Skip to main content

Manufacturing and Quality Control of Inoculants from the Paradigm of Circular Agriculture

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

The use of beneficial rhizosphere microorganisms is part of a “new green revolution” for increasing crop productivity without environmental damage in accordance with the new paradigm of the circular agriculture and bioeconomy that includes either organic or sustainable agriculture which is a reality in several countries. This review analyzes several types of bio-inputs with emphasis on inoculants containing either single or a mixture of beneficial microorganisms such as rhizobia, plant growth-promoting rhizobacteria, or mycorrhizal fungi. Inoculants help in achieving greater harvests by using available microbial resources whose physiological activities or mechanisms may prevent significant losses due to pest and disease incidence. Multiple beneficial mechanisms are considered for isolating functional and beneficial microorganisms from soils and plant tissues. Thus, several methodological steps are involved for developing effective microbial inoculants based on achieving consistent results under field conditions. The survival and maintenance of the microbial activity of inoculants in both rhizosphere and non-rhizosphere soils is critical for the success of any inoculation protocol. This chapter pointed out the need to integrate plant breeding programs, which include the selection of elite microbial strains to enhance inoculant performance. In addition, an extensive revision was made on types of formulations and quality control of inoculants which are determinants to define both strain survival and their effects under field conditions. Experiences of use, regulations, and legislations for inoculants in Latin America are also described. Overall, the perspectives about the use of inoculants are directly linked to reach sustainable agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Andocilla C, Di Salvo LP, Escobar-Ortega JS et al (2014) Nitrógeno potencialmente mineralizable y producción de trigo fertilizado e inoculado con rizobacterias. In: Paper presented at the XXIV Congreso Argentino de la Ciencia del Suelo, Universidad Nacional de Río Cuarto, Argentina, 27 June–1 July 2016

    Google Scholar 

  • Adl S (2016) Rhizosphere, food security and climate change: a critical role for plant-soil research. Rhizosphere 1:1–3

    Google Scholar 

  • Aeron A, Kumar S, Pandey P et al (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 1–36

    Google Scholar 

  • Afanador-Barajas LN (2017) Biofertilizantes: conceptos, beneficios y su aplicación en Colombia. Universidad Central. http://editorial.ucentral.edu.co/ojs_uc/index.php/Ingeciencia/article/view/2353/2177. Accessed 25 Aug 2018

  • Agencia Brasil (2018) La producción orgánica crece en Brasil. http: / /agenciabrasil.ebc.com.br/en/economia/noticia/2018-08/la-produccion-organica-crece-en-brasil. Accessed 20 Sept 2018

  • Aguado-Santacruz GA (2012) Uso de microorganismos como biofertilizantes. In: Aguado-Santacruz GA (ed) Introducción al uso y manejo de los biofertilizantes en la agricultura. INIFAP/SAGARPA, México, pp 35–78

    Google Scholar 

  • Aguilar A, Wohlgemuth R, Twardowsk T (2018) Preface to the special issue bioeconomy. New Biotechnol 40:1–4

    Article  CAS  Google Scholar 

  • Aizen MA, Garibaldi LA, Dondo M (2009) Expansión de la soja y diversidad de la agricultura argentina. Ecol Aust 19:45–54

    Google Scholar 

  • Altieri MA, Nicholls CI (2000) Applying agroecological concepts to development of ecologically based pest management strategies. In: National Research Council (ed) Professional societies and ecologically based pest management: proceedings of a workshop. National Academy Press, Washington, DC, p 60

    Google Scholar 

  • Altieri MA, Companioni N, Cañizares K et al (1999) The greening of the “barrios”: urban agriculture for food security in Cuba. Agric Hum Values 16(2):131–140

    Article  Google Scholar 

  • Amenta M, Molina-Favero C, Creus CM et al (2015) Nitric oxide in Azospirillum and related bacteria: production and effects. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Springer, Cham, pp 155–180

    Google Scholar 

  • Ansari MF, Tipre DR, Dave SR (2015) Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatal Agric Biotechnol 4(1):17–24

    Article  Google Scholar 

  • Antoun H, Prevost D (2006) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Armenta-Bojórquez AD, García-Gutiérrez C, Camacho-Báez JR et al (2010) Biofertilizantes en el desarrollo agrícola de México. Ra Ximahai 6(1):51–56

    Article  Google Scholar 

  • Arora NK, Mishra J (2016) Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl Soil Ecol 107:405–407

    Article  Google Scholar 

  • Arriola KG, Queiroz OC, Romero JJ et al (2015) Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage. J Dairy Sci 98:478–485

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Bartha R (1997) Microbial ecology. Fundamentals and applications, 4th edn. Benjamin/Cummings, San Francisco, p 694

    Google Scholar 

  • Avis TJ, Gravel V, Antoun H et al (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40(7):1733–1740

    Article  CAS  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Ann Acad Bras Ciênc 77(3):549–579

    Article  CAS  Google Scholar 

  • Barea JM (2004) Impacto de las micorrizas en la calidad del suelo y la productividad vegetal en sistemas agrícolas y espacios naturales. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del Suelo. Transformaciones de la materia orgánica, usos y biodiversidad de los organismos edáficos. FAUBA, Universidad de Buenos Aires, pp 7–11

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Barea J-M, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R et al (2015) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  Google Scholar 

  • Barquero M (2016) Terrenos para cultivo orgánico crecieron en dos últimos años. La nación. https://www.nacion.com/economia/agro/terrenos-organicos-en-costa-rica-repuntaron-en-dos-ultimos-anos/6652KW7OSJBOZFCGANEUYMNQVQ/story/. Accessed 20 Sept 2018

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bashan Y, de Bashan LE (2010) How plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2015) Inoculant preparation and formulations for Azospirillum spp. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum. Technical issues and protocols. Springer, Geneva, pp 469–485

    Google Scholar 

  • Bashan Y, Holguín G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: agricultural, physiological, molecular and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabbu SR et al (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33

    Article  CAS  Google Scholar 

  • Bell J, Paula L, Dodd T et al (2018) EU ambition to build the world’s leading bioeconomy – uncertain times demand innovative and sustainable solutions. New Biotechnol 40:25–30

    Article  CAS  Google Scholar 

  • Benintende S (2010) Calidad de inoculantes comerciales para el cultivo de soja en la Argentina: concentración de rizobios viables y presencia de contaminantes. Rev Argent Microbiol 42(2):129–132

    CAS  PubMed  Google Scholar 

  • Benintende S, Uhrich W, Herrera M et al (2010) Comparación entre coinoculación com Bradyrhizobium japonicum y Azospirillum brasilense e inoculación simple con Bradyrhizobium japonicum en la nodulación, crecimiento y acumulación de N en el cultivo de soja. Agriscientia 23(2):71–77

    Google Scholar 

  • Bianchini V (2016) Vinte anos do PRONAF, 1995–2015. Avanços e desafios. Ministerio de Desarrollo Agrario. 113 pp. Retrieved from http://www.mda.gov.br/sitemda/sites/sitemda/files/ceazinepdf/PRONAF_20_ANOS_VALTER_BIANCHINI.pdf. Accessed 12 Sept 2018

  • Blanke V, Renker C, Wagner M et al (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162(3):617–631

    Article  PubMed  Google Scholar 

  • Bortagaray I (2016) Políticas de ciencia, tecnología e innovación sustentable e inclusiva en América Latina. UNESCO. http://www.unesco.org/new/fileadmin/MULTIMEDIA/FIELD/Montevideo/pdf/PolicyPapersCILAC-InnovacionEmpresarial.pdf. Accessed 2 Aug 2018

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Brewin NJ (2010) Root nodules (Legume–Rhizobium Symbiosis). In: eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0003720.pub2

  • CAC (2017) Biopesticides, biofertilizers, biostimulants. Joint FAO/WHO Food Standards Programme Codex Alimentarius Commission 40th Session CICG, Geneva, Switzerland 17–22 July 2017. Accessed 1 Oct 2018

    Google Scholar 

  • Carrasco-Espinosa K, García-Cabrera RI, Bedoya-López A et al (2015) Positive effect of reduced aeration rate on growth and stereospecificity of dl-malic acid consumption by Azospirillum brasilense: improving the shelf life of a liquid inoculant formulation. J Biotechnol 195:74–81

    Article  CAS  PubMed  Google Scholar 

  • Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130

    Article  CAS  Google Scholar 

  • Cassán FD, García de Salamone IE (2008) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. In: Paper presented at the international workshop on Azospirillum: cell physiology, plant response and agronomic research in Argentina. Córdoba, Argentina, 12–13 October 2007

    Google Scholar 

  • Cassán FD, Okon Y, Creus CM (eds) (2015) Handbook for Azospirillum. Technical issues and protocols. Springer, Geneva. https://doi.org/10.1007/978-3-319-06542-7_24

    Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavarría-Vega M (2016) El uso de microorganismos benéficos: Biofertilizantes y Biocontroladores. CIA. INTA. ACCS. http://www.mag.go.cr/biblioteca_virtual_ciencia/biofertilizantes_biocontroladores.pdf. Accessed 1 Oct 2018

  • Cherr CM, Scholberg JMS, McSorley R (2006) Green manure approaches to crop production. Agron J 98(2):302–319

    Article  Google Scholar 

  • CIA (2017) The world factbook. https://www.cia.gov/library/publications/the-world-factbook/fields/2012.html#84. Accessed 20 Nov 2018

  • Cieza RI, Ferraris G, Seibane C et al (2015) Aportes a la caracterización de la agricultura familiar en el partido de La Plata. Rev Fac Agron 114(3):129–142

    Google Scholar 

  • Collins-Johnson N, Rowland DL, Corkidi L et al (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • CONACYT (2016). http://www.conacytprensa.mx/index.php/tecnologia/biotecnologia/9822-biofertilizantes-alternativa-ecologica-y-confiable. Accessed 25 Oct 2018

  • Cortes-Patiño S, Bonilla RR (2015) Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model. Afr J Biotechnol 14(33):2547–2553

    Article  Google Scholar 

  • Covacevich F, Echeverría HE, Aguirrezabal LAN (2007) Soil available phosphorus status determines indigenous mycorrhizal colonization at field and glasshouse-grown spring wheat from Argentina. Appl Soil Ecol 35:1–9

    Article  Google Scholar 

  • Creus CM (2017) Inoculantes microbianos: piezas de un rompecabezas que aún requiere ser ensamblado. Rev Argent Microbiol 49(3):207–209

    PubMed  Google Scholar 

  • Cuéllar-Gavira TZ (2014) Evaluación de la promoción de crecimiento de Bacillus subtilis EA-CB0575 en cultivos de banano, crisantemo y café. Universidad EAFIT, Colombia, p 135

    Google Scholar 

  • Cuevas-Valdéz J (2018) Agricultura orgánica, oportunidades de crecimiento en México (II). https://www.eleconomista.com.mx/opinion/Agricultura-organica-oportunidades-de-crecimiento-en-Mexico-II-20180726-0093.html. Accessed 20 Oct 2018

  • Curiel R (2018) Anuncia SAGARPA biofertilizantes para agricultores de PROGRO Productivo que recibirán asesoría de CIMMYT. (https://masagro.mx/es/inicio/39-boletines/boletines-2018/170-anuncia-sagarpa-biofertilizantes-para-agricultores-de-progro-productivo-que-recibiran-asesoria-de-cimmyt). Accessed 20 Oct 2018

  • D’Auria F, Di Salvo LP, García de Salamone IE (2012) Microbiología de la fitorremediación de suelos contaminados con hidrocarburos. Paper presented at XIX Congreso Latinoamericano de la Ciencia del Suelo. XXIII Congreso Argentino de la Ciencia del Suelo, Mar del Plata, Argentina, 16–20 April 2012

    Google Scholar 

  • de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T et al (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Article  CAS  Google Scholar 

  • Di Salvo LP, Cellucci GC, Carlino ME et al (2013) Inocular el cultivo de maíz con Azospirillum brasilense y fertilizar con urea incrementa el rendimiento y altera temporalmente los microorganismos rizosféricos asociados a los ciclos del carbono y el nitrógeno. Simposio IPNI, Rosario, Argentina, May 22–23.

    Google Scholar 

  • Di Salvo LP, López Rondó GR, Radio Brandoni P et al (2014) Influence of Azospirillum brasilense inoculation and fertilization practices on the colonization of wheat by natural arbuscular mycorrhiza. In: Paper presented at the II Taller Latinoamericano sobre Rizobacterias Promotoras del Desarrollo Vegetal. Córdoba, Argentina, 21–26 September 2014

    Google Scholar 

  • Di Salvo LP, Cellucci GC, Carlino ME et al (2018a) Plant growth promoting rhizobacteria inoculation and nitrogen fertilization increase maize grain yield and modified rhizosphere microbial communities. Appl Soil Ecol 126:113–120

    Article  Google Scholar 

  • Di Salvo LP, Ferrando L, Fernández-Scavino A et al (2018b) Microorganisms reveal what plants do not: wheat growth and rhizosphere microbial communities after application of Azospirillum brasilense and nitrogen fertilizer under field conditions. Plant Soil 424:405–417

    Article  CAS  Google Scholar 

  • Díaz-Franco A, Mayek-Pérez N (2008) La biofertilización como tecnología sostenible. Consejo Nacional de Ciencia y Tecnología y Consejo Tamaulipeco de Ciencia y Tecnología de México. Plaza y Valdés, S.A. de C.V. México, p 260

    Google Scholar 

  • Dikshit A, Shukla SK, Mishra RK (2013) Exploring manomaterials with PGPR in current agriculture scenario. LAP Lambert Academic Publishing, Saarbrucken, p 78

    Google Scholar 

  • Döbereiner J (1966) Azotobacter paspali sp.n., uma bacteria fixadora de nitrogenio na rizosfera de Paspalum. Pesq Agropec Bras 1:357–365

    Google Scholar 

  • Döbereiner J, Ruschel AP (1958) Uma nova especie de Beijerinckia. Rev Biol 1:261–272

    Google Scholar 

  • Döbereiner J, Francos AA, Cuzmán I (1970) Estirpes ide Rhizobium japonicum de excepcional eficiência. Pesq Agropec Bras 5:155–161

    Google Scholar 

  • Döbereiner J, Marriel IE, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473

    Article  PubMed  Google Scholar 

  • Dos Santos WCC, do Nascimento WG, Magalhães ALR et al (2015) Nutritive value, total losses of dry matter and aerobic stability of the silage from three varieties of sugarcane treated with commercial microbial additives. Anim Feed Sci Technol 204:1–8

    Article  CAS  Google Scholar 

  • El-Ghamry AM, Mosa AA, Alshaal TA et al (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodivers Soil Security 2:51–72

    Article  Google Scholar 

  • El-Hage S, Hattam C (ed) (2003) La agricultura orgánica, ambiente y seguridad alimentaria. Colección FAO: Ambiente y Recursos Naturales No. 4. http://www.fao.org/docrep/005/y4137s/y4137s03.htm#bm03.1. Accessed 18 Oct 2018

  • Ellis JR, Roder W, Mason SC (1992) Grain sorghum soybean rotation and fertilization influence on vesicular arbuscular mycorrhizal fungi. Soil Sci Soc Am J 56:789–794

    Article  Google Scholar 

  • Escobar-Ortega JS, García de Salamone IE (2017) Dynamics of rhizosphere microbial communities of cover crops dried with glyphosate. In: Singh DP et al (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, pp 17–34. https://link.springer.com/content/pdf/bfm%3A978-981-10-5813-4%2F1.pdf

  • FAO (2011) FAO enseña a combatir plagas y enfermedades con sustancias naturales. http://www.fao.org/americas/noticias/ver/es/c/230667/. Accessed 25 Aug 2018

  • FAO (2014) Organic Agriculture. http://www.fao.org/organicag/oa-home/en/. Accessed 25 Aug 2018

  • FAO (2015) La Habana. Agricultura urbana y periurbana en América Latina y el Caribe. http://www.fao.org/ag/agp/greenercities/Es/CMVALC/la_habana.html

  • FAO (2018) FAOSTAT: Agricultura bajo agricultura orgánica certificada. Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://www.fao.org/faostat/es/#search/Agricultura%20bajo%20agricultura%20org%C3%A1nica%20certificada. Accessed 30 Aug 2018

  • FAOTERM–Organic Agriculture (2018) Manual del compostaje del agricultor. Experiencias en América Latina. http://termportal.fao.org/faooa/main/start.do. Accessed 25 Sept 2018

  • Feito MC (2013) Agricultura familiar con enfoque agroecológico en zonas periurbanas. Análisis de una experiencia de intervención para el desarrollo rural en Lujan (Buenos Aires, Argentina) Rev Electron Geogr Austral. http://revistanadir.yolasite.com/resources/agricultura%20fmiliar%20FEITO.pdf. Accessed December 2018

  • Ferrera-Cerrato R, Alarcón A (2001) La microbiología del suelo en la agricultura sostenible. Revista Ciencia Ergo Sum. Universidad Autónoma del Estado de México 8(22):175–183

    Google Scholar 

  • Finkel OM, Castrillo G, Herrera-Paredes S et al (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamarnik M, Zambrano-Soledispa A, Di Salvo LP et al (2017) Diversidad de esporas de micorrizas arbusculares modificada por ciertas prácticas agronómicas del cultivo de trigo. In: Paper presented at the XI Reunión Nacional de Biología de Suelos REBIOS. Corrientes, Argentina, October 25–27

    Google Scholar 

  • Gámez RM, Rodríguez F, Bernal JF et al (2015) Genome sequence of the banana plant growth-promoting rhizobacterium Bacillus amyloliquefaciens BS006. Genome Announc 3(6):e01391–e01315

    Article  PubMed  PubMed Central  Google Scholar 

  • Gámez RM, Rodríguez F, Ramírez S et al (2016) Genome sequence of the banana plant growth-promoting rhizobacterium Pseudomonas fluorescens PS006. Genome Announc 4(3):e00329–e00316

    Article  PubMed  PubMed Central  Google Scholar 

  • García SD (2017) Bioestimulantes Agrícolas, Definición, Principales Categorías y Regulación a Nivel Mundial. Serie Nutrición Vegetal Núm. 94. INTAGRI. México. https://www.intagri.com/articulos/nutricion-vegetal/bioestimulantes-agricolas-definicion-y-principales-categorias. Accessed 25 Sept 2018

  • García de Salamone IE (2000) Direct beneficial effects of cytokinin-producing rhizobacteria on plant growth. University of Saskatchewan, Canada. www.usask.ca

  • García de Salamone IE (2012a) Use of soil microorganisms to improve plant growth and ecosystem sustainability. In: Caliskan M (ed) The molecular basis of plant genetic diversity. INTECH, Rijeka, pp 233–258. https://www.intechopen.com/books/the-molecular-basis-of-plant-genetic-diversity/use-of-soil-microorganisms-to-improve-plant-growth-and-ecosystem-sustainability.

    Google Scholar 

  • García de Salamone IE (2012b) Microorganismos promotores del crecimiento vegetal. Informaciones Agronómicas de Hispanoamérica (IPNI) 5:12–16

    Google Scholar 

  • García de Salamone IE, Monzón de Asconegui M (2008) Ecofisiología de la respuesta a la inoculación con Azospirillum en cultivos de cereales. In: Cassán FD, García de Salamone IE (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiología, Buenos Aires, pp 209–226

    Google Scholar 

  • García de Salamone IE, Dobereiner J, Urquiaga S et al (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256

    Article  Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  PubMed  Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2006a) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195

    Google Scholar 

  • García de Salamone IE, Michelena R, Rodríguez A et al (2006b) Ocurrencia de micorrizas vesículo arbusculares en plantas de maíz, soja y trigo en sistemas de siembra directa. Revista de la Facultad de Agronomía, Universidad de Buenos Aires 26(1):67–72

    Google Scholar 

  • García de Salamone IE, Escobar-Ortega JS, Gatica M et al (2009) Effect of Azospirillum inoculation on N-cycling microorganisms associated with rice and wheat crops. In: Paper presented at the 16th Nitrogen Workshop, Turin, Italy, June 28th–July 1st 2009.

    Google Scholar 

  • García de Salamone IE, Di Salvo LP, Escobar-Ortega JS et al (2010) Field response of rice paddy crop to inoculation with Azospirillum: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362

    Article  CAS  Google Scholar 

  • García de Salamone IE, Funes JM, Di Salvo LP et al (2012) Inoculation of paddy rice with Azospirillum brasilense and Pseudomonas fluorescens: Impact of plant genotypes on the rhizosphere microbial communities and field crop production. Appl Soil Ecol 61:198–204

    Article  Google Scholar 

  • García de Salamone IE, Vázquez S, Penna C, Cassán FD (2013) Rizosfera, biodiversidad y agricultura sustentable. Paper publicated at the Taller Internacional sobre Rizosfera, Biodiversidad y Agricultura Sustentable 2010. Buenos Aires, Argentina. 21–22 October 2010

    Google Scholar 

  • García JE, Puente ML, Maronichea GA et al (2013) Estudio de Azospirillum como tecnología aplicable en los cultivos de trigo y maíz. Microbiología Agrícola. Un aporte de la Investigación en Argentina, pp 351–366. https://www.researchgate.net/publication/307513653_Estudio_del_Azospirillum_como_tecnologia_aplicable_en_los_cultivos_de_trigo_y_maiz. Accessed December 2018

  • Gargoloff NA, Blandi ML, and Sarandón SJ (2017) The importance of the family horticultural history on the knowledge and ecological management of agrobiodiversity. A case study in the green belt of La Plata, Argentina. VI Congreso Latino-Americano de Agroecologia, Brasilia, Brazil. September 12–15. file:///C:/Users/inese/Documents/SPRINGER%202018/family%20Agriculture%20Argentina%202018.pdf. Accessed December 2018.

    Google Scholar 

  • Gewin V (2010) Food: An underground revolution. Nature 466:552–553

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  • Gliessman SR (1998) Agroecology: ecological processes in sustainable agriculture. Ann Arbor Press, Ann Arbor, p 357

    Google Scholar 

  • Gold S, Kunz N, Reine G (2017) Sustainable global agrifood supply chains: exploring the barriers. J Ind Ecol 21(2):249–260

    Article  Google Scholar 

  • Gómez M, Silva N, Hartmann A et al (1997) Evaluation of commercial soybean inoculants from Argentina. World J Microbiol Biotechnol 13:167–173

    Article  Google Scholar 

  • Gonzalez EJ, Hernandez JP, de-Bashan LE (2018) Dry micro-polymeric inoculant of Azospirillum brasilense is useful for producing mesquite transplants for reforestation of degraded arid zones. Appl Soil Ecol 129:84–93

    Article  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106

    Article  Google Scholar 

  • Großkinsky DK, Tafner R, Moreno MV et al (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310. https://doi.org/10.1038/srep23310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guanche-García A (2012) Los abonos verdes. Información técnica. http://www.agrocabildo.org/publica/Publicaciones/agec_454_abonos_verdes.pdf

  • Guzmán-Casado GI, Mielgo AM (2008) Buenas prácticas en producción ecológica. Uso de abonos verdes. Ministerio de Medio Ambiente y Medio Rural y Marino. España, p 22 http://www.agroecologia.net/recursos/publicaciones/bppe/Uso_de_Abonos_Verdes_tcm7-187426.pdf

  • Henry G, Hodson E, Aramendis R et al (2017) Bioeconomy: An engine for integral development of Colombia. file:///C:/Users/inese/Documents/SPRINGER%202018/Articulos%20revisados/Bioeconomy_An_engine_for_the_integral_development_of_Colombia.pdf

    Google Scholar 

  • Hernández-Rodríguez OA, Hernández-Tecorral A, Rivera-Figueroa C et al (2013) Calidad Nutrimental de cuatro abonos orgánicos producidos a partir de residuos vegetales y pecuarios. Terra Latinoamericana 31:35–46

    Google Scholar 

  • Herrera Paredes S, Lebeis SL (2016) Giving back to the community: microbial mechanisms of plant–soil interactions. Funct Ecol 30:1043–1052

    Article  Google Scholar 

  • Howieson JG, Malden J, Yates RJ et al (2000a) Techniques for the selection and development of elite inoculant strains of Rhizobium leguminosarum in southern Australia. Symbiosis 28:33–48

    Google Scholar 

  • Howieson JG, O’Hara GW, Carr SJ (2000b) Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. Field Crop Res 65:107–122

    Article  Google Scholar 

  • Iannone MF, Rosales EP, Groppa MD et al (2012) Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf discs exposed to paraquat. Biol Trace Elem Res 146:246–255

    Article  CAS  PubMed  Google Scholar 

  • Iannone MF, Rosales EP, Groppa MD et al (2013) H2O2 Involvement in Polyamine-induced cell death in tobacco leaf discs. J Plant Growth Regul 32:745–757

    Article  CAS  Google Scholar 

  • ICO (2018). www.ico.org. Accessed 28 Sept 2018

  • IFOAM (2003) Normas para la producción y procesado orgánico. Die Deutsche Bibliothek, p 154

    Google Scholar 

  • IFOAM (2018) Definition of organic agriculture. https://www.ifoam.bio/en/organic-landmarks/definition-organic-agriculture. Accessed 1 Oct 2018

  • Ikerd J (1997) Toward an economics of sustainability. Dept of Agricultural Economics, University of Missouri. http://www.ssu.missouri.edu/faculty/JIkerd/papers/econ-sus.htm. Accessed November 2018.

  • INEC (2017) Encuesta Nacional Agropecuaria. http://inec.cr/encuesta-nacional-agropecuaria. Accessed 12 Nov 2018

  • INEGI (2018). http://www.beta.inegi.org.mx/contenidos/saladeprensa/boletines/2018/ pib_pconst/pib_pconst2018_08.pdf. Accessed 1 Oct 2018

  • INTAGRI (2018) Los abonos orgánicos beneficios tipos y contenidos nutrimentales. https://www.intagri.com/articulos/agricultura-organica/los-abonos-organicos-beneficios-tipos-y-contenidos-nutrimentales. Accessed 28 Sept 2018

  • IPES/FAO/RUAF Foundation (2010) Biopreparados para el manejo sostenible de plagas y enfermedades en la agricultura urbana y periurbana. http://www.fao.org/3/a-as435s.pdf. Accessed 30 Aug 2018

  • Jeffries P, Craven-Griffiths A, Barea JM et al (2002) Application of arbuscular mycorrhizal fungi in the revegetation of desertified Mediterranean ecosystems. In: Gianinazzi S, Schuepp H, Barea JM et al (eds) Mycorrhizal technology in agriculture. Birkhauser verlag, Basel, pp 151–174

    Chapter  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Khan K, Pankaj U, Verma SK et al (2015) Bio-inoculants and vermicompost influence on yield, quality of Andrographis paniculata, and soil properties. Ind Crop Prod 70:404–409

    Article  Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14(3):145–163

    Article  PubMed  Google Scholar 

  • Kouadio ANM-S, Nandjui J, Krou SM et al (2017) A native arbuscular mycorrhizal fungus inoculant outcompetes an exotic commercial species under two contrasting yam field conditions. Rhizosphere 4:112–118

    Article  Google Scholar 

  • Krauss JB, Kuttenkeuler D (2018) Intellectual property rights derived from academic research and their role in the modern bioeconomy-a guide for scientist. New Biotechnol 40:133–139

    Article  CAS  Google Scholar 

  • Kroll S, Agler MT, Kemen E (2017) Genomic dissection of host-microbe and microbe-microbe interactions for advance plant breeding. Curr Opin Plant Biol 36:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugate: a suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100

    Article  CAS  Google Scholar 

  • Labrador MJ, Bello A (2001) La materia orgánica en los agroecosistemas. 2ª. Ed. Mundi-Prensa. España, p 293

    Google Scholar 

  • Liu A, Hamel C, Hamilton RI et al (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166

    Article  CAS  Google Scholar 

  • Lodeiro AR (2015) Interrogantes en la tecnología de la inoculación de semillas de soja con Bradyrhizobium spp. Rev Argent Microbiol 47(3):261–273

    PubMed  Google Scholar 

  • Lone R, Shuab R, Khan S et al (2017) Arbuscular mycorrhizal fungi for sustainable agriculture. In: Kumar V, Kumar M, Sharma S et al (eds) Probiotics and plant health. Springer, Singapore, pp 553–577

    Chapter  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free-living plant growth-promoting rhizobacteria. Review. Antonie van Leewenhoek 86:1–25

    Article  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55(5):493–512

    Article  Google Scholar 

  • MAG (2010a). Unidad de prensa oficial del Ministerio de Agricultura y Ganadería de Costa Rica. http://prensamag.blogspot.com/2010/09/costa-rica-cuenta-con-mas-de-8-mil.html. Accessed 25 Sept 2018

  • MAG (2010b) Guía técnica para la difusión de tecnología de producción agropecuaria sostenible. http://www.mag.go.cr/biblioteca_virtual/bibliotecavirtual/a00192.pdf. Accessed 25 Sept 2018

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 491206:1–12

    Article  Google Scholar 

  • Małyska A, Jacobi J (2018) Plant breeding as the cornerstone of a sustainable bioeconomy. New Biotechnol 40:129–132

    Article  CAS  Google Scholar 

  • Manimekalai G, Kannahi M (2018) Evaluation of low cost liquid formulation of PGPR inoculants with protective substances. Int J Recent Sci Res 9(6):27330–27335. https://doi.org/10.24327/ijrsr.2018.0906.2237

    Article  Google Scholar 

  • MAPA (2018a) Estadísticas e dados básicos de economía agrícola. http://www.agricultura.gov.br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/estatisticas-e-dados-basicos-de-economia-agricola/pasta-de-setembro-2018.pdf. Accessed 12 Nov 2018

  • MAPA (2018b) Legislações. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacoes. Accessed 10 Oct 2018

  • MDA (2016) Ministerio de Desarrollo Agrario Brasil. O que é a agricultura familiar. http://www.mda.gov.br/sitemda/noticias/o-que-%C3%A9-agricultura-familiar. Accessed 28 Sept 2018

  • Mhlongo MI, Piater LA, Madala NE et al (2018) The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9(112):1–19. https://doi.org/10.3389/fpls.2018.00112

    Article  Google Scholar 

  • Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45

    Article  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M et al (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 21(7):1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Montenegro-Gómez SP, Barrera-Berdugo SE (2014) Biofertilización nitrogenada como aporte a la sustentabilidad de la agricultura colombiana. Revista de Investigación Agraria y Ambiental 5(2):135–144

    Article  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL et al (2004) Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Rep 5:922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrkovački N, Milić V (2001) Use of Azotobacter chroococcum as a potentially useful in agricultural application. Ann Microbiol 51:145–158

    Google Scholar 

  • Mugilan I, Gayathri P, Elumalai EK et al (2011) Studies on improve survivability and shelf life of carrier using liquid inoculation of Pseudomonas striata. Int J Pharm Biol Arch 2(4):1271–1275

    Google Scholar 

  • Naiman AD, Latronico AE, García de Salamone IE (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and rhizospheric microflora. Eur J Soil Biol 45:44–51. https://doi.org/10.1016/j.ejsobi.2008.11.001.ISSN:11645563

    Article  Google Scholar 

  • Nava-Pérez E, García-Gutiérrez C, Camacho-Báez JR et al (2012) Bioplaguicidas: Una opción para el biocontrol biológico de plagas. Ra Ximhai 8(3):17–29

    Article  Google Scholar 

  • Nobbe F, Hiltner L (1896) U.S. Patent 570 813. Inoculation of the soil for cultivating leguminous plants.

    Google Scholar 

  • NODAL (2017) La soja cambia el mapa de Brasil y su estatus agrícola en el mundo. https://www.nodal.am/2017/07/la-soja-cambia-mapa-brasil-estatus-agricola-mundo/. Accessed 28 Sept 2018

  • Numan M, Bashira S, Khana Y et al (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • O’Hara G, Yates R, Howieson J (2002) Selection of strains of root nodule bacteria to improve inoculant performance and increase legume productivity in stressful environments. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR proceedings 109e

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K et al (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okon Y (1994) Azospirillum/plant associations. CRC Press, Florida, p 192

    Google Scholar 

  • Oleaginosas (2016) La producción de soya en Brasil. http://www.oleaginosas.org/art_374. Accessed 12 Nov 2018

  • OMRI (2018) Organic Materials Review Institute. https://www.omri.org. Accessed 30 Aug 2018

  • Owen D, Williams AP, Griffith GW et al (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Palmqvist NGM, Bejai S, Meijer J et al (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146. https://doi.org/10.1038/srep10146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parnell JJ, Berka R, Young HA et al (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110. https://doi.org/10.3389/fpls.2016.01110

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedraza RO, Teixeira KRS, Scavino AF et al (2010) Microorganismos que mejoran el crecimiento de las plantas y la calidad de los suelos. Revista Corpoica – Ciencia y Tecnología Agropecuaria 11(2):155–164

    Article  Google Scholar 

  • Peña-Borrego MD, de Zayas-Pérez MR, Rodríguez-Fernández RM (2015) Scientific production about biofertilizers in Cuba in the 2008-2012 period: a bibliometric analysis of Cuban journal. Cultivos Tropicales 36(1):43–52

    Google Scholar 

  • Perez-Lavalle L, Bolivar Anillo HJ, Diaz Perez A (2017) Biofertilizantes en Colombia. In: Estrada-Lopez HH, Saumett-Espana HG, Iglesias-Navas MA et al (eds) Productos de confitería nutracéutica. Una opción empresarial para cultivadores de frutas y hortalizas. Universidad Simon Bolivar, Colombia, pp 179–222. https://www.researchgate.net/publication/326989814_Biofertilizantes_en_Colombia

    Google Scholar 

  • Pérez-Montano F, Alías-Villegas C, Bellogín RA et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Piccinetti C, Arias N, Ventimiglia L et al (2013) Efectos positivos de la inoculación de soja sobre la nodulación, la FBN y en los parámetros de producción del cultivo. In: Albanesi AS (ed) Microbiología agrícola. Un aporte de la investigación argentina. Magna Publicaciones, Tucumán, pp 283–297

    Google Scholar 

  • PNUD (2018) Un plan de agricultura familiar para Jujuy. Programa de las Naciones Unidas para el desarrollo. http://www.ar.undp.org/content/argentina/es/home/ ourwork/environmentandenergy/successstories/PlanAgriculturaFamiliar.html. Accessed November 2018

  • Prasanna R, Ramakrishnan B, Ranjan K et al (2016) Microbial inoculants with multifaceted traits suppress Rhizoctonia populations and promote plant growth in cotton. J Phytopathol 164(11–12):1030–1042. https://doi.org/10.1111/jph.12524

    Article  CAS  Google Scholar 

  • Rascovan N, Carbonetto B, Revale S et al (2013) The PAMPA datasets: a metagenomic survey of microbial communities in Argentinean pampean soils. Microbiome 1:21. https://doi.org/10.1186/2049-2618-1-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–113

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H et al (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Reid A, Greene S (2012) How microbes can help feed the world. Report on an American Academy of Microbiology Colloquium Washington, DC. http://ofrf.org/sites/ofrf.org/files/FeedTheWorld_0.pdf. Accessed December 2018

  • Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162

    Article  CAS  Google Scholar 

  • Rengel Z (2005) Breeding crops for adaptation to environments with low nutrient availability. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 239–276

    Chapter  Google Scholar 

  • Reyes-Ramírez A, López-Arcos M, Ruiz-Sánchez E et al (2014) Efectividad de inoculantes microbianos en el crecimiento y productividad de chile habanero (Capsicum chinense Jacq.). Agrociencia 48(3):285–294

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rigby D, Caceres D (2001) Organic farming and the sustainable agricultural systems. Agric Syst 68:21–40

    Article  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rinu K, Pandey A (2009) Bacillus subtilis NRRL B-30408 inoculation enhances the symbiotic efficiency of Lens esculenta Moench at a Himalayan location. J Plant Nutr Soil Sci 172:134–139

    Article  CAS  Google Scholar 

  • Rivera JS, Cisneros-Vázquez JM (2008) Micronutrimentos solubles en vermicomposta. Revista Chapingo Series Zonas Áridas 7(1):29–35

    Google Scholar 

  • Rodríguez O (2001) Biofertilizante hecho en México. http://www.comoves.unam.mx/assets/revista/29/ojodemosca_29.pdf. Accessed 25 Sept 2018

  • Rorig M, Alderuccio S, Malcolm V et al (2004) Estimaciones del número de microorganismos, producción de nitratos y actividad de fosfatasa alcalina en un suelo Argiudol vértico de la localidad de Ramírez, Entre Ríos, bajo siembra directa y durante la rotación trigo-soja. In: Monzón de Asconegui M, García de Salamone IE, Miyazaki S (eds) Biología del Suelo. FAUBA, Buenos Aires, pp 137–142

    Google Scholar 

  • Rubio R, Borie F, Schalchli C et al (2003) Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Appl Soil Ecol 23:245–255

    Article  Google Scholar 

  • Ruiz-Sanchez M, Armada E, Muñoz Y et al (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Rumble H, Gange AC (2017) Microbial inoculants as a soil remediation tool for extensive green roofs. Ecol Eng 102:188–198

    Article  Google Scholar 

  • SAC (2002) No. 074 de 2002 Reglamentación para productos agropecuarios. https://www.sac.org.co/es/ambito-juridico/resoluciones/136-no-0074-de-2002-reglamentacion-para-productos-agropecuarios.html. Accessed 15 Nov 2018

  • SAGARPA (2018) PROAGRO. https://www.sagarpa.gob.mx/proagro. Accessed 1 Oct 2018

  • Sahoo RK, Bhardwaj D, Tuteja N (2013) Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 403–432

    Chapter  Google Scholar 

  • Sanches-Santos M, Hungria M, Nogueira MA (2017) Production of polyhydroxybutyrate (PHB) and biofilm by Azospirillum brasilense aiming at the development of liquid inoculants with high performance. Afr J Biotechnol 16(37):1855–1862

    Article  Google Scholar 

  • Sasson A, Malpica C (2018) Bioeconomy in Latin America. New Biotechnol 40:40–45

    Article  CAS  Google Scholar 

  • Schalamuk S, Velázquez S, Chidichimo H et al (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98:16–22

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JE, Bowles TM, Gaudin ACM (2016) Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front Plant Sci 7:373

    PubMed  PubMed Central  Google Scholar 

  • SENASA (2018) Listados oficiales de registros. Servicio Nacional de Sanidad y Calidad Alimentaria. Argentina. http://www.senasa.gob.ar/cadena-animal/bovinos-y-bubalinos/industria/establecimiento-industrializador/registros-y-1. Accessed December 2018.

  • SEPSA (2018) Informe comercio exterior del sector agropecuario. http://www.sepsa.go.cr/docs/2018-023_Informe_Comercio_Exterior_enero-setiembre_2017-2018.pdf. Accessed 15 Nov 2018

  • Sharma SB, Sayyed RZ, Trivedi MH et al (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. https://doi.org/10.1186/2193-1801-2-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Li C, Mi G et al (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui ZA (2006) PGPR: biocontrol and biofertilization. Springer, Dordrecht, p 318

    Book  Google Scholar 

  • Siddiqui ZA, Kataoka R (2011) Mycorrhizal inoculants: progress in inoculant production technology. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York, pp 489–506

    Chapter  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046. https://doi.org/10.3852/16-042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sruthilaxmi CB, Babu S (2017) Microbial bio-inoculants in Indian agriculture: ecological perspectives for a more optimized use. Agric Ecosyst Environ 242:23–25

    Article  Google Scholar 

  • Tabassum B, Khan A, Tariq M et al (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  • Tejeda-González G, Martínez-Viera R, Arozarena-Daza N et al (2010) Biofertilizantes microbianos para una agricultura sostenible: sistema cubano de gestión tecnológica para las actividades de investigación, desarrollo, innovación y producción. http://agris.fao.org/agris-search/search.do?recordID=CU2011000127. Accessed 20 Oct 2018

  • The World Bank (2018). http://wdi.worldbank.org/table/4.2. Accessed 15 Nov 2018

  • Thilakarathna MS, Raizada MN (2017) A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol Biochem 105:177–196

    Article  CAS  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. PNAS 96(11):5995–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA et al (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. BioMed Research International. Hindawi Publishing Corporation. https://doi.org/10.1155/2013/863240

    Article  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  PubMed  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier based formulations of plant growth promoting bacteria suitable for use in the cooler regions. World J Microbiol Biotechnol 21(6-7):941–945

    Article  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2012) Bacterial inoculants for field applications under mountain ecosystem: present initiatives and future prospects. In: Maheshwari D (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg, pp 15–44

    Chapter  Google Scholar 

  • UCR (2018) Biofertilizantes desarrollados en la UCR ya están al alcance de los agricultores. https://www.ucr.ac.cr/noticias/2018/02/16/biofertilizantes-desarrollados-en-la-ucr-ya-estan-al-alcance-de-los-agricultores.html. Accessed 25 Sept 2018

  • UNCTED (2018) Organic agriculture. http://unctad.org/en/Pages/DITC/Trade-and-Environment/Organic-Agriculture.aspx. Accessed 25 Sept 2018

  • Urquiaga S, Jantalia CP, Alves BJR et al (2004) Importancia de la FBN en el secuestro de carbono en el suelo y en la sustentabilidad agrícola. In: Monzón de Asconegui MA, García de Salamone IE, Miyazaki SS (eds) Biología del Suelo. FAUBA, Buenos Aires, pp 1–6

    Google Scholar 

  • Valverde C, Gonzalez Anta G, Ferraris G (2015) Pseudomonas and Azospirillum. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Technical issues and protocols. Springer, Geneva, pp 389–409

    Google Scholar 

  • Vázquez-Moreno L (2006) La lucha contra las plagas agrícolas en Cuba. De las aplicaciones de plaguicidas químicos por calendario al manejo agroecológico de plagas. Fitosanidad 10(3):221–242

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Villegas-Cornelio VM, Laines-Canepa JR (2017) Vermicompostaje: I avances estrategias en el tratamiento de residuos orgánicos. Rev Mex Ciencias Agrícolas 8(2):393–406

    Article  Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J 1(1):35–38

    Article  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • World Economic Forum (2014) Towards the circular economy: accelerating the scale-up across global supply chains. World Economic Forum, Geneva

    Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Crop Manag 3(1). https://doi.org/10.1094/CM-2004-0301-06-RV

    Article  Google Scholar 

  • Zambrano-Soledispa A, Gamarnik M, Di Salvo LP et al (2017) Diversidad de hongos micorrícicos arbusculares nativos del cultivo de maíz bajo distintas prácticas agronómicas. V Congreso CONEBIOS. Lujan, Argentina, November 5–8

    Google Scholar 

  • Zawoznik M, Groppa MD, Benavides MP (2007a) Nitric oxide and salt stress tolerance in wheat-Azospirillum association. XLIII Reunión Anual de la Sociedad Argentina de Investigación en Bioquímica y Biología Molecular. November 2–15

    Google Scholar 

  • Zawoznik MS, Groppa MD, Tomaro ML et al (2007b) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

  • Zawoznik MS, Rosales EP, Benavides MP et al (2009) Colonización radical con Azospirillum como factor mitigador del estrés salino. Influencia de la cepa microbiana. VII Simposio Nacional de Biotecnología (REDBIO- Argentina) y II Congreso Internacional-REDBIO-Argentina. Lugar: Rosario, Santa Fe, Argentina. April 20–24

    Google Scholar 

  • Zuffo AM, Rezende PM, Bruzi AT et al (2015) Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense in the soybean crop. Rev Ciênc Agrár 38(1):87–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés E. García de Salamone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García de Salamone, I.E., Esquivel-Cote, R., Hernández-Melchor, D.J., Alarcón, A. (2019). Manufacturing and Quality Control of Inoculants from the Paradigm of Circular Agriculture. In: Singh, D., Gupta, V., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_2

Download citation

Publish with us

Policies and ethics