Skip to main content

Qualitative Aspects of the Voice Signal

  • Chapter
  • First Online:
Profiling Humans from their Voice
  • 811 Accesses

Abstract

Of all the studies referenced in Chapters. 1 and 3, the majority have found positive correlations between various profile parameters and voice quality. The word “quality” is very loosely used in the context of audio processing. For example, one may refer to “perceptual quality,” “speech quality,” “audio quality,” “recording quality” etc. These usages must not be confused with the subject at hand—voice quality. From both signal processing and information theoretic perspectives, voice quality is an elusive entity. There is no consensus in the scientific community about its precise definition—quantitatively or even in a descriptive sense. It is in fact a complex entity that comprises a set of many (mostly) subjectively described characteristics, or sub-qualities that collectively represent it. These characteristics, or attributes of voice, give it its particular auditory flavor, and can also be thought of as comprising the overall quality of someone’s voice in a manner analogous to a sound mixer used in music production. Unfortunately, there is no consensus on even the number of sub-qualities that comprise voice quality. Regardless, some important ones are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreiman, J., Shue, Y. L., Chen, G., Iseli, M., Gerratt, B. R., Neubauer, J., et al. (2012). Variability in the relationships among voice quality, harmonic amplitudes, open quotient, and glottal area waveform shape in sustained phonation. The Journal of the Acoustical Society of America, 132(4), 2625–2632.

    Article  Google Scholar 

  2. Kreiman, J., & Gerratt, B. R. (2012). Perceptual interaction of the harmonic source and noise in voice. The Journal of the Acoustical Society of America, 131(1), 492–500.

    Article  Google Scholar 

  3. Gonzalez, S., & Brookes, M. (2014). PEFAC-a pitch estimation algorithm robust to high levels of noise. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 22(2), 518–530.

    Google Scholar 

  4. Vincent, E., Bertin, N., & Badeau, R. (2010). Adaptive harmonic spectral decomposition for multiple pitch estimation. IEEE Transactions on Audio, Speech, and Language Processing, 18(3), 528–537.

    Article  Google Scholar 

  5. Duan, Z., Pardo, B., & Zhang, C. (2010). Multiple fundamental frequency estimation by modeling spectral peaks and non-peak regions. IEEE Transactions on Audio, Speech, and Language Processing, 18(8), 2121–2133.

    Article  Google Scholar 

  6. Bach, F. R., & Jordan, M. I. (2005). Discriminative training of hidden markov models for multiple pitch tracking [speech processing examples]. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, Philadelphia, PA, USA (Vol. 5, pp. v–489).

    Google Scholar 

  7. Hermes, D. J. (1988). Measurement of pitch by subharmonic summation. The Journal of the Acoustical Society of America, 83(1), 257–264.

    Article  Google Scholar 

  8. Dimitriadis, D., Maragos, P., & Potamianos, A. (2005). Robust AM-FM features for speech recognition. IEEE Signal Processing Letters, 12(9), 621–624.

    Article  Google Scholar 

  9. Bogart, B. P., Healy, M. J., & Turkey, J. W. (1963). The quefrequency analysis of time series for echoes; cepstrum, pseudo-autocovariance cross cepstrum and saphe cracking. In M. Rosen-baltt (Ed.) Proceedings of the Symposium on Time Series Analysis (pp. 209–243) New York: Wiley.

    Google Scholar 

  10. Oppenheim, A. V., & Schafer, R. W. (2004). From frequency to quefrency: A history of the cepstrum. IEEE Signal Processing Magazine, 21(5), 95–106.

    Article  Google Scholar 

  11. Heman-Ackah, Y. D., Michael, D. D., & Goding, G. S, Jr. (2002). The relationship between cepstral peak prominence and selected parameters of dysphonia. Journal of Voice, 16(1), 20–27.

    Article  Google Scholar 

  12. Balasubramanium, R. K., Bhat, J. S., Fahim, S., & Raju, R. (2011). Cepstral analysis of voice in unilateral adductor vocal fold palsy. Journal of Voice, 25(3), 326–329.

    Article  Google Scholar 

  13. Heman-Ackah, Y. D. (2004). Reliability of calculating the cepstral peak without linear regression analysis. Journal of Voice, 18(2), 203–208.

    Article  Google Scholar 

  14. Heman-Ackah, Y. D., Sataloff, R. T., Laureyns, G., Lurie, D., Michael, D. D., Heuer, R., et al. (2014). Quantifying the cepstral peak prominence, a measure of dysphonia. Journal of Voice, 28(6), 783–788.

    Article  Google Scholar 

  15. Maryn, Y., & Weenink, D. (2015). Objective dysphonia measures in the program Praat: Smoothed cepstral peak prominence and acoustic voice quality index. Journal of Voice, 29(1), 35–43.

    Article  Google Scholar 

  16. Godino-Llorente, J. I., Osma-Ruiz, V., Sáenz-Lechón, N., Gómez-Vilda, P., Blanco-Velasco, M., & Cruz-Roldán, F. (2010). The effectiveness of the glottal to noise excitation ratio for the screening of voice disorders. Journal of Voice, 24(1), 47–56.

    Article  Google Scholar 

  17. Venkitaraman, A., & Seelamantula, C. S. (2013). Temporal envelope fit of transient audio signals. IEEE Signal Processing Letters, 20(12), 1191–1194.

    Article  Google Scholar 

  18. Michaelis, D., Gramss, T., & Strube, H. W. (1997). Glottal-to-noise excitation ratio - a new measure for describing pathological voices. Acta Acustica United with Acustica, 83(4), 700–706.

    Google Scholar 

  19. Garellek, M., Samlan, R., Gerratt, B. R., & Kreiman, J. (2016). Modeling the voice source in terms of spectral slopes. The Journal of the Acoustical Society of America, 139(3), 1404–1410.

    Article  Google Scholar 

  20. Holmberg, E. B., Hillman, R. E., Perkell, J. S., Guiod, P. C., & Goldman, S. L. (1995). Comparisons among aerodynamic, electroglottographic, and acoustic spectral measures of female voice. Journal of Speech, Language, and Hearing Research, 38(6), 1212–1223.

    Article  Google Scholar 

  21. Hanson, H. M. (1997). Glottal characteristics of female speakers: Acoustic correlates. The Journal of the Acoustical Society of America, 101(1), 466–481.

    Article  MathSciNet  Google Scholar 

  22. Hanson, H. M., & Chuang, E. S. (1999). Glottal characteristics of male speakers: Acoustic correlates and comparison with female data. The Journal of the Acoustical Society of America, 106(2), 1064–1077.

    Article  Google Scholar 

  23. Iseli, M., Shue, Y. L., & Alwan, A. (2007). Age, sex, and vowel dependencies of acoustic measures related to the voice source. The Journal of the Acoustical Society of America, 121(4), 2283–2295.

    Article  Google Scholar 

  24. Gobl, C., & Chasaide, A. N. (2010). Voice source variation and its communicative functions. The handbook of phonetic sciences, 1, 378–423.

    Article  Google Scholar 

  25. Fant, G. (1979). Glottal source and excitation analysis. Speech Transmission Laboratory—Quarterly Progress and Status Report (STL-QPSR), 20(1), 85–107.

    Google Scholar 

  26. Fant, G. (1982.) Preliminaries to analysis of the human voice source. Speech Transmission Laboratory—Quarterly Progress and Status Report (STL-QPSR), 4(1982), 1–28.

    Google Scholar 

  27. Fant, G., Liljencrants, J., & Lin, Q. G. (1985). A four-parameter model of glottal flow. Speech Transmission Laboratory—Quarterly Progress and Status Report (STL-QPSR), 4(1985), 1–13.

    Google Scholar 

  28. Barone, N. A. (2011). Acoustic, Aerodynamic, and Electroglottographic Properties of True Vocal Fold Body-Cover Conditions. Doctoral dissertation, Misericordia University, Pennsylvania, USA.

    Google Scholar 

  29. Titze, I. R. (1994). Principles of voice production. Englewood Cliffs, New Jersey, USA: Prentice-Hall Inc.

    Google Scholar 

  30. Dejonckere, P. H., Remacle, M., Fresnel-Elbaz, E., Woisard, V., Crevier-Buchman, L., & Millet, B. (1996). Differentiated perceptual evaluation of pathological voice quality: Reliability and correlations with acoustic measurements. Revue de Laryngologie-otologie-rhinologie, 117(3), 219–224.

    Google Scholar 

  31. Samlan, R. A., Story, B. H., & Bunton, K. (2013). Relation of perceived breathiness to laryngeal kinematics and acoustic measures based on computational modeling. Journal of Speech, Language, and Hearing Research, 56(4), 1209–1223.

    Article  Google Scholar 

  32. Logemann, J., Boshes, B., Fisher, H., & Siegfried, J. (1973). The steps in the degeneration of speech and voice control in Parkinson’s disease. In Siegfried, J. (Ed.), Parkinson’s Diseases: Rigidity, Akinesia, Behavior; Proceedings of the 4th International Symposium on Parkinson’s Disease, Zurich, Switzerland (pp. 101–112).

    Google Scholar 

  33. Klatt, D. H., & Klatt, L. C. (1990). Analysis, synthesis, and perception of voice quality variations among female and male talkers. The Journal of the Acoustical Society of America, 87(2), 820–857.

    Google Scholar 

  34. Frohlich, M., Michaelis, D., & Strube, H. W. (1998). Acoustic “breathiness measures” in the description of pathologic voices. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. Seattle, Washington, USA (Vol. 2, pp. 937–940).

    Google Scholar 

  35. Hillenbrand, J., Cleveland, R. A., & Erickson, R. L. (1994). Acoustic correlates of breathy vocal quality. Journal of Speech, Language, and Hearing Research, 37(4), 769–778.

    Article  Google Scholar 

  36. Kumar, B. R., Bhat, J. S., & Prasad, N. (2010). Cepstral analysis of voice in persons with vocal nodules. Journal of Voice, 24(6), 651–653.

    Article  Google Scholar 

  37. Krom, G. D. (1995). Some spectral correlates of pathological breathy and rough voice quality for different types of vowel fragments. Journal of Speech, Language, and Hearing Research, 38(4), 794–811.

    Article  Google Scholar 

  38. Wayland, R., & Jongman, A. (2003). Acoustic correlates of breathy and clear vowels: The case of Khmer. Journal of Phonetics, 31(2), 181–201.

    Article  Google Scholar 

  39. Huffman, M. K. (1987). Measures of phonation type in Hmong. The Journal of the Acoustical Society of America, 81(2), 495–504.

    Article  Google Scholar 

  40. Simpson, A. P. (2012). The first and second harmonics should not be used to measure breathiness in male and female voices. Journal of Phonetics, 40(3), 477–490.

    Article  Google Scholar 

  41. Strome, M., Stein, J., Esclamado, R., Hicks, D., Lorenz, R. R., Braun, W., et al. (2001). Laryngeal transplantation and 40-month follow-up. New England Journal of Medicine, 344(22), 1676–1679.

    Article  Google Scholar 

  42. Lu, F. L., Casiano, R. R., Lundy, D. S., & Xue, J. W. (1996). Longitudinal evaluation of vocal function after thyroplasty type I in the treatment of unilateral vocal paralysis. The Laryngoscope, 106(5), 573–577.

    Article  Google Scholar 

  43. Moers, C., Möbius, B., Rosanowski, F., Nöth, E., Eysholdt, U., & Haderlein, T. (2012). Vowel-and text-based cepstral analysis of chronic hoarseness. Journal of Voice, 26(4), 416–424.

    Article  Google Scholar 

  44. Yumoto, E., Sasaki, Y., & Okamura, H. (1984). Harmonics-to-noise ratio and psychophysical measurement of the degree of hoarseness. Journal of Speech, Language, and Hearing Research, 27(1), 2–6.

    Article  Google Scholar 

  45. Yumoto, E., Gould, W. J., & Baer, T. (1982). Harmonics-to-noise ratio as an index of the degree of hoarseness. The Journal of the Acoustical Society of America, 71(6), 1544–1550.

    Article  Google Scholar 

  46. Ptok, M., Schwemmle, C., Iven, C., Jessen, M., & Nawka, T. (2006). On the auditory evaluation of voice quality. HNO, 54(10), 793–802.

    Article  Google Scholar 

  47. Verdonck-de Leeuw, I. M., Festen, J. M., & Mahieu, H. F. (2001). Deviant vocal fold vibration as observed during videokymography: The effect on voice quality. Journal of Voice, 15(3), 313–322.

    Article  Google Scholar 

  48. Tigges, M., Mergell, P., Herzel, H., Wittenberg, T., & Eysholdt, U. (1997). Observation and modelling of glottal biphonation. Acta Acustica, 83(4), 707–714.

    Google Scholar 

  49. Mergell, P., & Herzel, H. (1997). Modelling biphonation—the role of the vocal tract. Speech Communication, 22(2–3), 141–154.

    Article  Google Scholar 

  50. Ward, P. H., Sanders, J. W., Goldman, R., & Moore, G. P. (1969). Diplophonia. Annals of Otology, Rhinology & Laryngology, 78(4), 771–777.

    Article  Google Scholar 

  51. Rozen, A. L., & Lucas, E. V. (1977). A therapy approach for alleviating diplophonic voice quality. International Journal of Language & Communication Disorders, 12(1), 69–74.

    Article  Google Scholar 

  52. Aichinger, P., Schneider-Stickler, B., Bigenzahn, W., Fuchs, A.K., Geiger, B., Hagmüller, M., et al. (2013). Double pitch marks in diplophonic voice. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. Vancouver, Canada (pp. 7437–7441).

    Google Scholar 

  53. Pinto, N. B., & Titze, I. R. (1990). Unification of perturbation measures in speech signals. The Journal of the Acoustical Society of America, 87(3), 1278–1289.

    Article  Google Scholar 

  54. Schreibweiss-Merin, D., & Terrio, L. M. (1986). Acoustic analysis of diplophonia: A case study. Perceptual and Motor Skills, 63(2), 755–765.

    Article  Google Scholar 

  55. Hong, K. H., & Kim, H. K. (1999). Diplophonia in unilateral vocal fold paralysis and intracordal cyst. Otolaryngology - Head and Neck Surgery, 121(6), 815–819.

    Article  Google Scholar 

  56. Yuasa, I. P. (2010). Creaky voice: A new feminine voice quality for young urban-oriented upwardly mobile American women? American Speech, 85(3), 315–337.

    Article  Google Scholar 

  57. Keating, P., Garellek, M. , & Kreiman, J. (2015, August). Acoustic properties of different kinds of creaky voice. In Proceedings of the 18th International Congress of Phonetic Sciences, Glasgow, UK (pp. 0821-1).

    Google Scholar 

  58. Lim, I. T., & Lee, B. G. (1993). Lossless pole-zero modeling of speech signals. IEEE Transactions on Speech and Audio Processing, 1(3), 269–276.

    Article  Google Scholar 

  59. Titze, I. R. (2001). Acoustic interpretation of resonant voice. Journal of Voice, Elsevier, 15(4), 519–528.

    Article  Google Scholar 

  60. Titze, I. R., & Story, B. H. (1997). Acoustic interactions of the voice source with the lower vocal tract. The Journal of the Acoustical Society of America, 101(4), 2234–2243.

    Article  Google Scholar 

  61. Story, B. H., Titze, I. R., & Hoffman, E. A. (2001). The relationship of vocal tract shape to three voice qualities. The Journal of the Acoustical Society of America, 109(4), 1651–1667.

    Article  Google Scholar 

  62. Feinstein, I., Hilger, P., Szachowicz, E., & Stimson, B. (1987). Laser therapy of dysphonia plica ventricularis. Annals of Otology, Rhinology & Laryngology, 96(1), 56–57.

    Article  Google Scholar 

  63. Xu, J. H., Ikeda, Y., & Komiyama, S. (1991). Bio-feedback and the yawning breath pattern in voice therapy: A clinical trial. Auris Nasus Larynx, 18(1), 67–77.

    Article  Google Scholar 

  64. Wood, J. M., Athanasiadis, T., & Allen, J. (2014). Laryngitis. British Medical Journal Publishing. Group, 349, g5827.

    Google Scholar 

  65. American Speech-Language-Hearing Association. (2002). Consensus auditory-perceptual evaluation of voice (CAPE-V) (p. 3). Rockville: ASHA Special Interest Division.

    Google Scholar 

  66. Kreiman, J., & Gerratt, B. R. (2010). Perceptual assessment of voice quality: Past, present, and future. Perspectives on Voice and Voice Disorders, 20(2), 62–67.

    Article  Google Scholar 

  67. Vox, V. (1981). I can see your lips moving: The history and art of ventriloquism. London, UK: Kaye and Ward Publishers.

    Google Scholar 

  68. Titze, I. R., & Hunter, E. J. (2004). Normal vibration frequencies of the vocal ligament. The Journal of the Acoustical Society of America, 115(5), 2264–2269.

    Article  Google Scholar 

  69. Yin, J., & Zhang, Z. (2013). The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies. The Journal of the Acoustical Society of America, 133(5), 2972–2983.

    Article  Google Scholar 

  70. Yin, J., & Zhang, Z. (2014). Interaction between the thyroarytenoid and lateral cricoarytenoid muscles in the control of vocal fold adduction and eigenfrequencies. Journal of Biomechanical Engineering, 136(11), 111006.

    Article  Google Scholar 

  71. Titze, I. R. (1980). Comments on the myoelastic-aerodynamic theory of phonation. Journal of Speech, Language, and Hearing Research, 23(3), 495–510.

    Article  Google Scholar 

  72. Hirano, M., Kakita, Y., & Daniloff, R. G. (1985). Cover-body theory of vocal fold vibration. In R. G. Daniloff (Ed.), Speech science (pp. 1–46). San Diego, California: College-Hill Press.

    Google Scholar 

  73. Hirano, M., Ohala, J., & Vennard, W. (1969). The function of laryngeal muscles in regulating fundamental frequency and intensity of phonation. Journal of Speech, Language, and Hearing Research, 12(3), 616–628.

    Article  Google Scholar 

  74. Zhang, Z. (2016). Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. The Journal of the Acoustical Society of America, 139(4), 1493–1507.

    Article  Google Scholar 

  75. Van den Berg, J., & Tan, T. S. (1959). Results of experiments with human larynxes. Journal for Oto-Rhino-Laryngology, Head and Neck Surgery (ORL), 21(6), 425–450.

    Google Scholar 

  76. Rabiner, L. R., & Schafer, R. W. (1978). Digital processing of speech signals. Prentice-hall, New Jersey: Englewood Cliffs.

    Google Scholar 

  77. Titze, I. R., & Sundberg, J. (1992). Vocal intensity in speakers and singers. The Journal of the Acoustical Society of America, 91(5), 2936–2946.

    Google Scholar 

  78. Sundberg, J., & Rossing, T. D. (1990). The science of singing voice. Monroe, Michigan: ASA Publishing Corporation.

    Google Scholar 

  79. Sundberg, J., & Högset, C. (2001). Voice source differences between falsetto and modal registers in counter tenors, tenors and baritones. Logopedics Phoniatrics Vocology, 26(1), 26–36.

    Article  Google Scholar 

  80. Henrich, N., d’Alessandro, C., Doval, B., & Castellengo, M. (2005). Glottal open quotient in singing: Measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency. The Journal of the Acoustical Society of America, 117(3), 1417–1430.

    Article  Google Scholar 

  81. Stathopoulos, E. T., & Sapienza, C. (1993). Respiratory and laryngeal function of women and men during vocal intensity variation. Journal of Speech, Language, and Hearing Research, 36(1), 64–75.

    Article  Google Scholar 

  82. Joliveau, E., Smith, J., & Wolfe, J. (2004). Acoustics: Tuning of vocal tract resonance by sopranos. Nature, 427(6970), 116.

    Article  Google Scholar 

  83. Titze, I. R. (2002). Regulating glottal airflow in phonation: Application of the maximum power transfer theorem to a low dimensional phonation model. The Journal of the Acoustical Society of America, 111(1), 367–376.

    Article  Google Scholar 

  84. Isshiki, N. (2013). Phonosurgery: Theory and practice. Springer Science & Business Media.

    Google Scholar 

  85. Van den Berg, J. W. (1968). Register problems. Annals of the New York Academy of Sciences, 155(1), 129–134.

    Article  Google Scholar 

  86. Isshiki, N. (1998). Mechanical and dynamic aspects of voice production as related to voice therapy and phonosurgery. Journal of Voice, 12(2), 125–137.

    Article  Google Scholar 

  87. Berry, D. A., Herzel, H., Titze, I. R., & Krischer, K. (1994). Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. The Journal of the Acoustical Society of America, 95(6), 3595–3604.

    Article  Google Scholar 

  88. Zetterholm, E. (2003). Voice imitation: A phonetic study of perceptual illusions and acoustic success. Computational linguistics (Vol. 44). Lund University Press.

    Google Scholar 

  89. Amin, T. B., Marziliano, P., & German, J. S. (2014). Glottal and vocal tract characteristics of voice impersonators. IEEE Transactions on Multimedia, 16(3), 668–678.

    Article  Google Scholar 

  90. Harries, M., Hawkins, S., Hacking, J., & Hughes, I. (1998). Changes in the male voice at puberty: Vocal fold length and its relationship to the fundamental frequency of the voice. The Journal of Laryngology & Otology, 112(5), 451–454.

    Article  Google Scholar 

  91. Hollien, H., Brown, W. S, Jr., & Hollien, K. (1971). Vocal fold length associated with modal, falsetto and varying intensity phonations. Folia Phoniatrica et Logopaedica, 23(1), 66–78.

    Article  Google Scholar 

  92. Eriksson, A., & Wretling, P. (1997). How flexible is the human voice? A case study of mimicry. In Proceedings of the Fifth European Conference on Speech Communication and Technology (EUROSPEECH), Rhodes, Greece (pp. 1043–1046).

    Google Scholar 

  93. Eriksson, A., Llamas, C., & Watt, D. (2010). The disguised voice: Imitating accents or speech styles and impersonating individuals. Language and Identities, 8, 86–96.

    Google Scholar 

  94. Kitamura, T. (2008). Acoustic analysis of imitated voice produced by a professional impersonator. In Proceedings of the Ninth Annual Conference of the International Speech Communication Association (INTERSPEECH), Brisbane, Australia (pp. 813–816).

    Google Scholar 

  95. Deutsch, D. (1983). Auditory illusions, handedness, and the spatial environment. Journal of the Audio Engineering Society, 31(9), 606–620.

    Google Scholar 

  96. McGettigan, C., Eisner, F., Agnew, Z. K., Manly, T., Wisbey, D., & Scott, S. K. (2013). T’ain’t what you say, it’s the way that you say it—left insula and inferior frontal cortex work in interaction with superior temporal regions to control the performance of vocal impersonations. Journal of Cognitive Neuroscience, 25(11), 1875–1886.

    Article  Google Scholar 

  97. Esling, J. H., & Clayards, J. A. (1998). Laryngoscopic analysis of pharyngeal articulations and larynx-height voice quality settings. In Proceedings of the Fifth International Conference on Spoken Language Processing (ICSLP), Sydney, Australia.

    Google Scholar 

  98. Esling, J. H. (1999). Voice quality settings of the pharynx. In Proceedings of the 14th International Congress of Phonetic Sciences, San Francisco, USA (Vol. 3, pp. 2449–2452).

    Google Scholar 

  99. Laver, J. (1980). The phonetic description of voice quality. Cambridge Studies in Linguistics London, 31, 1–186.

    Google Scholar 

  100. Laufer, A., & Condax, I. D. (1981). The function of the epiglottis in speech. Language and Speech, 24(1), 39–62.

    Article  Google Scholar 

  101. Titze, I. R. (2008). Nonlinear source-filter coupling in phonation: Theory. The Journal of the Acoustical Society of America, 123(4), 1902–1915.

    Article  Google Scholar 

  102. Herzel, H., Steinecke, I., Mende, W., & Wermke, K. (1991). Chaos and bifurcations during voiced speech. In E. Mosekilde & L. Mosekilde (Eds.), Complexity, chaos, and biological evolution (pp. 41–50). Boston, MA: Springer.

    Chapter  Google Scholar 

  103. Herzel, H. (1993). Bifurcations and chaos in voice signals. Applied Mechanics Reviews, 46(7), 399–413.

    Article  Google Scholar 

  104. Berry, D. A., Zhang, Z., & Neubauer, J. (2006). Mechanisms of irregular vibration in a physical model of the vocal folds. The Journal of the Acoustical Society of America, 120(3), EL36–EL42.

    Google Scholar 

  105. Mariéthoz, J., & Bengio, S. (2005). Can a professional imitator fool a GMM-based speaker verification system? EPFL-REPORT-83202. Martigny, Switzerland: IDIAP Research Institute.

    Google Scholar 

  106. Hautamäki, R. G., Kinnunen, T., Hautamäki, V., Leino, T., & Laukkanen, A. M. (2013). I-vectors meet imitators: On vulnerability of speaker verification systems against voice mimicry. In Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), Lyon, France (pp. 930–934).

    Google Scholar 

  107. Schlichting, F., & Sullivan, K. P. H. (1997). The imitated voice - a problem for voice line-ups? Forensic Linguistics, 4, 148–165.

    Google Scholar 

  108. Kinnunen, T., Wu, Z. Z., Lee, K. A., Sedlak, F., Chng, E. S., & Li, H. (2012). Vulnerability of speaker verification systems against voice conversion spoofing attacks: The case of telephone speech. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. Kyoto, Japan (pp. 4401–4404).

    Google Scholar 

  109. Krause, J. C., & Braida, L. D. (2004). Acoustic properties of naturally produced clear speech at normal speaking rates. The Journal of the Acoustical Society of America, 115(1), 362–378.

    Article  Google Scholar 

  110. Rix, A. W., Beerends, J. G., Hollier, M. P., & Hekstra, A. P. (2001). Perceptual evaluation of speech quality (PESQ)—a new method for speech quality assessment of telephone networks and codecs. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), IEEE. Salt Lake City, Utah, USA (Vol. 2, pp. 749–752).

    Google Scholar 

  111. Beerends, J. G., Hekstra, A. P., Rix, A. W., & Hollier, M. P. (2002). Perceptual evaluation of speech quality (PESQ) the new ITU standard for end-to-end speech quality assessment part II: Psychoacoustic model. Journal of the Audio Engineering Society, 50(10), 765–778.

    Google Scholar 

  112. Rix, A. W. (2003). Comparison between subjective listening quality and P.862 PESQ score. Proceedings of Meetings on Acoustics, 4(1), 17–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R. (2019). Qualitative Aspects of the Voice Signal. In: Profiling Humans from their Voice. Springer, Singapore. https://doi.org/10.1007/978-981-13-8403-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8403-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8402-8

  • Online ISBN: 978-981-13-8403-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics