Skip to main content

Toxicokinetics of Nano Materials After the Intratracheal Administration

  • Chapter
  • First Online:
In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials
  • 169 Accesses

Abstract

Toxicokinetic data is important to evaluate the toxicity of nano materials because burden and toxicity for each organ can be different among particles even at same burden. Intratracheal administration has been proposed to use as screening method for the evaluation of inhalation toxicity to nano materials. In the manuscript, toxicokinetic test methods, deposition/clearance/distribution, and toxicokinetic models of nano materials after intratracheal administration mainly conducted in METI Project are described. By using XRF and ICP-MS, the deposition, clearance, and distribution were determined in the animal tests. Insoluble and poorly soluble nano particles detected in lung were 44–100% at 1–3 days after intratracheally administration, while poorly soluble coarse particle, which is likely to be trapped at bronchiole, detected in lung at 1–3 days after intratracheally administration were only 5–40%. Twenty-eight days after the intratracheal administration, the lung contained <1% (soluble NiO), 37–90% (poorly soluble NiO and Al(OH)3-coated TiO2), 40–62% (insoluble TiO2 particles), 11–30% (amorphous SiO2), and 21–63% (crystal SiO2) of administered doses. Translocation from lung to extrapulmonary organs was quite low except for lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. RIVM (National Institute for Public Health and the Environment, Netherlands). Multiple path particle dosimetry model (MPPD v.3.04): a model for human and rat airway particle dosimetry, Bilthoven, The Netherlands. RIVA report 650010030, 2017.

    Google Scholar 

  2. Shinohara N, Oshima Y, Kobayashi T, Imatanaka N, Nakai M, Ichinose T, Sasaki T, Kawaguchi K, Zhang G, Gamo M. Pulmonary clearance kinetics and extrapulmonary translocation of seven titanium dioxide nano and submicron materials following intratracheal administration in rats. Nanotoxicology. 2015;9(8):1050–8.

    Article  Google Scholar 

  3. Shinohara N, Oshima Y, Kobayashi T, Imatanaka N, Nakai M, Ichinose T, Sasaki T, Zhang G, Fukui H, Gamo M. Dose-dependent clearance kinetics of intratracheally administered titanium dioxide nanoparticles in rat lung. Toxicology. 2014;325(5):1–11.

    Article  CAS  Google Scholar 

  4. Shinohara N, Zhang G, Oshima Y, Kobayashi T, Imatanaka N, Nakai M, Sasaki T, Kawaguchi K, Gamo M. Kinetics and dissolution of intratracheally administered nickel oxide nanomaterials in rats. Part Fibre Toxicol. 2017;14(1):48.

    Article  Google Scholar 

  5. Zhang G, Shinohara N, Kano H, Senoh H, Suzuki M, Sasaki T, Fukushima S, Gamo M. Quantitative evaluation of local pulmonary distribution of TiO2 in rats following single or multiple intratracheal administrations of TiO2 nanoparticles using X-ray fluorescence microscopy. J Appl Toxicol. 2016;36(10):1268–75.

    Article  CAS  Google Scholar 

  6. Zhang G, Shinohara N, Kano H, Senoh H, Suzuki M, Sasaki T, Fukushima S, Gamo M. Quantitative evaluation of the pulmonary microdistribution of TiO2 nanoparticles using XRF microscopy after intratracheal administration with a microsprayer in rats. J Appl Toxicol. 2015;35(6):623–30.

    Article  CAS  Google Scholar 

  7. Zhang G, Shinohara N, Oshima Y, Kobayashi T, Imatanaka N, Kawaguchi K, Gamo M. Comparison of the local pulmonary distribution of nanoparticles administered intratracheally to rats via gavage needle or microsprayer delivery devices. J Appl Toxicol. 2017;37(4):502–7.

    Article  CAS  Google Scholar 

  8. AIST (National Institute of Advanced Industrial Science and Technology). Final report of the program “Development of innovative methodology for safety assessment of industrial nanomaterials”, supported by the Ministry of Economy, Trade and Industry (METI) of Japan, Tokyo, Japan, 2016.

    Google Scholar 

  9. Shinohara N, Nakazato T, Ohkawa K, Tamura M, Kobayashi N, Morimoto Y, Oyabu T, Myojo T, Shimada M, Yamamoto K, Tao H, Ema M, Naya M, Nakanishi J. Long-term retention of pristine multi-walled carbon nanotubes in rat lungs after intratracheal instillation. J Appl Toxicol. 2016;36(4):501–9.

    Article  CAS  Google Scholar 

  10. Madl AK, Wilson DW, Segall HI, Pinkerton KE. Alteration in lung particle translocation, macrophage function, and microfilament arrangement in monocrotaline-treated rats. Toxicol Appl Pharmacol. 1998;153:28–38.

    Article  CAS  Google Scholar 

  11. Oberdörster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994;102:173–9.

    PubMed  PubMed Central  Google Scholar 

  12. Ferin J, Oberdörster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 1992;6:535–42.

    Article  CAS  Google Scholar 

  13. Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, Fukushima S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 2016;13:53.

    Article  Google Scholar 

  14. ICRP. Human respiratory tract model for radiological protection. A report of a task group of the International Commission on Radiological Protection (ICRP publication 66). International Commission on Radiological Protection, Pergamon, Edinburgh, 1994.

    Google Scholar 

  15. Stöber W, et al. Compartmental modeling of the long-term retention of insoluble particles deposited in the alveolar region of the lung. Fundam Appl Toxicol. 1989;13:823–42.

    Article  Google Scholar 

  16. Stöber W. Pock model simulations of pulmonary quartz dust retention data in extended inhalation exposures of rats. Inhal Toxicol. 1999;11:269–92.

    Article  Google Scholar 

  17. Kuempel ED, et al. A biomathematical model of particle clearance and retention in the lungs of coal miners I. Model development. Regul Toxicol Pharmacol. 2001;34:69–87.

    Article  CAS  Google Scholar 

  18. Gregoratto D, Bailey MR, Marsh JW. Modelling particle retention in the alveolar-interstitial region of the human lungs. J Radiol Prot. 2010;30:491–512.

    Article  CAS  Google Scholar 

  19. Oyabu T, Myojo T, Lee B, Okada T, Izumi H, Yoshiura Y, Tomonaga T, Li Y, Kawai K, Shimada M, Kubo M, Yamamoto K, Sasaki T, Morimoto Y. Biopersistence of NiO and TiO2 Nanoparticles Following Intratracheal Instillation and Inhalation. Int J Mol Sci. 2017;18:2557.

    Article  Google Scholar 

  20. Shinohara N, Nakazato T, Tamura M, Endoh S, Fukui H, Morimoto Y, Myojo T, Shimada M, Yamamoto K, Tao H, Yoshida Y, Nakanishi J. Clearance kinetics of fullerene C60 nanoparticles from rat lungs after intratracheal C60 instillation and inhalation C60 exposure. Toxicol Sci. 2010;118(2):564–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is part of the research program “Development of innovative methodology for safety assessment of industrial nanomaterials,” supported by the Ministry of Economy, Trade and Industry (METI) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohide Shinohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinohara, N. (2019). Toxicokinetics of Nano Materials After the Intratracheal Administration. In: Takebayashi, T., Landsiedel, R., Gamo, M. (eds) In Vivo Inhalation Toxicity Screening Methods for Manufactured Nanomaterials. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-8433-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8433-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8432-5

  • Online ISBN: 978-981-13-8433-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics