jinno H, Sakai Y. Prediction of phthalate permeation through pulmonary alveoli using a cultured A549 cell-based in vitro alveolus model and a numerical simulation. AATEX. 2013;18:19–31.

    Google Scholar 

  22. Komori K, Murai K, Miyajima S, Fujii T, Mohri S, Ono Y, Sakai Y. Deveopment of an in vitro batch-type closed gas exposure device with an alveolar epithelial cell line, A549, for toxicity evaluations of gaseous compounds. Anal Sci. 2008;24:957–62.

    Article  CAS  Google Scholar 

  23. Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol. 1988;24:420–8.

    Article  CAS  Google Scholar 

  24. Sakai Y, Tomita K, Suzuki M, Ono Y, Sakoda A. Development of a toxicity evaluation system for gaseous compounds using air-liquid interface culture of a human bronchial epithelial cell line. Calu-3 AATEX. 2005;11:59–67.

    Google Scholar 

  25. Weibel ER. Morphometry of the human lung: the state of the art after two decades. Bull Eur Physiopathol Respir. 1979;15:999–1013.

    CAS  PubMed  Google Scholar 

  26. Dobbs LG, Pian MS, Magrio M, Dumars S, Allen L. Maintenance of the differentiated type II cell phenotype by culture with an apical air surface. Am J Physiol. 1997;273:L347–54.

    Article  CAS  Google Scholar 

  27. Huh D, Matthews BD, Mammoto A, Montoya-Zavala H, Hsin Y, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The works shown here are collaborative work with Mr. Takuya Aoyama, Mr. Kodai Harano, Ms. Xinying Xu, and Ms. Ayaka Uemura. This work is part of the research program “Development of innovative methodology for safety assessment of industrial nanomaterials” supported by the Ministry of Economy, Trade and Industry (METI) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Komori, K., Iwasawa, K., Ogasawara, R., Suwabe, A., Sakai, Y. (2019). In Vitro Alveolar Epithelial Models Toward the Prediction of Toxicity and Translocation of Nanoparticles: A Complementary Method for Mechanism Analyses in Humans. In: Takebayashi, T., Landsiedel, R., Gamo, M. (eds) In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8433-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8433-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8432-5

  • Online ISBN: 978-981-13-8433-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics