Skip to main content

Biofortification: A Promising Approach Toward Eradication of Hidden Hunger

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Biofortification is an innovative sustainable approach that involves developing foods with improved nutritional status. It represents a cost-effective, feasible, and eco-friendly means to deal with current grim situation of malnutrition in majority of the developing countries. It’s an advanced foreseeable prospect that emphasizes on human health improvement by prevention of diseases with nutrition, not with drugs. Biofortification is usually accomplished by classical breeding methods or by genetic engineering of plants. This concept of nutrient enrichment is gaining worldwide attention as it’s a revolutionary technique to influence human health globally. The preceding years have witnessed a boost in research dealing with fortifying edible crops with micronutrients, vitamins, and other essential nutrients to significantly boost up their nutritional value. Recent advancements in genetic engineering and genomics offered a foundation to scale up commercialization of biofortified foods. Despite intensive research underway, still major constraints like stability, storage, regulatory, and biosafety issues regarding biofortified crops must be addressed. This chapter summarizes the different crops fortified with essential nutrients, methods of biofortification, efficacy and economics of the process, monitoring, control measures, aspects of society perspective, and future research to accelerate impact and progress based on interdisciplinary research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18

    Article  CAS  Google Scholar 

  • Amah D, Biljon A, Brown A et al (2018) Recent advances in banana (Musa spp.) biofortification to alleviate vitamin A deficiency. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2018.1495175

  • Amaya I, Osorio S, Martinez-Ferri E et al (2015) Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene. Biotechnol J 10:490–500

    Article  CAS  Google Scholar 

  • Bachiega P, Salgado JM, de Carvalho JE et al (2016) Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 190:771–776. https://doi.org/10.1016/j.foodchem.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  • Bao G, Zhuo C, Qian C et al (2016) Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol J 14:206–214

    Article  CAS  Google Scholar 

  • Barrameda-Medina Y, Blasco B, Lentini M et al (2017) Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco. Plant Sci 258:45–51. https://doi.org/10.1016/j.plantsci.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  • Beswa D, Dlamini NR, Siwela M et al (2016a) Effect of Amaranth addition on the nutritional composition and consumer acceptability of extruded provitamin A-biofortified maize snacks. Food Sci Technol 36:30–39

    Article  Google Scholar 

  • Beswa D, Dlamini NR, Amonsou EO et al (2016b) Effects of amaranth addition on the provitamin A content, and physical and antioxidant properties of extruded provitamin A biofortified maize snacks. J Sci Food Agric 96:287–294

    Article  CAS  Google Scholar 

  • Birol E, Meenakshi JV, Oparinde A et al (2015) Developing country consumers’ acceptance of biofortified foods: a synthesis. Food Secur 7:555–568

    Article  Google Scholar 

  • Blancquaert D, De Steur H, Gellynck X et al (2017) Metabolic engineering of micronutrients in crop plants. Ann N Y Acad Sci 1390(1):59–73. https://doi.org/10.1111/nyas.13274

    Article  PubMed  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Cakmak I (2014) Agronomic biofortification. Conference brief #8, In: Proceedings of the 2nd global conference on biofortification: getting nutritious foods to people, Rwanda

    Google Scholar 

  • Cakmak I, Kutman UB (2017) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69:172–180. https://doi.org/10.1111/ejss.12437

    Article  Google Scholar 

  • Cashman KD (2015) Vitamin D: dietary requirements and food fortification as a means of helping achieve adequate vitamin D status. J Steroid Biochem Mol Biol 148:19–26

    Article  CAS  Google Scholar 

  • Chaudhary RC, Gandhe A, Sharma RK et al (2016) Biofortification to combat Vitamin A deficiency sustainably through promoting orange-fleshed sweet potato (Ipomoea batatas) in eastern Uttar Pradesh. Curr Adv Agric Sci 8:139–142. https://doi.org/10.5958/2394-4471.2016.00034.4

    Article  Google Scholar 

  • Constán-Aguilar C, Leyva R, Blasco B et al (2014) Biofortification with potassium: antioxidant responses during postharvest of cherry tomato fruits in cold storage. Acta Physiol Plant 36:283–293. https://doi.org/10.1007/s11738-013-1409-4

    Article  CAS  Google Scholar 

  • D’Imperio M, Brunetti G, Gigante I et al (2017) Integrated in vitro approaches to assess the bioaccessibility and bioavailability of silicon-biofortified leafy vegetables and preliminary effects on bone. In Vitro Cell Dev Biol Anim 53:217–224

    Article  Google Scholar 

  • De Moura FF, Miloff A, Boy E (2015) Retention of provitamin A carotenoids in staple crops targeted for biofortification in africa: cassava, maize and sweet potato. Crit Rev Food Sci Nutr 55:1246–1269. https://doi.org/10.1080/10408398.2012.724477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Stockwell VO, Goyer A (2015) Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering. Plant Cell Physiol 56:2285–2296. https://doi.org/10.1093/pcp/pcv148

    Article  CAS  PubMed  Google Scholar 

  • Duffner A, Hoffland E, Stomph TJ et al (2014) Eliminating zinc deficiency in rice-based systems, VFRC report 2014/2. Virtual Fertilizer Research Center, Washington, DC

    Google Scholar 

  • FAO, IFAD, UNICEF, WHO (2017) The state of food security and nutrition in the world: building resilience for peace and food insecurity. FAO, Rome

    Google Scholar 

  • Finkelstein JL, Haas JD, Mehta S (2017) Iron-biofortified staple food crops for improving iron status: a review of the current evidence. Curr Opin Biotechnol 44:138–145

    Article  CAS  Google Scholar 

  • Fudge J, Mangel N, Gruissem W et al (2017) Rationalising vitamin B6 biofortification in crop plants. Curr Opin Biotechnol 44:130–137. https://doi.org/10.1016/j.copbio.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  • Galili G, Amir R (2012) Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol J 11:211–222

    Article  Google Scholar 

  • Galili G, Amir R, Fernie AR (2016) The regulation of essential amino acid synthesis and accumulation in plants. Annu Rev Plant Biol 67:153–178

    Article  CAS  Google Scholar 

  • George GM, Ruckle ME, Abt MR et al (2017) Ascorbic acid biofortification in crops. In: Hossain M, Munné-Bosch S, Burritt D et al (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 375–415. https://doi.org/10.1007/978-3-319-74057-7_15

    Chapter  Google Scholar 

  • Gödecke T, Stein AJ, Qaim M (2018) The global burden of chronic and hidden hunger: trends and determinants. Glob Food Sec 17:21–29

    Article  Google Scholar 

  • Haslam RP, Ruiz-Lopez N, Eastmond P et al (2013) The modification of plant oil composition via metabolic engineering—better nutrition by design. Plant Biotechnol J 11:157–168

    Article  CAS  Google Scholar 

  • Hefferon KL (2015) Nutritionally enhanced food crops; progress and perspectives. Int J Mol Sci 16:3895–3914. https://doi.org/10.3390/ijms16023895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu T, Liang Y, Zhao G et al (2018) Selenium biofortification and antioxidant activity in Cordyceps militaris supplied with selenate, selenite, or selenomethionine. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1386-y

    Article  Google Scholar 

  • IHME (2018) The global burden of disease: a critical resource for informed policymaking. WWW document. http://www.healthdata.org/gbd/about

  • Ilahy R, Siddiqui MW, Tlili I et al (2018) Biofortified vegetables for improved postharvest quality: special reference to high-pigment tomatoes. In: Siddiqui MW (ed) Preharvest modulation of postharvest fruit and vegetable quality. Elsevier/Academic, London, pp 435–454

    Chapter  Google Scholar 

  • Kadam SS, Kumar A, Arif M (2018) Zinc mediated agronomic bio-fortification of wheat and rice for sustaining food and health security: a review. Int J Chem Stud 6:471–475

    CAS  Google Scholar 

  • Kamotho SN, Kyallo FM, Sila DN (2017) Biofortification of maize flour with grain amaranth for improved nutrition. Afr J Food Agric Nutr Dev 17(4):12574–12588. https://doi.org/10.18697/ajfand.80.1594

    Article  CAS  Google Scholar 

  • Kaur G, Kalia A, Harpreet SS (2018) Selenium biofortification of Pleurotus species and its effect on yield, phytochemical profiles, and protein chemistry of fruiting bodies. Food Biochem 42:e12467. https://doi.org/10.1111/jfbc.12467

    Article  CAS  Google Scholar 

  • Kopec A, Piątkowska E, Bieżanowska-Kopec R et al (2015) Effect of lettuce biofortified with iodine by soil fertilization on iodine concentration in various tissues and selected biochemical parameters in serum of Wistar rats. J Funct Foods 14:479–486. https://doi.org/10.1016/j.jff.2015.02.027

    Article  CAS  Google Scholar 

  • Lawson PG, Daum D, Czauderna R et al (2015) Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front Plant Sci 6:450–460

    Article  Google Scholar 

  • Li K, Hu G, Yu S et al (2018) Effect of the iron biofortification on enzymes activities and antioxidant properties in germinated brown rice. Food Meas 12:789–799. https://doi.org/10.1007/s11694-017-9693-0

    Article  Google Scholar 

  • Lividini K, Fiedler JL, De Moura FF et al (2018) Biofortification: a review of ex-ante models. Glob Food Sec 17:186–195

    Article  Google Scholar 

  • Melash AA, Mengistu DK, Aberra DA (2016) Linking agriculture with health through genetic and agronomic biofortification. Sci Res 7:295–307

    CAS  Google Scholar 

  • Minhas AP, Tuli R, Puri S (2018) Pathway editing targets for thiamine biofortification in rice grains. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00975

  • Murray CJL, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2197–2223. https://doi.org/10.1016/S0140-6736(12)61689-4

    Article  PubMed  Google Scholar 

  • Muzhingi T, Palacios Rojas N, Miranda A et al (2017) Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize. J Sci Food Agric 97:793–801. https://doi.org/10.1002/jsfa.7798

    Article  CAS  PubMed  Google Scholar 

  • Oancea AO, Gaspar A, Seciu A-M et al (2015) Development of a new technology for protective biofortification with selenium of Brassica crops. AgroLife Sci J 4(2):80–85

    Google Scholar 

  • Petry N, Olofin I, Boy E et al (2016) The effect of low dose iron and zinc intake on child micronutrient status and development during the first 1000 days of life: a systematic review and meta-analysis. Nutrients 8:1–22

    Google Scholar 

  • Pourcel L, Moulin M, Fitzpatrick TB (2013) Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00160

  • Rani A, Panwar A, Sathe M et al (2018) Biofortification of safflower: an oil seed crop engineered for ALA-targeting better sustainability and plant based omega-3 fatty acids. Transgenic Res 27:253–263. https://doi.org/10.1007/s11248-018-0070-5

    Article  CAS  PubMed  Google Scholar 

  • Ricroch AE, Guillaume-Hofnung M, Kuntz M (2018) The ethical concerns about transgenic crops. Biochem J 475:803–811

    Article  CAS  Google Scholar 

  • Ruel MT, Alderman H (2013) Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition? Lancet 382:536–551

    Article  Google Scholar 

  • Ruiz-López N, Haslam RP, Venegas-Calerón M et al (2012) Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Transgenic Res 21:1233–1243

    Article  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Napier JA et al (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77:198–208

    Article  CAS  Google Scholar 

  • Saini RK, Keum Y-S (2018) Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance–a review. Life Sci 203:255–267. https://doi.org/10.1016/j.lfs.2018.04.049

    Article  CAS  PubMed  Google Scholar 

  • Saltzman A, Birol E, Bouis HE et al (2013) Biofortification: progress toward a more nourishing future. Glob Food Sec 2:9–17

    Article  Google Scholar 

  • Sharma P, Aggarwal P, Kaur A (2017) Biofortification: a new approach to eradicate hidden hunger. Food Rev Intl 33:1–21. https://doi.org/10.1080/87559129.2015.1137309

    Article  CAS  Google Scholar 

  • Sida-Arreola JP, Sánchez-Chávez E, Ávila-Quezada GD et al (2015) Iron biofortification and its impact on antioxidant system, yield and biomass in common bean. Plant Soil Environ 61:573–576

    CAS  Google Scholar 

  • Singh UB, Malviya D, Khan W et al (2018) Earthworm grazed-Trichoderma harzianum biofortified spent mushroom substrates modulate accumulation of natural antioxidants and bio-fortification of mineral nutrients in tomato. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01017

  • Steur HD, Demont M, Gellynck X et al (2017) The social and economic impact of biofortification through genetic modification. Curr Opin Biotechnol 44:161–168

    Article  Google Scholar 

  • Taofiq O, Fernandes A, Barros L (2017) UV-irradiated mushrooms as a source of vitamin D2: a review. Trends Food Sci Technol 70:82–94

    Article  CAS  Google Scholar 

  • Valença AWD, Bake A, Brouwer ID et al (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14

    Article  Google Scholar 

  • Wang Y-H, Zou C-Q, Mirza Z et al (2016) Cost of agronomic biofortification of wheat with zinc in China. Agron Sustain Dev 36:44. https://doi.org/10.1007/s13593-016-0382-x

    Article  CAS  Google Scholar 

  • Wang G, Xu M, Wang W et al (2017) Fortifying horticultural crops with essential amino acids: a review. Int J Mol Sci 18:1306. https://doi.org/10.3390/ijms18061306

    Article  CAS  PubMed Central  Google Scholar 

  • Witkowska Z, Michalak I, Korczyński M et al (2015) J Food Sci Technol 52:6484–6492. https://doi.org/10.1007/s13197-014-1696-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang QQ, Zhang CQ, Chan ML et al (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67:4285–4296. https://doi.org/10.1093/jxb/erw209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Sanahuja G, Yuan D et al (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11:129–141. https://doi.org/10.1111/j.1467-7652.2012.00740.x

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Yu S, Zeng D, Liu H (2017) Development of “purple endosperm Rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant 10:918–929. https://doi.org/10.1016/j.molp.2017.05.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Verma, R.K. (2019). Biofortification: A Promising Approach Toward Eradication of Hidden Hunger. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8391-5_12

Download citation

Publish with us

Policies and ethics